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ABSTRACT

Amina Boughrara (Doctor of Philosophy in Petroleum Engineering)
Injection/Falloff Testing of Vertical and Horizontal Wells
Directed by Dr. Albert C. Reynolds

454 pp. Chapter 6

(338 words)

Our focus is on replacing production/buildup tests by injection/falloff tests in or-
der to estimate reservoir parameters such as permeability and mechanical skin. These
tests are economically attractive because they are associated with waterflooding projects.
Moreover, they are also used for the purpose of eliminating emissions during well-testing
operations. Typically, the reservoir is flooded with water having a temperature consider-
ably below that of the reservoir fluids. This significantly complicates the problem of well
test analysis. Not only is the flow in the reservoir governed by the water and oil relative
permeabilities, temperature changes induced by injection of cold water also occur in the
system. These effects make the associated initial boundary-value problem non-linear. As
a consequence, analytical solutions for the pressure are difficult to obtain and the su-
perposition technique usually applied to generate the pressure solution for variable rate
problems cannot be theoretically justified.

The intent of this study is to provide a theoretical understanding of the injec-
tion/falloff testing of water injection wells. Models for the movement of water injected
via a horizontal or a vertical well are developed to generate new approximate analytical
solutions for injection and falloff pressures. When incorporating the thermal effects into
the analysis, temperature profiles in the reservoir during injection and falloff periods are
also constructed analytically. The accuracy of results from our approximate solutions is

checked by comparing them to solutions generated from a black-oil reservoir simulator.
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The final objective of this work is to provide a practical analysis technique for
injection /falloff testing of water injection wells. We demonstrate that our analytical so-
lutions can be used to estimate reservoir and well properties. Injection/falloff data are
analyzed using non-linear regression with our approximate analytical model used to con-
struct the predicted pressure response. This approach allows us to estimate important
parameters such as the absolute permeability of the reservoir (isotropic and anisotropic),
the mechanical skin factor, the length of the horizontal well and the two-phase relative

permeability curves assuming a power law model.
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CHAPTER 1
INTRODUCTION

Waterflooding is a method of secondary recovery in which water is injected into a
reservoir to displace oil that has been left behind after primary recovery. Waterflooding
usually involves the injection of water through wells especially set up for water injection.
Once injected, water sweeps the displaced oil to production wells. Most oil reservoirs
are subjected to waterflooding at some point in their development. Injectivity and falloff
tests are run on water injection wells in order to obtain pressure transient data, crucial

for reservoir monitoring and management.

1.1 Literature Review

There exist numerous articles in the literature which provide insight and a general
understanding of the injection and falloff pressures at a complete-penetration vertical
injection well and theory for the analysis of these pressure data. We cite for example
Abbaszadeh and Kamal [4] and Bratvold and Horne [11] who derived an analytical solution
for injectivity tests which accounts for the saturation profile behind the front. They relied
on the fact that the injection solution for a line source well can be correlated in terms of
the Boltzmann transform and an approximation to the saturation profile can be obtained
from the radial flow Buckley-Leverett model. Abbaszadeh and Kamal [4] formulated
their solution by using a multibank approach where the banks continually move during
the injection period resulting in an advance with time of all boundaries between banks.
The Bratvold and Horne [11] approach is somewhat simpler in that, they directly solve a
moving boundary problem where the boundary corresponds to the location of the front
as predicted from Buckley-Leverett frontal advance equation for radial flow. Both papers

also presented a solution for the falloff period. Abbaszadeh and Kamal [4] have shown



that the falloff solution can be generated reasonably accurately by superposing two single-
phase radially multi-composite solutions where the single-phase multi-composite solutions
are based on the reservoir total mobility profile at the instant of shut-in. These authors
suggested that falloff data can be analyzed using type curves generated from the analytical
solution with relative permeabilities and rock and fluid compressibilities known. From the
type curve match, one can then estimate effective water permeability at residual water
saturation and therefore the absolute permeability, the skin factor and even the average
mobility in the oil bank. In their approach for constructing an analytical solution for
falloff, Bratvold and Horne [11] used the fact that the mobility profile does not change
during shut-in as suggested by Abbaszadeh and Kamal [4]. Thus, the initial-boundary
value problem for the pressure during shut-in can be represented as a single-phase radially
multi-composite problem based on the total mobility profile at shut-in with the initial
condition obtained from the injection solution evaluated at the instant of shut-in. They
solved this problem using the Laplace transform and inverted it numerically to obtain
the falloff solution as a function of time. With that said, the solution techniques used
by Abbaszadeh and Kamal [4] or Bratvold and Horne [11] cannot be implemented for
a horizontal configuration as we do not know the analogous analytical multi-composite
solution for a horizontal well.

Thompson and Reynolds [34] and Thompson and Reynolds [33] presented a general
theory for the pressure behavior in radially heterogeneous reservoirs under multiphase flow
conditions. They found that derivative data reflect a weighted average of permeability-
mobility over the reservoir. The averaging process gives large weights to regions where
total rate and total mobility change most rapidly with time. The general solution proce-
dure introduced by Thompson and Reynolds relies on the concept of a steady-state zone
which propagates into the reservoir when the well is flowing. The theory applies for both
production and injection wells and solutions generated with this theory include the single-
phase flow solutions as special cases. Banerjee et al. [5] applied the ideas of Thompson and
Reynolds to injectivity tests for vertical wells in heterogeneous reservoirs. For the radial

flow water injection problem, the steady-state zone corresponds to the region concentric



with the wellbore where the total in-situ flow rate may be treated as constant. Beyond
the steady-state zone, the in-situ flow rate decreases and is equal to zero at points far
from the injection well. Under single-phase flow conditions, the change in pressure with
time is completely determined by the properties at points in the reservoir where the rate
is changing with time. For any reasonable values of reservoir properties, this constant rate
steady-state zone propagates faster than the water flood front. A schematic illustrating
the overall process is shown in Fig. 1.1 for the case where the initial water saturation
is equal to irreducible water saturation. The Banerjee et al. [5] solution, based on the
steady-state theory, and which was constructed without assuming that variables could be
correlated in terms of the Boltzmann variable, differs from the Bratvold and Horne [11]
solution which is based on the Boltzmann transform. In their work, Banerjee et al. [5]
deleted a term from the solution that is not always negligible. Peres and Reynolds [27]
showed that if the neglected term is included, then the Banerjee et al. [5] solution is

consistent with the solution provided by Bratvold and Horne [11].

Water injection well

Figure 1.1: Propagation of steady-state zone and flood front for radial geometry.

As mentioned before, the pressure diffusion and the advancement of the flood

front occur on different time scales for the vertical well case. For the horizontal well



case, however, not only do the pressure diffusion and the propagation of the flood front
occur on different time scales, but also in different planes or directions promoting the
appearance of new flow regimes in addition to the standard flow regimes exhibited by
horizontal wells under single-phase flow. Because of this, the pressure response due to
water injection through a horizontal well is expected to be considerably more complex
than in the vertical well case. Peres and Reynolds [27] were the first to develop an
accurate approximate analytical solution for the injection response at a horizontal water
well and to show the existence of these new flow regimes. Their solution was derived
using the steady-state theory of Thompson and Reynolds [33] combined with a technique
introduced by Deppe [18] and a combination of Boltzmann transforms for the different flow
regimes. However, their solution assumes an isotropic reservoir and that the horizontal
well is equidistant from the top and bottom reservoir boundaries. In addition, Peres and
Reynolds [27] restricted their analysis to the injection period only, that is, the falloff was
not considered.

Levitan [24] presented a new method for the analytical solution of two-phase pres-
sure transient problems. His solution is more general, in that it applies to multirate
injection tests including the case where one or more of the rates can be set to zero to sim-
ulate a falloff test. The Levitan [24] solution method is based on a special transformation
of variables that simplifies the coefficients of the governing pressure equation for radial
flow.

Except for the work of Bratvold and Horne [11] and Levitan [24], all the authors
cited earlier assumed that the injected fluid is at the same temperature as the in-situ reser-
voir fluid when constructing solutions for the pressure response during an injection /falloff
test on water injection wells. In practice, this is not the case since the injected water is
at a lower temperature than the reservoir oil.

When cold water is injected into a hot reservoir, the formation around the water
injector will cool down to the temperature of the injected water. This creates a cold
water bank around the injector which expands with time into the reservoir. Similar to

the saturation front, the temperature front will also propagate in the reservoir as shown



in Fig. 1.1. The nonisothermal two phase problem is therefore described by mass and
energy conservation equations. The heat exchange in the reservoir occurs mainly through
three processes: convective heat transfer between injected fluid and solid matrix, heat
conduction and heat transfer between solid grains by radiation. The last mechanism is
not considered to be important in porous media and therefore is usually neglected when the
gas phase is not involved. Heat transfer by convection is accounted for by assuming that
thermal equilibrium exists at all times between the rock matrix and surrounding fluids.
Conductive heat transfer that occurs in the reservoir can be split up in two processes:
horizontal conduction occurring in the direction of fluid flow and vertical conduction that
happens perpendicular to the overlying and underlying strata.

The early work of Witterholt and Tixier [35] on thermal effects considered the
use of mathematical models which describe the exchange of heat between injected water,
wellbore, surrounding formation and injection zone in order to study the behavior of the
bottom hole temperature during an injection/falloff test. The mathematics involved in
the modelling, as pointed out by these authors, is taken from Carslaw and Jaeger [14]
and thus, the intent of their simplistic approach used in the computation of temperature
profiles was not to provide a quantitative match with field data. Their solution for the
temperature during injection takes into account not only the convective heat flux in the
radial direction but also the heat that is transferred through vertical conduction. However,
Witterholt and Tixier [35] assumed a step function injection zone temperature profile,
generally obtained when only convection is considered, when solving for the temperature
profile in the wellbore during the shut-in period.

Using the Verigin model which assumes that the injected fluid displaces the for-
mation fluid in a piston-like manner (two-bank system), Woodward and Thambynayagam
[36] presented an analytical solution for the pressure response that they generalized to
nonisothermal conditions. Their study indicated that the effect of temperature variations
during injection are found to behave as skin effects. Despite the fact that their analytical
solutions were validated by comparison with results obtained from a numerical simula-

tion, the authors did not provide a formal derivation for the Verigin generalization to



nonisothermal conditions.

Similarly to Woodward and Thambynayagam [36], Barkve [6] considered the dis-
placement to be piston-like. By decoupling the mass and energy equations, the author was
able to analytically solve the system for temperature and pressure in the reservoir during
injection providing, therefore, a formal derivation of the results presented by Woodward
and Thambynayagam [36].

Platenkamp [30] conducted a numerical study in order to show the relative im-
portance of the three heat exchange processes involved when injecting cold water into a
hot reservoir, that is convection, vertical and horizontal conduction. He concluded from
this study that it is a good approximation to neglect the heat transfer contribution from
conduction compared to that from convection during an injection period as long as the
duration of the test is not too long and the injection rate is sufficiently high.

As mentioned earlier, Bratvold and Horne [11] incorporated the effects of temper-
ature into their two-phase solution. Based on the study of Platenkamp [30], the temper-
ature distribution was assumed to be completely dominated by convective mechanism of
heat transfer during the injection period leading to a quasilinear hyperbolic system for
water saturation and temperature that they solved using the method of characteristics
(see Temple [32]). In constructing their falloff solution, Bratvold and Horne [11] did not
take into account the heat exchange through conduction (specifically vertical conduction)
in the wellbore and the reservoir as they used the nonisothermal Buckley-Leverett satu-
ration distribution and the temperature profile generated during the injection period and
evaluated at the instant of shut-in. Levitan [24] used the approach of Bratvold and Horne
[11] to account for the temperature changes induced by water injection into his solution.

In summary, several studies pertaining to injection and falloff testing of vertical
and horizontal wells have been presented. However, some questions remain unanswered.
How can we generalize analytical solutions derived previously for configurations other
than a complete penetration vertical well case and a horizontal well of equal offset. How
can we generate solutions that take into account the fact that the permeability field is

anisotropic. Most importantly, how can we incorporate the different mechanisms for heat



exchange into our solutions when cold waterflooding a hot reservoir. These points need

to be addressed.

1.2 Objectives and Research Scope

The work of Peres and Reynolds [27] provides a sound starting point for this re-
search. As mentioned previously, these authors derived approximate analytical solutions
for the injection pressure change at vertical and horizontal wells which incorporate the
water saturation gradient. In the vertical well case, their solution assumed a complete-
penetration well; in the horizontal well case, it assumed that the well is equidistant from
the top and bottom reservoir boundaries. Moreover, these authors assumed water injection
into an isotropic reservoir. The principal objectives of this work are: (i) to remove these
assumptions by constructing approximate analytical pressure solutions for the restricted-
entry vertical well case and for a horizontal well with an unequal offset configuration in
isotropic and anisotropic reservoirs, (ii) to construct analytical solutions for the falloff
response, (iii) to extend the solutions for injectivity and falloff tests to include the non-
isothermal effects as we invariably inject cold water into hot oil, and (iv) to provide a
practical analysis procedure based on non-linear regression which can be used to estimate
reservoir and well properties.

There are 6 chapters in this dissertation. In chapter 1, we give a review of relevant
literature and state the objectives of the study. Chapter 2 is on injection testing of verti-
cal and horizontal wells under isothermal conditions. It includes a description of models
for the movement of water when injected through the different configurations considered
here, the derivation of the pressure response based on the steady-state theory of Thomp-
son and Reynolds and the flow regimes observed during an injection test, a discussion of
the spatial transformation used to handle the anisotropy and a validation of numerical
results generated using our models. Falloff testing of vertical and horizontal wells under
isothermal conditions is addressed in chapter 3. Two conceptually different analytical
methods to solve for the falloff response are presented and validated using a commercial

simulator. Chapter 4 covers the mathematical modeling of the nonisothermal waterflood-



ing. A discussion of the different mechanisms to heat transfer in porous media as well as
their effect on the injection and falloff pressure data is provided in this chapter. Chapter 5
presents a practical analysis of injection and falloff data for the estimation of parameters
such as absolute permeabilities, mechanical skin factor and relative permeabilities. In

chapter 6, we discuss the relevant results and give conclusions.



CHAPTER 2
INJECTION TESTING OF VERTICAL AND HORIZONTAL WELLS

In this chapter, we present some theoretical results relevant to injectivity tests in
vertical and horizontal wells completed in an oil reservoir above bubble point pressure.
These results include models for the movement of water when injected through restricted-
entry vertical wells and horizontal wells with unequal offsets in order to map the water
saturation distributions and therefore, the total mobility profiles during the injection pe-
riod. This is crucial for the generation of approximate analytical solutions for the injection
pressure if one wishes to pursue the solution techniques used by Peres and Reynolds [27]
and based on the steady-state theory of Thompson and Reynolds [33]. The solutions are
first presented for an isotropic reservoir and then generalized to an anisotropic reservoir
by introducing a spatial transformation to convert an anisotropic system to an equivalent
isotropic system. The analytical results are verified with numerical results obtained from
a black oil reservoir simulator. The behavior of the pressure and its derivative observed
under steady-state conditions for the different configurations considered in this work is

explained.

2.1 Steady-State Theory for Radial Flow
We consider injection of water at a constant rate given by ¢;,; through a vertical
well in a homogeneous reservoir of constant porosity. For now, we assume that the reser-
voir is isotropic. It is also assumed that the initial saturation distribution is uniform and
equal to irreducible water saturation, S;,,. No wellbore storage is considered. For now, we
assume pure radial flow through a completely-penetrating well into a reservoir of constant
formation thickness, h. We will show that we can apply the same theoretical approach

used by Peres and Reynolds [28] to construct an analytical solution for the injection pres-



sure at a restricted-entry vertical well as well as a horizontal well. The theory is based
on an infinite cylindrical reservoir with a restricted-entry vertical well at the center. For
the horizontal well case, the well is not necessary equidistant from the top and bottom
boundary of the reservoir.

We begin with the case of pure radial flow through a completely-penetrating water
injection well at the center of an infinite cylindrical reservoir. The starting point of this

analysis is Darcy’s law which we can write after rearranging and integrating as

a [T g t) dr
Ap = ﬁ/r (1) Th(r) (2.1)

where ¢(r,t) represents the total reservoir rate. Eq. 2.1 is general and applies for

both production and injection. Since the focus here is on the water injection problem,

¢t(Tw,t) = qinj > 0 represents the specified injection rate in RB/day and

Ap = pus(t) — pi, (2.2)

where p,, s is the injection pressure at the wellbore and p; is the initial reservoir pressure.

The total mobility ); is defined by

kTO Sw krw w
(Su) , KrolSu)
fo P

A = (2.3)

We also define the oil mobility at irreducible water saturation by Ao = W and the
water mobility at residual oil saturation by A = W « is a constant which depends
on the units system used. In field units, @ = 141.2. In Eq. 2.1, the permeability k(r) is

assumed to be variable in order to account for the change of the permeability near the

wellbore region due to the mechanical skin. Therefore, we set it equal to

ks forr, <r <rg,
k(r) = (2.4)
k  forr > r,.

Eq. 2.4 assumes a reservoir with a thick skin zone concentric with the well with a radius
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rs. The permeability in the damaged zone is k;. We can rewrite Eq. 2.1 as follows

a < qr,t) dr
Nt k() & /Tf(t) N D) TR(r)

/rf(t) qt(r,t) dr _g/rf(t) qt(r,t) dr (2 5)
. Ao TE(r)  h ., o

where 7 is the radius of the flood front predicted by Buckley-Leverett theory. Rearranging

Eq. 2.5, we obtain

ry(t)
/ @(r,t) dr_ (2.6)

Note that ahead of the water front, i.e., for » > r;, we have A\(r,t) = 5\0. In addition,
according to the steady-state theory of Thompson and Reynolds, the total rate ¢(r,t) is
equal to the constant injection rate for r < rg, where rys = ry(t) denotes the radius of
the steady-state zone of constant total rate at injection time ¢. For any set of physically
reasonable values of reservoir and well data, we have r(t) < rg(t) [28]. Therefore, the

equation ¢(r,t) = ¢;n; holds everywhere behind the front, i.e., for r < ry and Eq. 2.6

becomes
A —i/oo (1, t) +ozqmj/’"f“)( Ao _1) dr (2.7)
P L ) TS, S \ D) rk(r)’ '
or simply
Ty (t) \
Ainj f >\o dr
Ap = Ap, + — / (——1)—, 2.8
g g hXo Jrw Ae(r, 1) rk(r) (2.8)

where Ap, is the injectivity single-phase flow pressure change based on oil properties at

irreducible water saturation, i.e., the single-phase pressure change that we would obtain
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by injecting oil through a vertical well into an oil reservoir of permeability k(r), defined
by Eq. 2.4. To evaluate this pressure change, one would use the term kk,,(S;y,)/ o for
k/1, and ¢ = co(1 — Siy) + CwSiw + ¢, for the total compressibility of the system in the
single-phase solution.

At this point of the analysis, we need to consider two distinct cases with respect
to the location of the flood front: (i) the flood front is still moving in the skin zone so
that the permeability k(r) in Eq. 2.4 is simply replaced by the permeability in the skin

zone, kg. Under this condition, Eq. 2.8 becomes

re(t) 3
QAQinj f )\O dr
Ap = Ap, + / (——1)—. 2.9
p==p kshXo Jru (7, 1) r (29)

We let Z be the similarity variable also known as the Boltzmann variable defined by

A (2.10)

Differentiating Eq. 2.10 with respect to r yields

r2 dr dr

,
dZ =2—dr =2—— =2/— 2.11
4" 4t r r’ (2.11)
or
dz dr
— =2—. 2.12
Z r ( )
If we also define the Boltzmann variable at the water front by
7, =" 2.13)
I=gp (2.
then Eq. 2.9 becomes
Ap = Ap, + —ding /Zf ( Ao 1) dz (2.14)
P = APo < — —. .
2ksh A\, Jr2 4t M(Z) Z

Here, we assumed that the saturation profile can be approximated by the one obtained
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by injecting water through a line source well. In the Z variable, the location of the water
front Z; is stationary, i.e., it does not vary with time. Moreover, ), is a unique function
of Z so that \i(r,t) = \(Z). If we take the derivative of Ap with respect to the logarithm

of time, we obtain

Ae(Z)

Ap'

dAp _ dAp,  agw;  d Zs < Ao 1) A
7

— = J t— —. 2.15
dint  dlnt = 2k .hp\, dt 12, /4t ( )

By applying Leibnitz integral rule, it is easy to show that

i/Zf Ao -1 %__ L_lﬁ _i
dt Jyz s \Ne(Z) 7\ \(r2/41) r2 412
1/ A
= (——2——-1). 2.1
t ()‘t(rwvt) > ( 6>

Substituting Eq. 2.16 into Eq. 2.15 and using the result that A\, = Ao atb T give

~

/ / aqinj >\o
Ap' = Apl, + J <A——1). 2.17
b P 2kshAo \ \y ( )

Introducing the end-point mobility ratio, M= ’/\\—w and rewriting the preceding equation,

o

VA
Ap' = Apl, + ;qg (M - 1). (2.18)

At sufficiently large values of ¢, the single-phase solution based on oil mobility at irre-

ducible water saturation is given by

AGinj 1 (ﬁk;&ﬁ) :|
Ap, = —2 | ZIn | = +0.4045 + s/, 2.19
b kh\, {2 GCroT2, (2.19)

and its derivative with respect to the logarithm of time by

Ap, = g (2.20)
2khA,

In Eq. 2.19, s denotes the mechanical skin factor and (3 is a constant which depends on the
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system of units used. If oil field units with time in hours are used, then 8 = 2.637 x 1074

Using Eq. 2.20 in Eq. 2.18 yields

Qi kE/1
Ap = Yo+ = —==1 2.21
b Qkh)\o{ +/€s<M )} (221)

or rearranging the preceding equation

o R k
Ap = 2:(]}:? {1 - M<1 - E)] (2.22)

Eq. 2.22 clearly indicates that the pressure derivative can be negative at early times

provided that

M(1 - %) > 1. (2.23)

Note that this condition holds only if the well is damaged (s > 0) and the mobility ratio
is unfavorable (M > 1).

(ii) If the water front is beyond the skin zone, that is r; < r¢, Eq. 2.8 becomes

aqinj e ;\o dT OéQmj Tf(t) 5\o dT
Ap = Ap, + . / ( —1>—+ = / —-1)—. 2.24
Pl o \Nn ) r kA S\ (1) ;o @2

By adding and subtracting to Eq. 2.24 an integral from r,, to r,, we have

Oé%'nj " 5\o dr Oéqmj o r
oo 52 [ (g )i e )
p=ap kshXg Jro \Ae(7,1) T kh\, Ae(r,t)

i /T‘“ ( Ao )  inj / < Mo > dr
4 O _ —, (2.25
khX, Jr, \Ae(7,1) kh\, Ae(r,t) r (2.25)

or simplifying,




Using the Boltzmann variable as defined previously, Eq. 2.26 becomes

r2 /4t 3 Z N
OGinj k s )\o dz f )\o dz
Ap = Ap, + 20 {(——1)/ <——1)—+ Ao )2
b= 2khX, L\ Fs 2 a \Ae(2) Z Jrpm \N(2) Z (2.27)

Again, if we differentiate Ap with respect to In(¢) and use Leibnitz rule, we obtain

~ ~

+ <m - 1)] (2.28)

By letting Ay (r2 /4t) = M(rw,t) = Ay and substituting Eq. 2.20 in Eq. 2.28, we finally

obtain

/ aqmj k 5‘w >:|
Ap = D e | —-1)]1. 2.29
P kA, { (k: ) (At(mt) (2:29)

Note that once the flood front moves outside the skin zone, Eq. 2.29 predicts a negative

pressure derivative only if the following condition is satisfied:

()i

or equivalently

A (76, 1) < Au (1 - %) (2.31)

Two remarks with respect to Eq. 2.31 are in order. First, this condition is independent
of the end-point mobility ratio. Therefore, unlike Eq. 2.23, it can hold even for favorable
mobility cases. Second, once the skin zone is completely swept by water, A\;(rs, t) becomes

equal to A\ and Eq. 2.29 gives
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/ aqinj

b= 2kh\,

(2.32)

reflecting water properties at residual oil saturation at long injection times.

One key observation inherent in the analytical solutions obtained using the steady-
state theory of Thompson and Reynolds [33] is that the analytical solution for the injection
pressure is written as the sum of the solution based on single-phase oil properties at
irreducible (or initial) water saturation and a multiphase flow term which represents
the additional pressure change due to the contrast between oil mobility at irreducible
saturation and total mobility in the zone invaded by injected water. If one wishes to
use the same approach, it is crucial to generate the water distribution in the reservoir
for the computation of the total mobility profile during the injection period. So, what
is required are models that describe the movement of water when injected through a
vertical or horizontal well. In the next section, we will present models for the movement
of water based on a combination of Buckley-Leverett equations that allow us to accurately
approximate the two-phase flow component of the analytical solution for a restricted-entry

vertical well case and a horizontal well with an unequal offset.

2.2 Models for the Movement of Injected Water

2.2.1 Restricted-Entry Vertical Well Case

Even though the Buckley-Leverett theory provides an analytical method for gen-
erating the saturation profile, its application requires the knowledge of the flow direction.
For the single-phase flow through a restricted-entry vertical well, it is well known that
near the well, we may have radial flow adjacent to the open interval, but far from the well,
radial flow occurs over the entire thickness of the formation. For our injection problem,
we expect that water, when injected, will move radially such that the height of the water
bank increases with time until the height is equal to the formation thickness. We can,
therefore, evaluate the water saturation distribution and associated total mobility pro-

file from a Buckley-Leverett equation based on radial flow through a system of variable
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thickness given by

r(Sw) QQz‘njt dfw(Sw)
_ Zing! Gul2w) 2.
/W rh(r)ar = st LSl (2.33)

where the constant § depends on the system of units used with § = 5.615/24 = 0.23396
if oil field units are used with time in hours. Eq. 2.33 gives a relation between r(S,),
the location of the saturation S, at time ¢, and other parameters for all values of water
saturation between S,y and 1 — S,,. This equation assumes that the injection rate g;; is
constant. To apply Eq. 2.33 to compute the saturation profile requires knowledge of h(r).

We start the discussion by presenting two relatively simple models for which the
bottom of the perforated interval is adjacent to the bottom of the formation. Later, we
will generalize them to an arbitrary configuration with respect to the location of the open
interval. Fig. 2.1 gives a schematic of model 1. With this model, it is assumed that
injected water moves radially adjacent to the open interval with the height of the water
bank equal to h,, until the water front reaches the radius 7. and then moves radially over
the total thickness, h. The true profile could be quite different than this because between
the two zones where the flow of water is radial, there must be a significant component of
vertical flow. In our model for approximating the saturation profile, we simply ignore the
transitional flow between the two radial flow regions. Specifically, we assume that hA(r) is

given by

hy, itr<r,
h(r) = (2.34)

h ifr>r.
Model 2 is shown in Fig. 2.2. In this model, the formation thickness varies linearly
with the radial distance in the inner region. this model is more realistic in the sense that
it approximates the transitional flow between the two radial flow regions. In this case,

the height of the water bank is given by
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Figure 2.1: Radial flow regime for the restricted entry problem, model 1

h + (%)(r —r.) ifr<r,

h(r) = (2.35)
h if r>re..

Here, r. is referred to as the radius of convergence. More specifically, r. is the radius of

convergence of flow lines derived from single-phase theory. For the single-phase restricted-

entry case, the flow lines convergence can be approximated by two concentric radial re-

gions. In both regions, the flow lines are assumed to have a perfectly one-dimensional

radial symmetry. At the interface of radius r., we require the pressure and flow rate to

be continuous in order to derive a formula for this transitional point. A more detailed

discussion on how to obtain the new transitional point r. for each model is provided in
Appendix A.

For the restricted-entry case based on model 1, the radial location at time ¢ of

any saturation S, with S,y < S, < 1 — S, is calculated using Eq. 2.34 in Eq. 2.33.

Specifically, if 7(S,,) < ., then Egs. 2.33 and 2.34 imply that

TQ(SM) _ 7"2 + eqmjt dfw(Sw).

2.
© " Tgh,  dS, (2:36)

Similarly, if 7(S,,) > r.
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Figure 2.2: Radial flow regime for the restricted entry problem, model 2

2 =br2 4 (1 = b)r? J 2.
r (Sw) T’w + < )TC + 7T(Z5h, dsw ) ( 37)
where b denotes the penetration ratio defined by
h
b=—. 2.
: (239)

For model 2, calculation of the saturation distribution is more complex. The appropriate

formulas are obtained by replacing Eq. 2.35 into Eq. 2.33. Thus, we have

r(Sw) h—h Oinit dfus(S.)
59 . _ myj w w
/Tw r {h + (Tc — Tw)(r re)|dr o6 dS. (2.39)

or after integration,

 0qu Bt dfu(Sw)

1 3 3 1 2 2
g =007 (Sw) =) + 5 (bre =) (r7(Sw) =) = 5 B === (re = ), (240)

provided the equation results in r(S,) < 7.. Otherwise, the location of S,, is obtained

from
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Tec _ T(Sw) .
/ r {h + (ZL — ip )(r — rc)] dr + / rhdr = —95:5 —dfzésw), (2.41)

w

if (Sy) > re. Integration of Eq. 2.41 yields

0 inj d w Sw 1
_ ;Igbht fdéw ) | S =02 + (L= D)rery + (14 26)r7%]. (2.42)

T2<Sw)

2.2.2  Horizontal Well Case

Here, the Peres and Reynolds [28] model for the movement of water when injected
through a horizontal well in the center of the reservoir formation is extended to the case
where the horizontal well has unequal offset, i.e., the distance from the centerline of the
well to the top boundary is not equal to the distance to the bottom boundary. The two
potential models considered are conceptually equivalent to the models introduced for a
restricted-entry vertical well. In the following, it is assumed that the centerline of the
well of length L coincides with the y-axis and that z, represents the distance from the
centerline of the well to the closest boundary in the z-direction. Here, the top boundary
is closest to the centerline of the well.

The geometry of model 1 is shown in Fig. 2.3. The idea of this model is to assume
that at early times, the injected water moves radially in the plane (x, z). Once the flood
front reaches the top reservoir boundary, a first linear flow regime develops causing the
propagation of water in the z-direction for x1 < x < x5 with a cross-sectional area to flow
equal to 2z,L. As long as the well tips are not felt, a second linear flow regime occurs
in the z-direction for x > x5 with the cross-sectional area to flow given by hL. Later
on, a second radial flow regime which reflects radial pressure diffusion in the (z,y) plane
develops when both top and bottom boundaries and flow in the reservoir beyond the well
tips significantly affect the pressure response. As shown previously by [28], this situation,

illustrated in Fig. 2.4, occurs once the water front reaches the distance

Ty = gL. (2.43)
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Figure 2.3: Radial and linear flow regimes in the (z-z) plane, model 1

L.,

Figure 2.4: Radial flow regime in the (z-y) plane.

The parameter x; is obtained by applying Deppe’s procedure (see [18]) based on preser-

vation of injected water volume, which translates in terms of area as

22 = 22,11, (2.44)

o3

or equivalently

Ziw- (2.45)

I =

v
4

Fig. 2.5 displays model 2. Here, as for model 1, we assume that the injected water
front propagates radially and uniformly along the entire wellbore in the (x, z) plane before

it hits the top reservoir boundary. Then, water moves linearly over a variable thickness
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Figure 2.5: Radial and linear flow regimes on the (z-z) plane, model 2

from x; to x5 until the front reaches x5, and after this time, the movement of water is the
same as in model 1. Similar to the radius of convergence r. in the restricted-entry case, the
position x5 in both models is a parameter that we can obtain based on single-phase flow
analysis of the convergence pseudo-skin factor due to convergence of flow lines. Having
said that, it is important to realize that the position x5 defined for model 1 is different
from the one defined for model 2 due to a difference in geometry of the two models. A
discussion on how to determine this parameter for each model will be given later. For

model 1, the variable thickness is given by

2z, if0 <z <y,
h(z) = (2.46)
h if x > @,

whereas, for model 2, it is given by

4

22w if 0 <z <y,
h(r) =< b+ (Z;%j;f)(:p —x9) ifx <z <y, (2.47)
h if ¢ > x,.

\

In order to apply these models, we will combine three one-dimensional Buckley-
Leverett equations to generate the water saturation and total mobility profiles necessary

for the evaluation of the multiphase pressure change. Each of these equations starts at
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time ¢ = 0 and is applied for all saturations such that S,y < S, <1—5,,. For radial
flow in the (x, z) plane, the radial distance of any saturation, that we denote by r,,, can

be obtained from

2 :eqm]tdfw(sw) + 2

r2.(Sw) ol dS. T (2.48)

In particular, the location of the water front r,,(S, ), which we simply denote by r,,
can be obtained by evaluating Eq. 2.48 at the water front saturation S, .

For the movement of water in the z-direction, the location of a saturation .S,
is obtained from a Buckley-Leverett equation based on linear flow through a system of

variable thickness. Thus, we have

z(Sw) qu‘njt dfw(sw)
/0 h(m)Ldl’ _ > T (2.49)

By using the appropriate formula for h(z), Eq. 2.49 can be applied for both models 1 and
2. For the unequal offset horizontal well case based on model 1, the position x of the

water saturation .S, is obtained by replacing Eq. 2.46 into Eq. 2.49 as follows

() Ogingt dfulSu)
22, Ldx = —nd- v )
/0 2y Ldz 2% ds, (2.50)

provided the equation results in x(S,,) < 3. Integrating Eq. 2.50 yields

o eqinjt dfw<sw)

= 2.01
w(S) = 30 T as., (251)
If x > x5, the saturation profile in obtained as follows
v #(Sw) 0init df(Sw)
Qinj w\Pw
2z, Ld hLdx = —_—. 2.52
/0 zwLdx + /x 2 x 2 ds., (2.52)
Integrating Eq. 2.52 and rearranging gives
eqinjt dfw(Sw) 2Zw
_ “Ew 2.
©S) = 9gnp —as, T ) (2.53)
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where the second term of Eq. 2.53 represents the location of the flood front at the position
Zo. For model 2, the saturation distribution is generated by substituting Eq. 2.47 into

Eq. 2.49. For any z < x5, we have

xl w(Sw) (h —2z,) Oinjt df(Sw)
2+ T, _ 7 T _ L — By YwATw/ 254
/0 2w Ldx + /xl {h (2 — 1) (22 :r)} dx 2oL dS. (2.54)

If we integrate Eq. 2.54 and rearrange, we obtain the following quadratic equation

e%njt dfw(Sw>

(h — 22,)7%(Sw) + 2(22pT9 — hw1)2(Sy) — [(2211, — h)z? + oL ds. (e —21)| =
(2.55)
The solution for z(S,,) that we retain is
hay — 22,09 + VA
Sw) = : 2.56
(8,) = M (2.56)
where the discriminant A is given by
6 in, itd w\Pw
A = (x93 — 1) {4211, (zwxg — (h— zw)ajl) + (h — sz)%%i) . (2.57)
Similarly, if 2(S,,) > x9, the saturation distribution is derived from
1 To h—2 ” z(Sw)
/ QZde:U—i—/ L{h_w(;@—xﬂdl‘—i—/ Lhdzx
0 1 (w2 — 1) 2
eqmjt dfw(sw)
= 2.
2% dS, (2.58)

which after integration and manipulation yields the expression for x(.S,,) given by

. QCJmﬂf dfw(Sw) 1 QZw
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By evaluating Eq. 2.51 or 2.53 for model 1 and Eq. 2.56 or 2.59 for model 2 at S, s, the
location of the water front that we denote by z; can be found.

Finally, for the radial flow of water in the (z,y) plane, the following Buckley-
Leverett formula is applied:
_ HQ’LTL]t dfw(Sw>

= s (2.60)

The location of the flood front, denoted by 7¢,,, when propagating in the (z,y) plane is
obtained by evaluating Eq. 2.60 at the water front saturation Syy.

It remains to determine the position x5 for each model. Similar to formulas derived
to compute the radius of convergence r. in the restricted-entry case (see Appendix A),
the position x5 is determined by single-phase flow theory. For both models, we start
the analysis by writing the pressure change from 7, to xo as the sum of the pressure
change from z; to xs due to linear flow through a cross-sectional area given by h(z)L
and the pressure change due to radial flow from r,, to z,. Therefore, for this steady-state

single-phase flow in a homogeneous isotropic reservoir, one gets

aqBu [* dr  maqBp /””2 dz
e — D = - , 2.61
Doz = Pus = 57 [w %L ), ) (2.61)

r

The total pressure change due to linear flow from 0 to x5 is

TaqBu /"32 dv  maqBpu
0

oL T TIhL T. (2.62)

pCEQ - pwf =

It is easy to see that the extra pressure drop due to flow lines convergence (from a linear

to a radial geometry) is obtained by subtracting Eq. 2.62 from Eq. 2.61 to obtain

aqBu Zw 2 dx 0
A = In — —— — —a]|. 2.
Pconv kL |i n (Tw) + 7T/‘a71 h(ﬂ?) hx21 ( 63)

We let S.on, denotes the pseudo-skin factor associated with the convergence pressure

change Apeon, S0 that
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aqBu

—_— . 2.64
kjL SCO’I’L’U ( 6 )

Ap conv —

Thus, equating the right sides of Egs. 2.63 and 2.64 gives

Zw 2 dx T
convo = In [ — — — —Iy. 2.65
S n(rw) —|—7r/$1 h(x) th ( )

To proceed further requires a choice for h(z). For model 1, h(x) is defined by Eq. 2.46.

In this case, Eq. 2.65 simplifies to

z 2 ode
conv = 1 = 5. T 742 2.66
S n<rw> —i—ﬂ'/m 22 hCUQ ( )
or equivalently
z s s
comy = In [ =2 —(z9 — — —o. 2.67
S n (Tw) + 92 (2o — 1) h$2 ( )

Using Eq. 2.45 in Eq. 2.67 and solving for x5 gives

h z w2
= ———— | Seomy — In | == — . 2.68
T — [ “(rw>+ 81 (268)

Odeh and Babu [25] and Kuchuk et al. [23] derived the following analytical expression

for the exact convergence pseudo-skin factor for the single phase flow

Seonw = In ( h > (2.69)

271y, Sin(mwzy, /h)

Finally, replacing Eq. 2.69 in Eq. 2.68 gives

ne () %} | (270)

22w

For model 2, h(z) is defined by Eq. 2.47. Thus, Eq. 2.65 yields

2 T2 dx T
cone =In [ =2 ) + — — . 2.71
s =10 () A e i &71)

T2—T1
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Integrating Eq. 2.71 and rearranging, we obtain

Zw m(xe — 27) h 0
conv — 1 - 1 — —XT2. 2.72
=i (G2) 4 g () e
Finally, using Eqgs. 2.45 and 2.69 in Eq. 2.72 and solving for x5 gives
72 h h
8(h/2zyw—1) In <E) +In (Qﬂ'Zw sin(ﬂzw/h)>
Ty = : (2.73)

s h/QZw h
h {m In (r) - 1}

2.3 Pressure Response

2.3.1 Ingection Through a Restricted-Entry Vertical Well

Previously, we derived an analytical solution for the injection pressure at a completely-
penetrating vertical well located at the center of an infinite acting reservoir (see Eq. 2.8).
To apply Eq. 2.8 to the restricted-entry case, we simply use the single-phase restricted-
entry solution for Ap, and modify the two-phase flow integral to account for the fact that
the injected water moves radially in the region adjacent to the open interval (“height” or
thickness given by h,) and at later times moves radially over the total thickness, h, of the

reservoir. In this case, we have

T (t) N
Qin f Ao dr
Ap=A - —1 . 2.74
P= 8Pt / (Axr,t) )rh(r)k(r) (274)

0
For the single-phase flow restricted-entry case, we may obtain radial flow adjacent to
the open interval near the well (length of perforated interval is h,), whereas far from
the well, radial flow occurs over the total formation thickness, h. Thus, as mentioned
earlier, it is convenient to visualize the reservoir as two concentric regions in which the
flow lines have a perfectly 1D radial symmetry. The interface is characterized by a radius,
that we called radius of convergence r., see Fig. 2.1 or Fig. 2.2. For a two-phase flow
problem, on the other hand, the propagation of the water flood front and the propagation
of the pressure diffusion (steady-state zone) occur on different time scales. Due to this,

three distinct flow regimes can develop during an injectivity test in a partially-completed
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vertical well. These flow regimes are: first radial/first radial, second radial/first radial
and second radial/second radial where the first name in each flow regime corresponds
to the behavior of the single-phase component and the second term corresponds to the
movement of water. For simplicity, we derive specific flow regime equations only for model
1, although it is expected that the equations for model 2 will not be radically different at
least at early and late times when water moves radially.
First Radial/First Radial Flow Regime

This flow regime corresponds to the time period when Ap, is given by the following

equation

QAdinj 1 4770t
Ap, = —m | 21 : 2.75
b khpXo {2 ) (6”7’20 i (275)

and the water front is moving radially in the region » < r.. In Eq. 2.75, v is Euler’s

constant (y = 0.57722) and 7, is the reservoir diffusivity based on oil properties defined
by

_ BkA,

- N ) 2 . 76
¢:ucto ( )

Mo

where (3 is a unit conversion constant already defined. Recall, in oil field units with time
in hours, 8 = 2.637 x 107%. Also, recall that &, = c,(1 — Si,) + CuSiw + ¢r. Assuming

first that the front is still in the damaged zone and using Eq. 2.75 in Eq. 2.74, we obtain

75 (t) \
aginj [1 <4770t) ] Ainj /f ( Ao ) h dr
Ap=——|=In + 5|+ — -1 —. 2.77
P, {2 e kshAo Jr  \Ai(r,1) h(r) r z7)
For model 1, h(r) = h, for r < r. and Eq. 2.77 simplifies to
Qaginj |1 4n,t k / rs(®) 5\0 dr
Ap=—"|-1 — -1]—. 2.
b khyAo [2 " (evrfv) Te ks J,., (1, 1) r (2.78)

Rewriting Eq. 2.78 in terms of the Boltzmann variable, Z, gives
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agin; |1 4n,t k / Zs 5\0 dz
Ap = — =1 -1 — 2.
P khpho lZ n(wri>+s+2ks r2 /4t \e(2) zZ | (279)

where Z¢ is the Boltzmann variable at the water front defined by Eq. 2.13. Similarly to
the pure radial flow case, we assume that the saturation profile can be approximated by
the one obtained by injecting water through a line source well such that S, = S, (2).
Then, the location of the water front Z is stationary. Moreover, ); is a unique function
of Z so that \i(r,t) = \(Z). If we take the derivative of Ap with respect to the logarithm

of time, we obtain

dAp  agin: { k od [% Mo dz
Ap = = c 1+—t—/ —1) =]. 2.80
Y 2kh, N, ks dt Jyz 14 \M(Z) Z (280)

By applying Leibnitz integral rule, it is easy to show that

i/Zf Ao -1 %__ L_lﬁ _i
dt Jy2 s \N(Z) 7\ \(r2/41) 2, At2
1/ A
— 2 _—1). 2.81
t ()\t(Tw,t) > ( i )

Substituting Eq. 2.81 into Eq. 2.80 and setting Ay (7, ) = Ay give

inj k 5\o
Ap = 20 {H—(A —1)}, (2.82)
2kh,\, ks \ Ay,
or by introducing the end-point mobility ratio, M = ’/\\—” and rearranging the above equa-
tion
Ap':M[l—M(l—E)} (2.83)
2kshyAy k

This is the same solution derived for the complete-penetrating vertical well case given
by Eq. 2.22 except h has been replaced by h,. The pressure derivative is negative when

r¢(t) < rs provided that
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M(l - %) > 1. (2.84)

As mentioned earlier, this condition cannot hold unless k, < k and the end-point mobility
ratio is unfavorable.

Now, let us consider the case where the water front is beyond the damaged zone.
Note we are still using model 1 and assuming 7y < r. so h(r) = h,. In this case, the

wellbore pressure drop during the injection period is given by

ng [1 Ant N D d
APZM{—IH< n2)+s]+ Wing / < 2 —1>—T
khoho L2 \ e}, kshpho Jr, \Au(r,1) r

T (t) N
QGin;j /f ( Ao )dr
+ - -1 . (2.85
khpho Jr. Ai(r,t) r (2.85)

By adding and subtracting an integral from r,, to s, Eq. 2.85 becomes

aQin; |1 dnt QGinj / 5\0 dr
= —11=1 —1|—
khpho [2 . ((377"2 st k.h )\ (1) r
X Aing /rf( ( /\o ) d_ Oé%n] /\o ) dr
khpAo Jr, Ai(r,t) T khyho M(r,t)

[
[ ()

or simply

_ QGing |1 4dnt k s 5\0 dr
Ap = khpj\o |:§ In <6'7T30> + s+ (k_s —1 . —)\t(n t) -1 7+
rs () o dr
-1 . (2.87
/rw ()\t(T t) ) 7’} ( )

Using the Boltzmann variable as defined previously, Eq. 2.87 becomes
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r2 /4t \
Ginj ant ) <k’ ) / : < Ao ) dz
Ap = — | In +2s+ | ——1 —— = 1| =+
P 2khy\, [ <ewa ks r2 /a0 \At(Z) Z

/r§;4t (/\f(‘oz) - 1) %} (2.88)

Again, if we differentiate Ap with respect to In(¢) and use Leibnitz rule, we obtain

-l (69 ) i)

+ (W - 1)] (2.89)

or by using A (12 /4t) = A\(re, t) = A,

N s {1—(-—1)( w —1)}. 2.90
Y ks (7, t) (2:90)

Eq. 2.90 is similar to Eq. 2.29 obtained for the complete-penetrating vertical well case

except that, here, h is also replaced by h,. Therefore, if the condition given by Eq. 2.31
is satisfied, then the pressure derivative takes negative values as a consequence of the
presence of a damaged zone around the well.
Second Radial/First Radial Flow Regime

This flow regime occurs if the water front is still moving radially in the region
r < r. whereas, the single-phase solution Ap, is given by the following pseudo radial flow

equation:

AGing 1 4770t S
Ap, = Ming |~ J , 2.91
e = enA, {2 " (6”7% Ty (291)

where b is the penetration ratio defined by Eq. 2.38 and s, denotes the pseudo-skin factor

due to restricted-entry. In this case, using Eq. 2.91 in Eq. 2.74, we can rewrite the

injectivity wellbore pressure change as follows:

31



I 1) @} . (2.92)

aini |1 4t 1k [®
Ap = qg{—ln( 7 >+f+sb+—— (/\(Tt) .
t\' >

CkRA L2 \em2) b bks J,,

Note that Eq. 2.92 assumes the water front is in the skin region. The integral in Eq. 2.92

can be rewritten as

ry(t) W ) dr N, [® M Ao dr
/rw (/\t(ru t) - ) o 5\w /rw <)‘t(r7t) - ;\0) B
N, [F® A dr A 0 gy
= / 1) —+({=-1 / -
by - )\t(T, t) r Aw Tw r

1[N, dr 1 re(t)
_ )T (o m () (203
i) (o) 7 Gym(2?) ew

If we also assume that the total mobility correlates in terms of the Boltzmann transform,

we can rewrite Eq. 2.93 as follows:

or

Defining s, by

|
SN — <

2 /T;t (Af(wz) —1) %ﬂL(l—M)ln (ny;(ﬂ)} (2.96)

then, Eq. 2.95 can be rewritten as
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FIONAESY a1 A st
/Tw ()‘t(’l"jt> - 1) 7 == 2_M[<1—M> In (677’3}> +28>\:|. (297)

Because of the assumption that the Boltzmann transform applies, Z¢ is a constant. Also,
note that if we take the derivative of the integral in Eq. 2.96 with respect to time using

Leibnitz’s rule, we obtain

d [% A 4z 1 b\
i // (At<z> ) Z i (wa,/zlt) ) ’ (2.98)

because A (r2 /4t) = A,. Therefore, the term s, does not depend on time. Using Eq. 2.97

in Eq. 2.92 and simplifying gives

aqzn] k1— M 47}Ot (2,1)
Ap=——"=—|1(1 = 1 2 2.99
P Qkh)\o |:( + bks v n 677’12“ + S¢ ) ( )

where the total skin factor during the second radial/first radial flow regime that we denote

by s,§2’1) is defined by

(2,1) S 1k S
= - - . 2.100

Taking the derivative of Eq. 2.99 with respect to In(t) gives

~

w1k (1-N
STV R YR 7
= Mimg [1 - <1 - bE) M] . (2.101)
2kshphe k

Note that the pressure derivative is negative if

(1 — b%)M > 1. (2.102)

For the zero skin case, i.e., k; = k, Eq. 2.101 simplifies to
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/ M{l—(l—b)]\%}

Ay = 2%ni
T

Thus, the zero skin case will show a negative derivative whenever

(1—0)M > 1.

Next, the case where 7y > r, is considered. Eq. 2.92 may be rewritten as

Qaginj | 1 4n,t S 1/ k / "s o dr
_ - 2 il (LA | 1]
Ap { 1“( )+b+8b+b s A\ -

2
2 ers

kb,
Ty (t) )\
1/ L -1
b Tw )\t(ra t)

or in terms of Boltzmann transform and using Eq. 2.97

i 1—M Anot
Ap = 2ding [<1+ h )1n(n2>+2(f+sb+s—i)
enr b bM

P kna, bM
r2 /4t 3
SISy a(Ea
b\ ks r2 /4t )‘t(Z>

Similar to Eq. 2.93, it is easy to show that

o/4t 2 /4t

M r2, /4t

Using Eq. 2.107 in Eq. 2.106 yields
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ETE VDY az N, [T ) dz b\ r
°__ 1) e Y1) =422 1)1
/7« ( ) /r <)\t(Z) ) A - ()\w ) n(’”

) A
1 (70N, A 1 ) (7“
—1)]—=4+2l——=1]In

(/\t(Z) )Z (M

(2.103)

(2.104)
% (2.105)
dz
7} . (2.106)



~

inj 1-M 4n,t
Ap = —dinj [<1+ & )ln( 7702>+2(§+8b+ Sﬁ)
2kh\, bM ey, b bM
1 [k AN az  2(k 1 r
SERENY S N T VR P e
bM (ks ) vz /2t \At(Z) Z b \Kks M Tw ( )
Hawkin’s [21] formula for the mechanical skin factor s is given by

5= (kﬁ - 1) In (:—w) (2.109)

If we use this relation, Eq. 2.108 simplifies to

~

Ap _ OéqznA] |:(1 i 1 —AM) n (47]0t) 4 2(Sb i S +AS,\>
2kh), bM er? bM
1 [k /At o\ dz
+——-1 / ( v —1)—} 2.110
o, (k ) o N2y ) 7| O

Taking the log-derivative using Leibnitz’s rule gives

QGini 1—M 1 k j\w wa
Ap = - KH— - )+—A(——1 1— - —1)], (2111
b 2kh\, bM bM \ ks Ae(Ts,t)  Ae(rw, 1) ( )

or using A\(ry,t) = Ay and simplifying the preceding equation,

- . k A
Ap = ing {1—M1—b +(——1)<1——“’>]- 2.112
TN =0+ Ae(rs,t) (2412)

Thus, the derivative is negative for ry > r, provided that

A(rs, 1) {1 — M(1-b)+ (kE - 1>] < (kE - 1) Ao (2.113)

S S

Once the damaged region is completely flooded, A (rs,t) = A and Eq. 2.112 becomes
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/ a%nj ~
Ap = I\~ M(1—b)]. 2.114
) %%Aw[ -] (2114

Here, the derivative can also be negative as long as M (1-5)>1.
Second Radial/Second Radial Flow Regime

This flow regime pertains to the case where the flood front is moving radially
beyond the radius of convergence, i.e., ry > r. and Ap, is given by Eq. 2.91. Using

Eq. 2.91 in Eq. 2.74, the injection pressure drop is expressed by

aginj |1 4n,t s 1/ k / T's ;\O dr
Ap=—=|=1 - —(—-1 —_— 1) —
N kh\, {2 . <67r3j) + b t st b\ kg . \A(7, 1) r *
1 [T 5\0 dr rr(®) 5\0 dr
— — 1) — ——1)—. (2.115
o Ges )T ey 7] ew

From Eq. 2.107, expressed in terms of r and ¢ variables, we have

Ts b\ dr 1 Ts b\ dr 1 r
C 1) —=—= Y 1) = — —1)In{-—=2). 2.116
/rw (At(r,t) ) r M/m (At(r,t) ) r * (M ) n(m) ( )

Substituting Eq. 2.116 into Eq. 2.115 and using Hawkin’s formula gives

QaGinj | 1 4n,t S 1—M 1 [k / Ts 5\w dr
Ap = 19 | 2] 2 . — (=1 1) =
b kh\, {2 N (em%, Ty bM o bM \ ks e \Ae(7,1) r

1 [T Mo dr () Mo dr
— —1)] — —1)—1. (2117
b/m <)\t(r,t) ) ; +L (w,t) ) } (2.117)

For the second radial/second radial flow regime, it is reasonable to assume that oil sat-

uration has been reduced to residual oil saturation in the skin zone so the first integral
on the right-hand side of the above equation is equal to zero. Using this assumption,

Eq. 2.117 reduces to
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aginj | 1 4n,t s 1 / Te Ao dr
Ap=—>|=1 — - —-1)—
b k:h)\OL n(ewfv) +bM+Sb+ b/, \A(r,t) r

rr(®) A dr
° 1) =1. (2.118
+/Tc (Mm) ) } (2.118)

Adding and subtracting an integral from r,, to r. yields

aginj | 1 4n,t s 1 / Te Ao dr
Ap=—>|=1 — - —1)—
b kh)\o{2n<ew%v)+bj\/j+sb+b v \ (7, 1) r
+/T‘f(t) L—l @_ﬁ_/rc Ao 1 dr
v (1) r . \ (7, 1) r
e A dr
— —2 1] — 2.11
[ G5 e

or after rearranging,

aginj | 1 4n,t s 1-b / Te o dr
Ap = Lini |~ o 2 e )&
D=, {2 ! (em%) T T ( b ) ), \ (1) r

—

Similar to Eq. 2.116, it can be shown that

Te 5\0 dr 1 [T 5\w dr 1 T
-1 — = — -1 — — —1]1 — . 2.121
/rw (w,w ) v, (w,w ) r (M ) n(rw) (2.121)

Using this result and Eq. 2.97 in Eq. 2.120 gives
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inj 1 4 ot
Ap = 2ding [—Jn( "2)+2( il +sb+8?>
2khA, LM ers bM M

2(1&)—;) / (% - 1) %H(l;b) u }f@ In (:—wﬂ (2.122)

Based on the derivations in Appendix A, the radius of convergence 7. for model 1 is

defined by (see Eq. A.14)

b
Te = Ty €XP (1 ibb). (2.123)

Using this result in Eq. 2.122 and rearranging gives

QAGinj 4770t S
Ap = =1 2( =
b Qkh)\w{n<€77’3}> " (beHA)

or in terms of Boltzmann transform

QAGinj 4770t S
Ap = |1 2( =
b ZkhAw{n(ew’f) " (beHA)

1—b\ [l /X, dz
+(— —1) . (2125
( b >/rg,/4t ()\t(Z) ) Z} ( )

Differentiating Eq. 2.125 with respect to In(t) gives

QGini 1-b 5\11,
Ap = o {1+<—) (1— )] 2.126
P Sk, b A(re,t) (2126)
or simply
Ap = —dimi {1 —(1-b) Ay ] . (2.127)
2hihp ey Ae(re,t)
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Eq. 2.127 indicates that for the pressure derivative to be negative, one must have

A
“—(1-0b)>1 2.128
gl (2.128)
or equivalently
Ae(Te, t) < (1= b)Ay. (2.129)

As time increases, A\¢(r,t) approaches A and Eqs. 2.124 and 2.127, respectively, simplify

to

OGing 1 47]0t (2,2)
Ap = “dimd | 2y (2o : 2.130
b khAwLn(eW?ﬂ e (2.130)
QAGin;j
Ay = i/ 2.131
P kha, (2.131)

In Eq. 2.130, 3?’2) represents the total skin factor for the second radial/second radial flow
regime defined by
(2,2)

s = % + 55+ S (2.132)

Under these circumstances, it is expected that the wellbore pressure change will display

a semi-log slope that reflects water properties over the thickness of the reservoir.

2.3.2  Ingection Through a Horizontal Well

The pressure transient behavior at a horizontal water injector is completely dif-
ferent from the pressure transient behavior of a vertical injector because of the existence
of more than one flow regime (radial, linear,...etc). Moreover, the propagation of the
water front and the propagation of the total flow rate in the reservoir occur on different
time scales making the problem of horizontal well even more complicated. As the authors
of reference [28] pointed out, a total of six different flow regimes may occur during an

injection test depending on the position of the steady-state radius and the position of
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the water front as well. These flow regimes are classified as first radial/first radial, first
linear /first radial, first linear/first linear, second radial /first radial, second radial /first lin-
ear and second radial /second radial where the first name in each flow regime corresponds
to the behavior of the single-phase component and the second term corresponds to the
movement of water.

Throughout this discussion, we will consider water injection at a constant rate given
by ginj; through a horizontal well of radius 7, and length L that penetrates a reservoir
of constant formation thickness, h. As we proceeded for the restricted-entry problem, we
first assume an isotropic reservoir. In the next section, we will extend the analysis to the
anisotropic case.

First Radial/First Radial Flow Regime

This period pertains to the case when both steady-state zone of constant rate and

the flood front are moving radially in the (x, z) plane. The wellbore pressure solution for

this case is obtained by rearranging and integrating Darcy’s law as follows

qt(rv t) dT
Ap = py _pi__o‘ iy = 2.133
/ L /Tw k(r))\t(r, t) T ( )

In Eq. 2.133, recall that « is a constant which depends on the units system used. In field
units, a = 141.2. Note we are able to write oo as the upper limit because we assume
that the top and bottom reservoir boundaries have no influence on the solution, or more
specifically that ¢,(r,t) = 0 when r is greater than or equal to z,,. Here, we also assume a
variable permeability k(r) in order to account for the mechanical skin near the wellbore

region of radius r,;. Similarly to the vertical well case, it is given by

ks forr, <r <rg,
k(r) = (2.134)
k  forr >r,.
In Eq. 2.133, we introduce the flood front r,, ¢ to obtain

a [T q(r,t) dr o [ q(r,t) dr
Ap= ) dr,«a _ et ar 2.135
P /w KD r L /Tm’f(t) K ) T (2.135)
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By adding and subtracting to Eq. 2.135 an integral from r,, to ., ¢, we have

« 7z, £ (1) q(r,t) dr o rza,f (1) qi(r,t) dr
- = (2.136)
L\, Jr., k(r) v L\, J»

Next, we rewrite Eq. 2.136 using the steady-state theory which assumes that the flood
front is within the steady-state region so that ¢(r,t) = gin; for r < r., s and by noting

that A\(r,t) = \, for r > T20.f. The result is

« Cqr,t) dr g, /r”’f(t) ( 5\0 ) dr
Ap = 2 a2 1) 9.137
P=5 LGS 5 N ) e (2.137)

Tw

where the first term on the right hand side of this equation represents the single-phase
solution during the first radial flow regime based on end-point oil mobility and total
compressibility evaluated at irreducible water saturation. Except at early times [25], it is

given by the semi-log equation

i ABKN 22w
Ap, = —2 | In | ——227 —In(=2)]. 2.138
b kL), { N (e’wémrﬁ, e Tw ( )

Eq. 2.138 assumes the horizontal well is not drilled in the center of the formation and

therefore, the diffusion may exhibit a semi-radial flow regime due to the effect of the near-
est boundary (similar to the behavior of the solution for a vertical well near a fault). If the

well is in the center of the formation, Eq. 2.138 is replaced by the following approximation

Ainj 1 4ﬁk’5\0t
Apy= —|zIn| ——— : 2.1
PRI, {2 n<ev¢uéwra i (2:139)

Replacing Eq. 2.138 into Eq. 2.137 gives
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AGinj 46k;\ot ) (Z,Zw)‘| QAGinj /rm’f(t) ( 3\o ) dr
Ap = ~—|In{——— | +s—In| — + —= —1 .
b kL), { (e”wctor?u Tw L), Jr, Ai(r,t) rk(r)
(2.140)

At this point, we distinguish two cases:

i) If the water front is in the skin zone, i.e., r., < r,, we simply replace k(r) by
7f

ks and Eq. 2.140 becomes

ingj 4 k;\ot 22y ingj Tao.t 5\o d
Ap:aqf{ln(ﬁ—AQ)—l—s—ln( - )]+aq } / ( —1) = (2.141)
kL), I ppciors, T kLo Jry  \Aelr,1) r
By introducing the Boltzmann variable and by assuming that \; is a unique function of

Z so that A\(r,t) = \(Z), we can rewrite Eq. 2.141 as

Ginj 4ﬁk‘5\0t > (22@)} AGin; /Zf ( Ao ) dz
Ap=—7"|In|—— | +s—In + < -1 —. (2.142
b kL), { (e%uctori, Tw 2k L, Jr2 1 \M(Z) Z ( )
Taking the derivative of Eq. 2.142 with respect to the natural logarithm of time using

Leibnitz’s rule with Z; constant gives
AQing | OQingt Ao 4t r2
Ap = 22 Il =1 = =%, 2.143
VSR { (At(r%u/4t) ) (ni) ( at? (2149)

which reduces to

Ay = &mi |\ " ° __1)]. 2.144
P kLAO{ +2ks(kt(m,t> )} (2.144)

Note that at 7y, A\(re,t) = Aw. Using the definition of the end-point mobility ratio,

Eq. 2.144 becomes simply
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Ap = 1+ ——1]]. 2.145
b kL)\o{ 2ks \ M ( )

Eq. 2.145 clearly shows that the pressure derivative can be negative at early times (times

corresponding to where the front is still propagating in the skin zone) provided that

E (1
——1) <o, 2.146
* 2k, (M ) ( )
or equivalently
M(1 — 2’;) > 1. (2.147)

Clearly, this condition holds if the well is damaged and the mobility ratio is unfavorable.
An important remark is that we would obtain the same condition given by Eq. 2.23 and
derived for the complete-penetration vertical well case if the horizontal well has an equal
offset.

(ii) If the water front is beyond the skin zone, i.e., 7., f > 75, Eq. 2.140 becomes

Ainj 48kt ) (2zw>} Ainj /rs ( A ) dr
= I (R ) g —In | 22 )| 4 —1) =+
b kL)\O{ <€7¢M0to7’120 Tw kL)X Jr, \e(r,t) r
e g (t) \
O‘qli”/ ( Ao —1) A (9148)
kLM, Jr. (1) r

By adding and subtracting an integral from r,, to s, Eq. 2.148 in rewritten as

Ainj 48kt ) (2zw>} Ainj /T’S ( Mo ) dr
= [ /2 ) s —In | =2 )| 4+ —= —1) —+
b k’L)\O |i <€7(]5/Lct07“12u Tw ksLAo Tw )\t(ra t) r

Oé%'nj /Tzz’f(t) ( 5‘o . 1) ﬁ + OéqZ‘nj /rs ( 5\o _ 1) @
kL), J-. Ai(r,t) T kLA, Jr, \ (it r

or rearranging,
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AGinj 48kt > <22w>} AGinj [( k > /TS < Ao ) dr
Ap = gy (225000 ) g gy (22w )| 4 B (T o )&
P L, { (ewucton% Tw kLN, [\ Ks re \Ae(7:1) r

rzw,f (1) b\ dr
1) —|. (2.150
[ Gy S e

In terms of Boltzmann variable, Eq. 2.150 can be expressed as

Gin; ABKAt ) (sz)} in; Kk: ) /r?/‘“( Ao )dZ
Ap=—"2|In | ——2— |+s—In +—L 1 —-1 1) =
b kL), [ (e%buctor%; Tw 2k LN, L\ Ks w2 1t \A(Z) Z

+ [;:4t (Af(oz) — 1) %} (2.151)

Taking the derivative of Eq. 2.151 with respect to the natural log of ¢ using Leibnitz’s

rule gives

, QQinj  QQinjt k A 4t 2
Ap = = P ) —2e 1) () - =
b kL), * 2k L)\, Kk ) Kkt(ri/élt) ) (7"3 412
5\ 4t r2 5\ 4t r2
o —2 () ) = —2 ) () =2 (2152
<At<ra/4t> ) () < 47:2)} <At<r3,/4t> ) () < 4t2ﬂ (2.152)
Using \(7w,t) = Aw, Eq. 2.152 simplifies to

Ap' = — |14+ M- —-1 —1]]. 2.153
P 2]€L>\w [ (ks /\t(rsa t) ( )

Eq. 2.153 suggests that we might observe a decline in the wellbore pressure, i.e., a negative

pressure derivative, during this period of injection if the following equation is satisfied:

k Ao .
——1 —1 1+M 2.154
(ks >()‘t<708at) ) SR (2.154)

or equivalently,
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Ae(rs, 1) (1 + %M) < <1 — %) (2.155)

Note that we would obtain the same condition given by Eq. 2.31 and derived for the
complete-penetration vertical well case if the horizontal well has an equal offset or at time
before any boundary affects the pressure solution (for an unequal offset horizontal well).
First Linear/First Radial Flow Regime

This case pertains to the situation when the steady-state region of constant rate
is moving linearly in the z-direction while the flood front is still moving radially in the
(x, z) plane. With the configuration of the problem (see Figs. 2.3 and 2.5), the wellbore

pressure drop is given by

o0 t) d Fw t d
Ap TQ qi(z,t) dx a/ k(qt(r,) r

i), Nan @) L), onme v (2.156)

1

where the position z; is defined by Eq. 2.45. Introducing the water front r, ; and setting

At = 5\0 in the unevaded region and ¢ = ¢;,; in the flooded zone, Eq. 2.156 becomes

Ta [ dx TGy, [ dr
o [ g e o |
P e ™R T kLA, Sy R

Tza (t) )\ Zw
ozqmj/ f Ao dr ozqmj/ 1 dr
+ — —_— — + — — —. (2.157

L L RONEO T LA, L RO T (2.157)

Using the fact that h(x) = 2z, for 0 < z < 27 and adding and subtracting to Eq. 2.157

an integral from 7, to r,, ¢, we have

To & dx TOQin;
Ap = —A/ x,t — g
b= z:OQt( )h(:c) WL,z

L Y L ¥ % — —
Lo Jra KON 7 LA, S0 R(0) T

.. TZCE,f(t) 1 d L. Tzz,f(t) 1 d
+O‘qi’”/ ——r—aqi’”/ T 2.158)
L\, Jr, k(r) m LA, Jre k(r) r

45



or by combining integrals,

T ° dx TQGin;
Ap = = / z,t - o
Y o2 >h(ﬂ:) %kLAz |

+ Oéqi‘nj /sz’f(t) ( Ao . 1) dr + OCQf'nJ' /
L)\o Tw )\t<7a7 t) rk(r) L)\o Tw

(2.159)

The last integral of the above equation can be written by using the appropriate perme-

ability in the domain r, <1 < 2, as

ol odr 1 [Tdr 1 " dr
/m W7_k_s/rw 7+E/rs "
[RTEI
ks L S

Hawkin’s [21] formula for the mechanical skin factor, s, is given by

(E-)m() w(2)

(2.160)

(2.161)

Using Eq. 2.161 in Eq. 2.160 and substituting the resulting equation into Eq. 2.159 yields

TQ o dx QQini Zw T,
= T [y () )
P, o )h(:v) kL), re) 22,

. Tza,f () \
+ O‘qinj / ( )\o . 1)
L)\O Tw )‘t (Ta t)

or
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Ta [ dx aGini | h
A:—A/ x,t) — + T]{—Sz—l—s}
P= 0 ) MY AR
Toa,f () \
OéQinj/ £ ( Ao ) dr
i 1 . (2.163
LA, Jr Ai(r, 1) rk(r) (2.163)

where s, is the pseudo-skin factor due to the convergence of the flow lines defined according

to Eq. 2.162 as

s, =1In (Z—“’> - (2.164)

T 22y

or by substituting the expression for x; provided by Eq. 2.45 into Eq. 2.164,

2
s, =1In (Z—“’) - %. (2.165)

The sum of the two first terms of the right hand side of the above equation represents the
single-phase transient solution for linear flow that we usually denote by Ap,. The third
term is an additional pressure drop due to the multiphase effect. Note that there are two
possibilities with respect to the position of the water front: (i) The water front is in the

skin zone. In this case, Eq. 2.163 becomes

Taw,f (1) )
AQinj f )\o dr
Ap = Ap, + - / ( —1)—. 2.166

p=a=p k L)\, Ae(r,t) r ( )

Tw

If we rewrite Eq. 2.166 in terms of Boltzmann variable, we obtain

wi [P A dz
QQan o
Ap = Ap, + J / ( —1)—. 2.167
b b 2k L, Jr2 e \e(Z) Z ( )

Differentiating Eq. 2.167 with respect to In(¢) using Leibnitz’s rule with Z; constant yields
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inj ;\o
Ap/:ApfojL&(A _1)

2k Lo \ Ay
i (1= M
= Ap), 4+ —ind < i > (2.168)
2% LA, \ M

The analytical solution for the pressure response under single-phase flow during a linear

flow regime is well known (see references [23], [20] and [25]). It is defined by the following

AGinj ArBkAt  h ]
Ap, = —— a + —(s, + s)]|. 2.169
g kh\, [\/ PCroL? L< ) ( )

Its derivative with respect to logarithm of time based on oil properties at irreducible water

i AT Bkt
Ay = X f ot 2.1
Po 2kh, | PCroL? (2.170)

Then, using Eq. 2.170 in Eq. 2.168 and rearranging gives

aqin; [ [47BkMt hk (1= M
Ap = 1y | —2 = . 2.171
b Zk:hAO[ PCroL? " Lk \ M (2.171)

Eq. 2.171 shows that during this flow period where the damaged zone is not swept yet

equation:

saturation is given by

by water, the pressure behavior is such that its derivative is shifted from the single-phase
oil solution by a constant which depends on the end-point mobility ratio. Moreover, the
two-phase solution for the derivative is expected to either fall below or above the single
phase flow derivative if M > 1 or M < 1 respectively.

(ii) The front is beyond the skin zone. Eq. 2.163 becomes

QAQinj s 5\0 dr QGin; Tza,f (1) 5\0 dr
Ap = A o + < / < —1)—+ ~ / -1 -, 21792
Pl L \ N t) v kLA, . N0 D) o (2172)

which we rewrite as
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Ginj k " 5\o dr /sz7lf(t) 5\0 dr
Ap = Apot+-—==1{ -1 —1)— 1) & 2173
g g ' kL)\O |i(ks ) /Tw ()\t(r’ t) ) r * Tw )\t('l", t) r ( )

or by using the Boltzmann variable,

r2 /4t A A N
Qi k s Ao dz ! Ao az
Ap = Ap,+ z {(——1)/ ( —1) —+ —1)—|. (2.174
2k LN, L\ Ks 2 \Ae(2) Z Sz \M(2) Z ( )
From the above equation, it is easy to find the pressure derivative. We simply need to

use Leibnitz’s rule when differentiating with respect to In(¢). The resulting equation is

QQini | ATBkNE  Qqin [ ~ ( k ) ( A )]
Ap = L[ —= + Y1 -M———1 —1]]. 2.175
b Qkh)\o ¢Ct‘oL2 2]€L}\w ks )‘t (7’3, t) ( )

Once the skin zone is completely swept by water, i.e., \i(rs,t) = Mo, Eq. 2.175 simplifies

i [ [AmBENE B (1= M
Ay = dimg | Y (S 2.1
b Qkh/\o[ Gro L2 +L( M H (2176)

which is identical to Eq. 2.171 obtained for the case where the flood front is within the

to

damaged zone for a zero skin case, i.e., ks = k.
First Linear/First Linear Flow Regime

This flow regime occurs when both the steady-state zone and water front move in
the z-direction. Eq. 2.156 for the wellbore pressure drop also holds during this period but

if we introduce the water front x ¢, this equation becomes

/w%(r’t) dr_—(9177)



Since the water front is ahead of the zone 7, < r < z,, the total rate ¢; can be replaced

by ginj in the last integral so that

o

L /m AN(rt) Tk(r) LA,

If we add and subtract to Eq. 2.178 an integral from r,, to z,, we have

q(r,t) dr QGinj /Z““ W dr
= . 2.178
N0 D) TR (2-178)

/Z“’ q(r,t) dr Qg /z“’ Ao dr +QQinj /Zw dr
T LS\O Tw /\t<rat) T]{?(T’) Lj\o Tw T]i‘(T)
_ Oing / T o079
Ly b iy 3T

i
L

If we combine integrals, Eq. 2.179 becomes

oz/Zw q(r,t) dr Qg /Z” Ao 1 dr N
L Jo, Mty rk(r) L\, Jo, \N(r ) rk(r)
X / T G / (2180
ksLAo Jr, T kLA, r

w Ts

or after some manipulations,

g/% q(r,t) dr Qg /Zw Ao 1 dr N
L Jo, Mrt)rk(r) L\, Jo, \N(r,1t) rk(r)
Adinj k >
= — — 1) In(rs/ry) + In(z, /7). (2.181
e | (1) () + (/)| 2150

Introducing Hawkin’s formula in Eq. 2.181 yields

a/Zw q(r,t) dr Qg /Z” Ao 1 dr N
L Jo, Mrt)rk(r) L\, Jo, \M(r, 1) rk(r)
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Substituting Eq. 2.182 into Eq. 2.177 and setting \; = ), ahead of the front gives

z¢(t) N 00
_ TQGing / f Ao dx T / dz
Ap = - + — r,t) —
PEIN Lo N t) h(@) o Ja et

OJQ’Ln] /Zw ( )\o > dr Oéqln] |: (Zw ) :|
+ —= -1 + ——|[s+In , (2.183
L, Jry \AM(r1) rk(r) (2159)

Tw

or
zf(t) ()

B 7'('Oéqmj/f / dx

Ap = —2nd 7,1) ——
P=0n L ( t) h ) k:L)\ w1
/ o /xf“) ( )dx
z,t
kLA, kLA, o

h h(zx)
i ”( : ) il ()
+ — -1 +——=|s+In| — || (2.184
LA, Jr, \N(r:1) rk(r) kLA, r)) 218
We can simplify Eq. 2.184 by noting that ¢,(z,t) = ¢;n; for x < x; and using the fact that
according to both model 1 and 2, h(z) = 2z, for x < x;. The result is

z 7 (t) 3 2w 3
TG / ! ( Ao ) dz Ainj / ( Ao ) dr
Ap = T4 o) T iy o
b kL)\O x1 )\t (x7 t) h/('r> Tw At

——+
L), (r,t) rk(r)
T [ dx aqmj{ (zw) ﬂxl}
— ili‘,t — + = S—|—1H — ] = —. 2.185
kLAO/o w0 5 kL), - ) A1)
Using Eq. 2.164 in Eq. 2.185 gives
To o dz aQinj | h
RETY RS
P= o h O s, 2
Zw 3 z ¢ (t) 3
qumj/ ( Ao ) dr Waqmj/f ( Ao ) dx
i e TRy R 1) 2 (9186
o L e T e T, L e Y w319

or noting that the single-phase oil pressure change, Ap,, is given by
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T [ dx aGini | h
A O:—/\\/ x7t _+ ZIL] |:_ 8+Sz }, 2187
Po=15 ), e )h(a:) . 7 ( ) (2.187)

Eq. 2.186 is equivalent to

2w 3 zs(t) \
aQinj Ao dr TOin; f Ao dx
Ap = Ap,+ —= / <——1) + = / —1] ——=. (2.188
o e S0 e s, L e aw ¢
Eq. 2.188 indicates that the multiphase term has two contributions as the consequence
of the radial and the linear movement of water during the injection period. In order
to understand the behavior of the wellbore pressure change during this flow regime, we

assume that the water front x(¢) is beyond the point of convergence z, so that h(z)

reduces to the total thickness of the reservoir, i.e., h for x > x5. Rewriting Eq. 2.188 gives

agin; [ 5\0 dr  agin; [ 5\0 dr
Y SN
p=ap ksL)o Jrw \Ae(7,1) kLA, Jr, \N(1,1) r

x N zs(t) 3
TOin; / 2 ( )\o ) dx TQin; / f ( )\0 )
+ < — 1 + —= ——— —1)dx. (2.189
kLN, Joo \Ae(z,t) h(z) kLA Ja, Me(,t) ( )

In Eq. 2.189, we kept h(x) variable for x; < x < 5 in order to have the flexibility of using

either model 1, where h(z) is constant according to Eq. 2.46, or model 2 for which h(x)

is variable and given by Eq. 2.47. Rearranging Eq. 2.189 yields

agimj | [k s Mo dr / Fw Ao dr
Ap = Ap, - ——1 — 1) — —F 1] =
P P - ]{/’LAO |:<ks ) /r;u ()‘t(ra t) ) r * Tw At(r7 t) r

z2 3 z £ (t) N
mqmj/ ( ; ) ; /f ( ; ) ]
+ - — 1) —dx + —1dz|. (2.190
kL)\Oh{ L\ N@o ) k@) RS WER) (2.190)

Assuming the skin zone is completely swept by water so that the total mobility is equal to

the end-point water mobility and by also assuming that for very long injection times, the

total mobility will eventually be equal to Aw in the region of the reservoir corresponding
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to x < x9 as the reservoir in this zone will be swept by water, Eq. 2.190 becomes

~aps () [(E )i (2) o ()]
Ap = Ap, + | — -1 ——1)In|—)+In|—
b b kL/\o(Aw ks Tw Tw
A T x5 (t) N
ml () e [ G ) ]
+—= — -1 ——dzr + —1)dz|, (2.191
kL)\OhK)\w o h(z) s A, 1) ( )

or by using Hawkin’s formula and the definition of the end-point mobility ratio M ,

QAding 9 Zw
Ap = Ap, + - 1—M{s+ln(—)}
p=A8pot+ w( ) -

TGin; 1—M> / h /l’f“)( Ao ) }
+ = , " dr+ —1)dz|. (2.192
kL)\OhK M o h(z) s Ai(z,1) ( )

Let us introduce a Boltzmann variable for the x-direction given by

Y = % (2.193)

and make a change of variable for the last integral of Eq. 2.192 as follows

QAGinj o Zw
Ap=Ap,+ —(1—-—M)|s+In| —
AR )[ (rw)}

T [ (1 — M) /;r2 h /Yf ( Ao ) }
4 I ; N de it —1)ay|, (2194
k}LAOh |:( M x1 h(ZL’) xz/t At<Y) ( )

where Y} denotes the Boltzmann variable at the water front defined according to Eq. 2.193

as

Y, ==L (2.195)

We again assume that the total mobility A;(x,t) is a unique function of the Boltzmann

T

type variable, Y = % and that the location of the water front Y; in the Y variable
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is stationary. Thus, Differentiating Eq. 2.194 with respect to logarithm of time using

Leibnitz’s rule yields

o Yy A\ A
Ap = Apl, 4 LT [t/ ( ° —1>dY+x (— —1)], 2.196
P P kL/\Oh z2/t )\t<y) 2 )\t(l’g, t) ( )

~

or by setting A\;(za,t) = Ay

, , QT Qinjj 1-— M Yy 5\0
Ap = Ap + 2 K i )x +t/ 1) ayl|. 9197
P n o )T L ) (2.197)

Since it is difficult to understand the behavior of the pressure derivative during this flow

regime directly from Eq. 2.197, we make the following approximation

Then, Eq. 2.197 simplifies to

Ap' = Apl, + 2203 (1 Nz s(). 2.199
p'=Ap kLAwh( Jz¢(t) (2.199)

Here, two remarks deserve mention. First, the pressure derivative will be either below or
above the pressure derivative for the single-phase based on oil properties depending on
whether the end-point mobility ratio is unfavorable or favorable. Second, this deviation
from the single-phase solution increases with time as the front is moving along the z-
direction.
Second Radial/First Radial Flow Regime

This flow regime occurs when the steady-state zone of constant rate is moving in

the (z,y) plane while the water front is still moving radially in the (x,z) plane. The
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equation for the wellbore pressure change during this period is given by

Ap

a [ q(rt)dr 7ma (™ q(zt) do a/zw G(rt) dr (2.200)

TR o N ) T RL S M@ h@) L e A(rt) rh(r)

1

According to the Thompson and Reynolds theory, the steady zone is propagating at the
constant wellbore rate up to x3. Therefore, we can take the total rate out of the two last
integrals of the above equation and replace it by g;,;. On another hand, we know that
the total mobility ahead of the front is equal to the end-point oil mobility. Using these

two remarks leads to

« e dr  wagp; [ dx QGin; [ 5\0 dr
Ap = — / rt) — + J/ + AJ/ . 2.201
P wna, L/gqt( )% kLA, Juy P(x) LN, Jry M(rt) rk(r) (2:200)

Introducing the water front radius r,, ¢, we obtain

o & dr  magp; [ dx QGini rze,f (1) 5\0 dr
om0 [t T [ o |
P i, L/2Qt( )% kL\, Jo h(x) LA, Ae(r,t) rk(r)

Tw

aqinj /Zw d’l"
+ —= . (2.202
L), Jr.. ;) rk(r) ( )

zx, f

The last integral of Eq. 2.202 can be written as

[
v T kST rk(r)
k r z EENLCR S
— _1)m(< In{Z22)] — -
(ks ) ! (rw> M <Tw)] /rw rk(r)

Zw e ORI
{9 +1In (ﬁ)} - /Tw m (2.203)
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Using the result of Eq. 2.203 in Eq. 2.202 and rearranging gives

a o0 dr  mogn; [ dx QQinj
Ap = — / rt) — + L / — 4 — [s
VS L/g%( )% kLN, Jo h@) " kL),

+
+ ing / T”’f(t)( \ —1) I (2.004)
Lo Jru Ae(r,t) rk(r)

From Eq. 2.164, we have

In (Z—“’) =5, + L, (2.205)

If we substitute this result in Eq. 2.204, we obtain

o d ing | h [* d
Ap=— / Gl t) =+ ]|:_<S+Sz+%>+7r / —I]
L z1

T kb, Jie r O khA,
ras® 3
OGinj / 7 ( Ao ) dr
4 2 —1 . (2206
LA, Jr, Ai(r, 1) rk(r) (2:206)

By setting
mh| xy o dx 1 16
oy = — | - R S 2.207
=Tl ] i)t () (2207
and using the fact that for sufficiently long times, we can approximate
e d ini 168kt
< / qi(r, t) = = ing ln< b 2>, (2.208)
khXo JL/2 r 2khX, e PCyo L

Eq. 2.206 simply becomes

Ap = [lln (ﬁmot) TP sxy]

kRN, 120 \$él?) L
aqwlj /Tzz’f( )\0 ) dT
4+ 2 1 . (2.209
o b &y Y ey 329
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It is clear from this expression (see for instance references [20], [25] and [23]) that the
first term represents the single-phase pressure drop based on oil properties at irreducible
water saturation whereas the second term is the additional pressure drop caused by the
difference of mobility in the (z, z) plane of the reservoir. The factor s, is the pseudo-skin
due to the convergence of the flow lines in the (z,y) plane from radial to linear lines. If
we assume that the well is in the center of the formation, it follows that z, = h/2 and

h(z) = h. Eq. 2.207 simplifies to

Suy = %$3 + %ln (i—f) (2.210)
which is exactly the expression that [29] obtained for this particular geometry.

As Eq. 2.209 is somewhat similar to the one derived during the first radial /first
radial flow regime (see Eq. 2.137 with Ap, given by Eq. 2.139 which is the equal offset
case or equivalently the complete-penetration vertical well case), we expect the behavior

of the multiphase pressure derivative to be the same whether the water front is inside or

outside of the skin region. Since the derivative of the single-phase oil solution is given by

’ O-/Qinj

° " okh\,’

(2.211)

the wellbore pressure derivative is therefore obtained by differentiating Eq. 2.209 with

respect to logarithm of time using Leibnitz’s rule. The result is

QQini hkl-—M
Ap = » [1 4= , 2.212
b 2khA, Lks M ( )
if the flood front is in the skin zone and
Qfing 9 h k 5\11) y
Ap = " (M+—K——1>(1— )+1—MD, 2.213
P Sk, L\ ks Ai(7s, 1) ( )

if the front is beyond the damaged region.

Second Radial/First Linear Flow Regime
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This is the case where the flood front propagates in the z-direction whereas the

steady-state diffuses in the (z,y) plane. Following the same procedure as in the previous

subsection, the pressure change at the wellbore is expressed by

~

Q o dr  wagm; (MO N dx
N / rt) & T, / 0 dz
P khA, JL)2 %(r?) T kLN, Joy  Ae(@,t) h(x)

n TOGinj /’”3 dx n QGinj /z“’ Ao dr
kLS\O xf(t) h([[’) LS\O Tw )\t(ra t) T‘k('l")‘

By manipulating the integrals in Eq. 2.214, we can rewrite

Q o0 dr  wagy; [0 ( W ) dx
A = — T,t — + —Aj/ -1
P ena, L2 «(rt) S kLA, Ja A(z,1) h(z)

TOin; / o dx QAGinj / P < A, > dr QAGinj / Fwodp
4+ + = o1 + =L .
kLN, Joo M) LA, J., \M(r,1) rk(r) LN\, Jn, Tk(r)

From Eq. 2.203, we can show that

AGin; /Z“’ dr _ fing [s—Hn (Z_w>:|
L\, Jr, TE(T) KL, Tw

Using Eq. 2.216 in Eq. 2.215 yields

« o dr Qi Zw ¥ dr
Ap = — / rt) — + Aj[s+ln(—>+7r/ —]
P ns, o wnt) 7 kL), T o h(z)

R A\ 0] \
N ozqim/ ( Ao 1> dr N ﬁaqzn]/ ( Ao 1) dx '
L, Jr, \ (1) rh(r) kLA, Jo  \e(2,) h(x)

(2.215)

(2.216)

(2.217)

In order to simplify the above equation, we introduce the pseudo-skin factors s, and s,

already defined by Eqs. 2.164 and 2.207, respectively, to obtain
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o o dr  magin; 1
Ap = — / rt ——i—#[sx — —1In(16/¢€” —l——s—l—sz]
p= i ) S T oy — S In(16/0) s+ 52

QGinj / Fw ( A ) dr TOGin; / T ( A ) dx
4 =L SERACHE SR —1) -2 (2.018
L), Jr, \Ae(1,1) rk(r) kLN, Jon \Ne(z,1) h(x) ( )

or finally by substituting Eq. 2.208 into this equation

QAGinj 1 5k5\ot h
A == = _1 T~ 79 x - z
b k:h)\o[Q n(d)étoﬂ +Sy+L(S+S) *

Zw 3 x¢(t) A
&qinj/ ( Ao 1) dr Waqmj/f ( Ao ) dx
= — + - —1)— (2.219
LA, Jrw \Ni(7,0) rk(r) kLA, Ju Ae(z, 1) h(z) (2219)

If we want to compute the pressure derivative during this period, it is obvious that the

result for the multiphase term will be the same as the one derived for the first linear /first
linear flow regime assuming that the water front is beyond x5 and that the region x < -
is completely invaded by water. It is therefore easy to show that the pressure derivative

at the wellbore is provided by

, TQGin; 2 (1 — M)
= — |14+ ———x((t)], 2.220
2h TR (2.220)

Ap

indicating a derivative that is slightly below the single-phase derivative based on oil prop-
erties if the end-point mobility ratio M >1anda slightly higher derivative in the other
case, that is for M < 1.
Second Radial/Second Radial Flow Regime

If the injection time is long enough, the water front will flow radially in the (z,y)
plane and a second radial /second radial flow regime will develop as long as the reservoir

boundaries are not felt. In this case, we express the pressure drop at the wellbore by
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o o dr  QQin; res® N dr
Ap = q(r,t) — + A]/ —+
)5 khi, Joj2  Alrit) v

kh)\ Pay.f ()
TOGin; /xs 5\0 dx QGinj /Zw )\O dr

X + —= . (2.221

kLN, Ja At(‘rﬂt) h(l’) L)\, Jr, /\t(’f’, t) T]C(T) ( )

If we rearrange the integrals of this equation, it is easy to show that

o o0 dr g szf(t)( A >dr
Ap = — rt) — + ’1”/ 2 _ 1] =+
P na, L/zqt( )T khXo Jiy2 Ae(r, t) r
TQGin; /1’3< W _1> dx TQGin; /”‘3 dx
kLN, Jo \Ae(2,1) h(z) kL), h(z)
AGinj /Zw< Ao > dr AGinj /Z” dr
+ —= —1 + — . (2.222
L)\o )\t (7’7 t) ka(T) L)\O Tw Tk(?”) ( )
Substituting Eq. 2.216 into Eq. 2.222 gives
Q o dr agq B dx
T C
P na, L/th( 2 kL, T o h(z)
+qumj /Z“’( 5\0 _1) dr ﬂaqmj W ) dx
L), Ai(r,t) k() kL, ezt h(x)
Ty, £ (t) A
QGinj / v ( ) dr
+ -1 . (2.223
kh)\o L/2 )\t(r t) r ( )

By introducing the pseudo-skin factors s, and s,, and using the log approximation given

by Eq. 2.208

agin; [1 Bl t h
- = -1 A 19 T T z
khAo[Z ((bész +s y+L(s+s) +
AGinj /Z”( Ao _1) dr | T0Gin /‘”3< Ao _1> dx
Lj\o )\t (Tu t) Tk(r> k'LS\O 1 >\t (x7 t) h([E)
L Tx ,f(t) 3
+O‘qzi”/ ' ( Ao —1) & (9900
kh, J12 At(r, ) r
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In order to have a better understanding of the behavior of the solution during this flow
period, we can assume that up to the front radius, the total mobility is equal to the
end-point water mobility which is the case of long injection times. In this case, we rewrite

Eq. 2.224 as

aging [ 1 Bl t h
- — | =1 T - z
b kh)\o{ n(d)étoLQ +Sy+L(S+S>+

2
quinj <iA_1> /zw dr —|—7Taqf”j <i_1> /:vs dx
L\, \ M v TE() kLN, \ M o h(T)

. 1 sz,f(t) d
+ ing (—A - 1)/ & (2.225)
khA, \ M L/2 r

Note that two first integrals in the above equation are constant with respect to t. However,

the third integral is not because of the front radius 7., s which depends on ¢ through the
relation given by Eq. 2.60 evaluated at the water front saturation S,;. It follows that

taking the derivative of Eq. 2.225 with respect to logarithm of time reduces simply to

Qfin;j Qfin;j 1 0 Ty f(t)
Ap' = 2 <T — 1>t—1n (y— , 2.226
b 2kh),  kh\, \M ot L/2 ( )

or rearranging,

’ Oéquj ]_ 8 2
Ap = 2Hind 1 1)t ¢
b 2kh)\0[ * (M ) g1 ))}

2
aqinj 1 t aracy,f
= =1 —_ =1 | —=——=>]. 2.227

2khA, +( )'r? ot } (2.227)

From Eq. 2.60, we have

T2 _ QQant dfw(Swf)
@S woh dS,

(2.228)

Therefore,
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a/’qu,f o 9(1mj dfw(Swf) o Tiy,f

= = 2.22
ot woh  dS, t (2:229)
and Eq. 2.227 becomes
Ap = 2dini 2.230
P 2khAy ( )

meaning that for long injection times, the pressure derivative is supposed to exhibit a
slope based on water properties at residual oil saturation.
Generalized Injection Solution

Based on the analysis of the different flow regimes observed during an injection
test through a horizontal well, we show that the equations derived for each period can be

represented by one expression given by

Ap = pu(t) —pi = Apo + Apy_,(t) + Ap,(t) + Apy_y(), (2.231)

where Ap, is the single-phase pressure change obtained by injecting or producing oil
through a horizontal well of radius r, into an oil reservoir of permeability k(r). The
terms Ap,_., Ap, and Ap,_, denote additional pressure change expressed respectively
in the (z, z) plane, z-direction and the (x,y) plane caused by the contrast between total

mobility behind the water front and oil mobility ahead the front. They are given by

o min(zwﬂ"zz,f(t)) ): d
AQin; ° !
A () — : 1 , 2.232
Pa—=(t) I /rw <)\t(r, t) > rk(r) ( )
X N
TAQinj / )\o dx
N , _1 7 2.233
pa(t) v ) ()\t(x,t) > h(z) (2.233)
and
o max(£71”xy,f(t)) \
OZQML] 2 >\O dr
Ao (1) = . —1) = 2.234
Pa—y(t) kh%/g ()\t(r,t) ) r (2.234)

In Eq. 2.233, the constant b is defined by
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b = min(max(zy,z¢(t)), x3). (2.235)

2.4 Transformation from Anisotropic into an Equivalent Isotropic Reservoir

In the previous section, the analytical solutions for the injection wellbore pressure
at vertical and horizontal injection wells were generated using the Thompson-Reynolds
steady-state theory. However, these solutions assumed the reservoir is isotropic, that is,
the permeabilities in the three directions are the same. Here, the procedure is extended
to construct an analytical injection pressure solution for a restricted-entry vertical well
and for a horizontal well with unequal offsets in an anisotropic reservoir. The main idea
is to apply a spatial transformation to the anisotropic system in order to convert it to
an equivalent isotropic system with new properties for which the analytical solutions
developed previously for an isotropic permeability field can still be used to obtain the
injection wellbore pressure in an anisotropic reservoir.

We denote by k, the permeability in the z-direction, by &, the permeability in
the y-direction and by k. the permeability in the z-direction. A spatial transformation
is defined from the (x,y, 2z) system into a new Cartesian coordinate system denoted by

(n, Yn, 2n) such that

Ty = k%x, (2.236)
k
Yn = 1| —, (2.237)
ky
and
k
2 = /{:—ZZ’ (2.238)

where k is a constant parameter. As suggested by Besson [9], one way to choose k is to

require that the spatial transformation preserves volumes. That means

Za == =1, (2.239)



which simply gives

k= (kokyk.)"?. (2.240)

In the following, we consider first a single-phase flow to a vertical and a horizontal well in
an anisotropic reservoir for which the transformation given above will be applied. Later,

we will give a generalization to our two-phase problem.

2.4.1 Single-Phase Problem for Vertical Well Case

For now, we assume that a vertical well penetrates a reservoir of constant formation
thickness, h. We assume also that the well is producing at a constant in situ rate ¢. Under
these conditions, the equation that describes the flow is given in field units by
Pp . Pp P puc Op

zw“@aﬁkm— 5 ot

k (2.241)

where 3 = 2.637 x 10~* with time in hours. Eq. 2.241 is subject to an inner boundary
condition that will be defined later. First, we apply the spatial transformation to the

diffusivity Eq. 2.241. We have

T
G (200
ox’ dy’ Oz
0 O0xr, 0 Oy, 0 0z,
= 2.242
<8xn ox ' Oy, Oy 0z, 0z > ( )
(fro fio [io
N ﬁxn 8yn (9zn ’
SO
0%p 0%p 0*p k 0%p k 0%p k 0%p
bz T Ruga TR = he zw*kyzﬁ Tk
- W;’Ct%, (2.243)
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or simply

2, _ Phoci O
" Bk Ot

(2.244)
Eq. 2.244 represents the diffusivity equation in an isotropic reservoir of permeability &
given by Eq. 2.240. Here, we assume a vertical uniform flux well of radius r, fully
penetrating a formation of uniform thickness h is producing at a rate ¢ RB/day. Then,

assuming a uniform flux well, the inner boundary condition in the original system is given

by

2
q:/ h(rv'.n )=, db, (2.245)
0

where 7 is the unit outward normal vector to the surface S. Using Darcy’s law, the

velocity ¥ in the (x,y, z) coordinate system in oil field units is given by

ke O
(O 78_5
v =|u, |=-1127x107° %g_zy? : (2.246)

whereas, the normal vector 7 is in the (z,%) plane. Its components are

Ny —cosf
= n, | = | —sind | - (2.247)
n, 0

—

It follows from Eqgs. 2.246 and 2.247 that the scalar product v. 7 is

v =1.127x 107* [@@ cos 6 + Ry Op sin 9} : (2.248)
p Oz p Oy
or in terms of the new coordinates
_a| kg Op Oz, k, Op Oy,
v =1.127Tx 1073 | = —eosh+ 2L ging 2.249
v.n {uaxnax +,u8yn8y ( )
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From Egs. 2.236 - 2.238, we have

o, k
=\ (2.250)

and
oY, k
— =4 —. 2.251
=\ (2.251)
Substituting Eqs. 2.250 and 2.251 into Eq. 2.249 yields
T =1.127 x 1073 {\/ O o504 /Ry sme . (2.252)

We let r,, and 6,, denote the radial and angular coordinates in the new system. Thus,

rn = V22 + Y2, (2.253)

and

0, = arctan (y—") (2.254)
l‘n

Since x,, and y,, are function of r,, and #,, we can rewrite Eq. 2.252 as

VEk op dr,  Op 00
T =1.127T x 1073 —|+/ o o
v.n 7 x 10 . [ km(arnaxnjLaQn@xn) cos O+

Op Or,  Op 00, \ .
. (2.2
\/k_y<(9'r’n 90 + a6, 5’yn) sin 9} (2.255)

Here, a crucial point for the rest of the analysis deserves mention. In the new coordinate
system, the flow is assumed to be radial. Therefore, the pressure at any point (r,, 6, z,)
in the reservoir where the diffusivity equation given by Eq. 2.244 is applicable, is assumed

to be function of only the radial coordinate r,,. Then, Eq. 2.255 simplifies to
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VE

1

v =1.127T x 1072 —

sin g]. (2.256)

dp Or,
\/k_ﬁ T O,

Differentiating Eq. 2.253 with respect to x,, gives

ary, T
= 2.257
or
or,  xn
= —. 2.258
ox, T, ( )

If we differentiate Eq. 2.253 with respect to y,, by analogy to Eq. 2.258, we can write

Orn _ Un
In _ In 2.259
Dun T (2.259)
Using Eqgs. 2.258 and 2.259, Eq. 2.256 becomes
VEk1 0
T = 1127 x 10 3——a—p {\/ 2T 080 + /Ty sin 0] (2.260)
p Ty Oy

From Egs. 2.236 and 2.237, we have

| k | k

= k—mx = k—zr cos b, (2.261)
| k | k
k_ =\ %" sin 6. (2.262)

Substituting Eqs. 2.261 and 2.262 into Eq. 2.260 gives

and

k
TR =1.127 x 10 3—1§—p. (2.263)
HTp Oy

Now, if we use the preceding equation in Eq. 2.245, we simply obtain
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1. 2 2
o= 1127 x 10 (T @> do. (2.264)

K Jo Earn
Using Eqgs. 2.261 and 2.262 in Eq. 2.253 gives
L ko, ko, k 2

r = k_xﬁ + k_yy = k—mr2 cos? 0 + k—yr2 sin? 6. (2.265)

r? 1
= . : 2.266
2 kﬁ cos? 0 + kﬁ sin? 6 ( )
z y
Using the preceding expression in Eq. 2.264 yields
kh [*( 0 dé
g=1.127 x 107322 (rna—p) . . . (2.267)
£ Jo S r=ru. {% cos? 6 + % sin? 6

As stated above, the flow is assumed to be radial in the new coordinate system. The
solution for our problem can be approximated by the line source solution or at late times

by the log approximation given by

Q Ant
Ap(rn,t) = pi — p(ra,t) = 2%‘1: In ((;Zﬂ?), (2.268)

where p; is the initial reservoir pressure and 7 is the equivalent reservoir diffusivity defined

by

2.637 x 10~k

e (2.269)

ﬁ:

for time ¢ in hours. Differentiating Eq. 2.268 with respect to the radial coordinate r,, gives

dp  aqul

e (2.270)

or simply
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dp _ agqp

rna—rn = (2.271)
Eq. 2.271 clearly shows that the term TnaaTn is constant when the log approximation holds.
In particular, <rn%) is also equal to the constant given by Eq. 2.271. Thus, we
can take it outside the ri?cgg;al of Eq. 2.267 to obtain
g =1.127 x 10-3" (rn@) /27r L (2.272)
K ory, r=rwe 40 % + %

From an integral table, we find

2m do
/O PNy E— = 277'\/ kmky (2273)

sin
kz + ky

Using the result of Eq. 2.273 in Eq. 2.272, we obtain

Vkokyh
q=2mx 1127 x 1073 2 (7’ Op ) . (2.274)
M r=Twe

"or,,

Note that h can be replaced by 4/ %hn in Eq. 2.274. We also need to introduce k by using
the fact that k,k,k, = k3. Then, Eq. 2.274 becomes

q=2m x 1.127 x 10—3kZ” (rnaan) : (2.275)

which represents the boundary condition for our equivalent isotropic problem. At this
point of the analysis, it is clear that the system described by Eqgs. 2.244 and 2.274 is
exactly the system that we would write for a case of a constant production rate through
a vertical well of an effective radius r,. in an isotropic reservoir of permeability k.

Here, a crucial point deserves mention. In the (x,y,z) coordinate system, the
flow lines are elliptical due essentially to the anisotropy. However, because of the spatial
transformation, the flow lines are circular in the new system except the circular wellbore
is transformed to an elliptical wellbore. To correct for this early time effect, Brigham [13]

showed that the wellbore behaves as if its radius is the arithmetic average of the major
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and minor axes of the elliptic section as follows

a+b
Twe = )
2
where a and b are given respectively by
k
a= | T"Tuw,
ky
k
= _T’LU
ks

Since the spatial transformation keeps the volumes unchanged, we have

7r2 h = wabh,,.

(2.276)

(2.277)

(2.278)

(2.279)

Recall that h,, is the formation thickness in the new coordinate system defined by

k
h, =1\ —h
k.
From Eq. 2.279, we have
h
b=1r2—.
ab=r;, I

Using the following algebraic manipulation:

a+b=+va*+ b>+ 2ab,

and substituting it together with Eq. 2.281 into Eq. 2.276, we obtain
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1 h
Twe = 5\/a? + 02 + QTZUh—n

2 2
T a b h
=2 — — 2—. 2.2
: () +() o (2.283)

We can express the effective wellbore radius 7., in terms of the permeabilities by using

Eqgs. 2.277, 2.278 and 2.280 in Eq. 2.283 to obtain

r k k Ik
= Wyl o] =2, 2.284
Twe 2\ ky Ky k (2.284)

Another way to obtain an expression for the equivalent wellbore radius is to note

that the line source solution, or, more specifically, the log approximation holds in the new

coordinate system since the flow is radial. Thus, the pressure drop Ap(r,,t) is given by

kh, 1 4t
Ap(rp,t) ==In | —= ). 2.285
aqp Pt =3 n(fﬁ”?“%) (2.285)

At the wellbore, r,, = 7., the above equation becomes

ant 1 7"121;6
In (67702 ) — 5 In (7’_2) . (2286)

From Eq. 2.265, we have

k k
2 cos® 0 + % sin” 6. (2.287)

If we substitute Eq. 2.287 into Eq. 2.286, we find that

kh,, 1 4t 1 k k.
aqMAp('rwe, t) = B In (67702 > ~3 In (k_m cos® 0 + k_y sin? 0). (2.288)

w
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Eq. 2.288 clearly shows that the wellbore pressure drop Ap(rye,t) = Ap(ry,0,t) is not
uniform in # . One way to get rid of the 6 dependance is to introduce an average wellbore
pressure drop defined by

o 1 2 1 2

Rpus = 5= / Ap(rue, t) df = Ap(ra, 0,4) do. (2.280)
T Jo

_%0

If we integrate Eq. 2.288 with respect to the variable 6, we obtain

" kh 1 At 1 k k
/ “AP(Tpe, t) df = / il Y (L 1 / —In{ —cos®f + —sin® 6 | db,
0 Qqit 0 2 er? 0 2 k. k,

(2.290)
or using Eq. 2.289,
khn— 27 47t 1 [ koo, k.,
27TO&(]/Lprf = In (e”ri) — 5/0 In <k_z cos” 0 + k—ysm 6| de. (2.291)
Let
2 E ]%
I = / In (— cos? 0 + — sin® 9> do. (2.292)
0 kx ky
Because cos? § and sin? # are m-periodic functions, we have
N S A
I'=2] In{-—cos"0+ —sin"0 ) db. (2.293)
0 ko ky

To simplify the integrand of Eq. 2.293, we use the following trigonometric relationships:

sin? = 1 — cos? 0, (2.294)

and

cos(26) = 2cos® ) — 1, (2.295)

to obtain
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T Tk k k
1:2/ In (———>00829+—]d9
() A
:2/ n (£—£)<COS(29)+1)+£]d0
0 /cx_ ky_ 2 _k:y_
T 1/ k k 1/ k k
—of m|s(E2 & 26) + -~ 4+ &
/On o\ % ky)cos( )+ (kx—i_k:

or letting w = 20,

]—/%ln 1 E—E coscu—l—1 £+£
—Jo 2\ k. Ky 2\ k. kK,

which is also equivalent to

I_Q/WIH 1 E—E cosw—i—1 E—FE
I PAN 2\k, Ky

From an integral table, we have

/ In(acosw +b) dw = wln [
0

so by analogy to Eq. 2.299, Eq. 2.298 becomes

Vb2 —a? + b]
2 )

F—orm (LA (E L EY LD 1%+l%2_1 EookY
— T2 2\E T, Nk k) A\k k) |)

or by simplifying the above expression,

1k k k
I=2rln |~ —+—+2——— .
i |:4 (kw ky k:cky):|

If we substitute Eq. 2.301 into Eq. 2.291, we obtain
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or

Fhoye L (dpt\ 1 [0k ko k
o L (w1 ik ko | 2.303
oqp Puf 2 ! (677“12,}> 2 ! {4 (kx " ky " V. kacky)1 ( )

The second term of the left hand side of Eq. 2.303 is an additional dimensionless pressure

change due to the anisotropy. We refer to it as a pseudo-skin factor s, so that

1. [1/k k& k
a=——In|=—4+—+2——— ). 2.304
Sa =73 n{4(km+ky+ kkyﬂ (2:304)
On the other hand, Eq. 2.286 is
kh, 1 4nt 1 r2
A =-1 — —In | %), 2.
agu Vo) =30 (wg) 2 ( Ti) (2:305)

Therefore, the effective wellbore radius 7. is given by

2, 1(k k k
o= —+ — 42— 2.
2 (kx + k, + kmky)’ (2.306)
or simply,
Tw ko k k
we — 5 —+ — 42 . 2.307
' 2 (kﬂﬁ ky \V kxky) ( )

Eq. 2.307 is identical to the formula for the effective wellbore radius obtained by arith-

metically averaging the minor and the major axes (see Eq. 2.284) because

E o kvEk kR [k
NN N ke

We need to keep in mind that the derivations above for the effective wellbore radius

(2.308)

were obtained based on a 3D transformation. In the following, we would like to still be
able to find the effective wellbore radius for a 2D problem such as a fully penetrating
vertical well where the z transformation is unnecessary. This is a well known problem in
the literature (see, for example [31]). To do so, the starting point is Eq. 2.303 which we

rewrite, using the fact that kh, = /kikyh, and rearrange to obtain
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Vkkyh—— 1 B kok,t\ 1 k 1, [1/k &k k
Y Y Apyr = =1 ~1 ——In |~ —+ = +2
agn v T3 n(ewctuﬂ )+ n< ) n[ (karker vV kaky }

(2.309)

or simplifying,

kzkyh—— 1 B/ kkyt 1 1 k ks
~—A =—1In —In |- i J —+2]]. 2.310
agn w3 (e”d)ctuﬂ ) 2 L(V R \ By i )} (2:310)
Eq. 2.310 indicates that the pseudo-skin factor due to the anisotropy in this case is given
by

wmn (R fE2)] 2o

Similar to Eqgs. 2.305- 2.307, we find

2
Tw

1 [k, [k,
R - 219 2.312
2 4( kr+ ky+ >7 ( ’ )

which we can rewrite as

FG) TG TG (R)) e

or, using the binomial formula,

7‘121)@ 1 k. 1/4 k 1/47 2
5= ZKI?) + <k—y> } . (2.314)
w Yy T

Finally, we obtain for the effective wellbore radius the expression

ro [/ ks 1/4 k, 1/4
we = — | | — 2 , 2.315
~=5) (@) a1

which is exactly the formula given in the literature for a radial flow system in an anisotropic
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reservoir.

2.4.2  Single-Phase Problem for Horizontal Well Case

For the horizontal well case, we apply the same transformation used for a vertical
well and defined by Eqgs. 2.236 to 2.238 to convert from an anisotropic problem to an
equivalent isotropic reservoir problem of permeability & for which the solution is known.

Recall that & is given by the following equation

k= (kokyk.)3, (2.316)

In the new coordinate system that we denoted by (z,, Y, z,), the thickness of the reservoir,
the distance from the centerline of the well to the top boundary of the reservoir and the

length of the horizontal well are given respectively by

h, = ﬁh, (2.317)
k.
Zwn = k%zw, (2.318)
and
k
L, = k—L. (2.319)

In writing Eq. 2.319, we are assuming that the axis of the well is along the y-direction.
As mentioned before, the flow lines are circular in the (z,,z,) plane but the wellbore
becomes elliptical as a consequence of applying the spatial transformation. Similar to the
vertical well case, an effective wellbore radius is introduced in order to correct for this
early time effect. According to the literature (see references [13] and [23] for instance),

this effective wellbore radius is given by

e = %" <\/%+ \/kz> (2.320)

Analytical solutions for the pressure response of horizontal wells under single-phase
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flow are well known (see references [23], [20] and [25] for example). They are summarized
in reference [26]. In the following, we will first review the analytical solutions for the
pressure drop at a horizontal well completely penetrating an anisotropic reservoir then we
will apply the transformation to these solutions obtained for the different flow periods for
this case. The objective behind this is to establish the equivalence between the real and
the converted system. Here, we are mainly concerned by the first radial, the first linear
and the second radial flow regimes.

During the semi-radial flow regime (semi-radial flow in the (z, z) plane that may
occur if the well is not drilled near the center of the formation), the pressure behavior is

given by

aqBp [m (46x/kxkzt) +S+S/}, (2.321)

Ap = i — Pwf —
P=Pi™ Pus Vi k. L eYpucr?
where o and 3 are unit conversion constants given in oil field units by 141.2 and 2.637 x

10~ respectively. The term s represents the mechanical skin and s’ is the pseudo-skin

factor due to anisotropy and defined according to Kuchuk et al. [23] by

s =—1In {(1 + @) i—ﬂ . (2.322)

We can easily see that if the reservoir were isotropic, that is k, = k, = k., = k, the
pseudo-skin factor s’ would reduce to
224
s'=—In (—), (2.323)
7/"LU

and the pressure change in this case would simplify to Eq. 2.138. Using the relationship
between L and L, given by Eq. 2.319, and using Eq. 2.322 in Eq. 2.321, we obtain

Ap = _agBuvk_ [m (—46 v kmkf) ts—1In [(1 + 4 /@> Z—“’H (2.324)
Vkykoke Ly, eYppcry, ks ) Tw

By introducing k and 7, in the first log term of Eq. 2.324, we can show that
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aqBu 4Bkt  kyk, r? [y \ 2w
Ap=—-11 — - _we —1 1 — | — 2.32
P kL, [ 1 (e’nguctr?Ue kEor2 tsom + k,)ryl|l (2.325)

or

Ap:anM[ln (ﬂ)ﬂﬂn (\/kf_ki) —1nK1+ ﬁ)z—“’” (2.326)

'E;Ln e’y¢:uctr121ze k I kz Tw

w

From Eq. 2.320, we have

k k Twe
— — =2 2.327
o\ T (2.327)
% k:x T'LU@
—(1 — ] =2 . 2.32
\ k:( + k:) - (2.328)

or

Thus,

kﬂ? Tu)e k:p
1 ) =9 = 2.32
(1+y/5) =225, (2:320)

which we substitute in Eq. 2.326 to give

aqBu A6kt Vkok. r? Twe Kz Zuw
Ap = — 1 1 —— € —In (2 —— || (2330
r= o [ () o (TR m (32 )| s
Using the relationship between z,, and z,, provided by Eq. 2.318 in Eq. 2.330 and rear-

ranging, it is easy to show that

_aqBp 46kt kyk. 2, B Kok, 12, 220n
Ap = P {ln (e”gb,uctrﬁ,e +s+1In PR In e N (2.331)

w
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which simplifies to

aqBu ABkt 2Zuwn
Ap = —= In{ —— —1 : 2.332
P kLn |: ! (€7¢M0trie e . Twe ( )

A comparison between Eq. 2.332 and Eq. 2.138 clearly indicates that by making the
transformation, we converted the anisotropic problem during the first radial flow regime
to a system where the reservoir is isotropic of permeability & and where the horizontal
well of a centerline distant to the closest reservoir boundary by z,,, in the z-direction, is
characterized by its length L,, and its radius 7..

Peres and Reynolds [26] also reported the pressure response of a horizontal well

during the first linear flow regime as follows:

aqBu 4Bkt k. h
Ap =p; — Pur = ——(s, i 2.
D = Di — Pwf Th { WctLQﬂ/kzL(s + ) (2.333)

Recall that s, is a pseudo-skin factor which represents an additional dimensionless pressure
drop due to the convergence of flow lines from linear to radial near the wellbore. An

expression for s, in the case of isotropy is given by the following equation

s, =1In (27% Sinh’(mw ; h)). (2.334)

In the anisotropic case, Kuchuk et al. [23] replace r,, by !, where r/, is given by

, Tw k.
=21 ==, 2.
r 2( + kx) (2.335)

Again, if we assume an isotropic case, r,, = r,, and Eq. 2.333 simplifies to

aqBu Akt  h h h
Ap— N n ngl. 2
P= "k [ snal? L M\ omrp sy ) T T8 (2.336)

If we transform Eq. 2.333 into the new coordinate system by using Eqs. 2.317-Eq. 2.319

and introducing k, we find
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Ap — _aqBp k E A Bkt \/>
P=Pi= Pus = kh,, k_ k_ gbuctLQ
k
\/7 \/7\/7 27r7" s1n(7rzwn/h )) * 8)}’ (2.337)

or by simplifying the above equation

aqBu Anfkt  h, B ?Z hn,
AD =pi — Pur = — —1 —s]. 2.338
P= P~ Puf khy, h/ e L? * L, " 271! sin(mzyn /) i Lns ( )

Introducing the effective wellbore radius r,., we can rewrite Eq. 2.338 as

agBu [ [ 4npkt  h, I,
Ap = i — Pwf = —3 —1 :
P =Pi = Pus kh, [ ouceL? + L, t 277 e SIN(T 2y /o) *
hn hn kZ rwe

Finally, using the expressions for 7/, (Eq. 2.335) and r,. (Eq. 2.320), it is easy to show

that the last term in Eq. 2.339 vanishes leading to

aqBu Akt hy, hn hny
AP = s — Pop = —2 | : “nsl o (2.340
P e {\/ onel2 T T, M \orra sy ) T 1 B30

which is equivalent to the isotropic-single phase solution for the first linear flow period.
The equivalent permeability is also equal to k where k = ¢/ kpkyk. .
During the second radial flow regime, the pressure response as derived by Kuchuk

et al. [23] is
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agBu |1 4Bk, t ky h ,
Ap=p;—Puj= ——t [ =In | ——2 ) + C + /L= (s. . (2.341
P = Di— Duy Txkyhb n(eﬁbuctLQ +C+ kzL(S + 8, + ) (2.341)

where we previously defined s, (see Eq. 2.334). The expression for s/ is given by

k,h|l =z 20\ 2
/ _ Yy - w w
s, =—2 —kz 7 {3 W + <_h ) } (2.342)

In Eq. 2.342, C'is a constant whose value depends on how the wellbore boundary condition
is represented mathematically. For an infinite conductivity wellbore model, Goode and
Thambynayagam [20] give C' = 1.791 whereas, Odeh and Babu [25] give a value of C' =
2.094 for a uniform flux wellbore model. The pressure drop for an isotropic reservoir

reduces to

aqBu |1 45kt
Ap = pi — pus = { 1 (

LS MY LU Do
|2 67¢uctL2>+ *

%(m (2m~w sinh(mw/h)) a 2% E a %w * (%)T * S)} (2.343)

Similarly to what we did for the first radial and first linear flow periods, we can show that

by applying the transformation to Eq. 2.341, we are able to obtain an equation similar to

Eq. 2.343. Eq. 2.341 can be rewritten as

agBp  k k1 APkt kyl;;
Ap=pi—pyy— 2228 F RN (2P B R o
bbb = g e\ B {2 "\oopalz i k) T

o L o O GV S WY ) P e B
k. Ly \ k, V k 277! Sin(7 2y /) L.,|3 h, ho, ’

(2.344)

which, using the expressions for ], (Eq. 2.335) and 7. (Eq. 2.320) and rearranging, can

be written as
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agBp |1 43kt
Ap=pi—puy = N S (L
P =P Pup = o {QH(equtL% +C+
L, 27T e SIN(T 24/ Py V k r L,|3 h, I, ’
(2.345)
which simplifies to
aqBu |1 43kt
Ap=pi—puy = "N S (S
P =P Pup = 5 {QH(equtL% + O+

h h ho[1 2z Zuon \
T (4 n _oln |2 Zwn [ Zun . (2346
Ln( N (mwe sm(mwn/hn)> Ly, {3 B ( I ) } i Sﬂ (2:346)

It is clear that the solutions for the different flow periods described by Eqs. 2.332, 2.340
and 2.346 are exactly the same that we would write for a case of a constant production rate
through a horizontal well of an effective radius 7, in an isotropic reservoir of permeability
k. Now that we established the equivalence between the solutions in two coordinate
systems through the transformation defined in Egs. 2.236 to 2.238, we will construct
analytical solutions for the pressure change during an injection test for a vertical and a

horizontal well located in an anisotropic reservoir.

2.4.8 Injection Solution into an Anisotropic Reservoir, Vertical Well Case
In this section, we construct analytical pressure solution for a vertical well located
in an anisotropic reservoir. Starting from Darcy’s law expressed in the new coordinate

system as follows:

00 Qt(rn)t) dTn
Ap = por(f) — s = _ 7 2.347
P p f( ) D Oé/rwe )\t(”f’mt) Tnk(rn)h”(r) ( )

and using the same theoretical approach based on the steady-state theory applied for the

isotropic case, it is easy to show that the general solution for the wellbore pressure change
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during the injection period is given by

rin(t) A
“— QG [ Ao I, dr,,
Ap=2A i A R S —— 2.348

p pO + hn o /7:11)6 (At<rn7 t) ) k(rn)hn(rn) Tn ( )

where Ap, is the single-phase pressure change obtained by injecting oil through a vertical
well of radius r,,. into an oil reservoir of permeability k(r,) and Trn is the water front
position in the new coordinate system. Eq. 2.348 applies to the restricted-entry case since
it takes into account the fact that in the transformed coordinate system, the injected
water moves radially over a variable thickness denoted here by h,(r,). For the complete
penetrating case, we simply set h,(r,) = h, in Eq. 2.348 to obtain the pressure solution.

In Eq. 2.348, the equivalent isotropic permeability k(r,) is a function of the radial
distance in the new system so that the effect of the mechanical skin is accounted for in

the analysis. It is given by

B ks for rye < 1 < Ten,
k() = (2.349)

k= {*’/k:xTykz for r, > rg,.
Eq. 2.349 assumes that the skin zone becomes concentric with the well with a radius 7,
when applying the spatial transformation to the anisotropic system. In the new coordinate
system, the permeability in the damaged zone is k, = m where kg, kys and k.,
denote the permeabilities of the damaged zone in the x, y and z-directions, respectively,
and are assumed to have the same anisotropy ratios as the permeabilities k,, k, and k..
In the new coordinate system, the location of a saturation S,, is obtained from the

following Buckley-Leverett equation

ra(5) it dfu(S1)
. inj w\Pw
/r Tl (1) dr, = o6 dS, (2.350)

we

where # is a constant which depends on the system of units used with 8 = 0.23396 if oil

field units are used with time in hours. The variable thickness h,,(r,) is given by
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hpn i 7 < Tep,

ho(rn) = (2.351)

h, ifr, >r.,
for model 1 and by

hn 1 + (1—_b>(rn - Tcn) lf Tn S Tens

Ten—Twn

ho(rn) = (2.352)

Iy, it r, > rep,

for model 2. In these expressions, the open interval h,, is defined through the spatial

transformation by

hpn = (| —hp, (2.353)

and r., is the radius of convergence in the (z,, Y, 2,) system.
For model 1, the radial location at time ¢ is obtained by substituting Eq. 2.351 in
Eq. 2.350. The result is

_ Oginst dfu(Sw) | 5

2
Tn(Sw) 7T¢hpn dSw Twe‘

(2.354)

If this equation gives r,,(Sy) > 7en, then r,(S,) is calculated with the following equation:

Oinjt dfuw(Sw)
2(G,) = —n W | b2 1—0b)r? 2.
r2(S) = St e oe) etk (1=, (2.355)
where b = %:” = h—; For model 2, similar to the derivations of Eqgs. 2.40 and 2.42, we

can use Eq. 2.352 in Eq. 2.350 and integrate to obtain

3 3 1 2 2 o QQwat dfw<5w)
(1_b)(rn(sw)_rwe)+§(brcn_rwe)(rn(5’w)_Twe) = 2wdh,  dS,

(Ten—Twe), (2.356)

if r, < r., and
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0w But dfu(Sw) 1 2 2
- 2|0 - 1— 142 9.
W(bh,n dSw + 3 ( b)rcn + ( b)rcnrwe + ( + b)?‘we s ( 357)

r (Sw)

if v, > rep,.

One way to determine 7., is by first expressing the single-phase pressure drop in
the inner region r,, < r., as well as in the outer region r,, > r., using the new coordinate
system and then requiring continuity at the interface r., as was done to determine r, for
the isotropic case (see Appendix A). A simpler way is to compute r., is to use the fact
that the volume of water injected at any time ¢ is conserved regardless of the system used.

This translates to

/ Tnhn(rn)drn:/ rh(r)dr, (2.358)

where 7. is given by Eq. A.14 for model 1 and Eq. A.22 for model 2. Replacing h(r) and
hn(r,) by their expressions given, respectively, by Eq. 2.34 and Eq. 2.351 for model 1 and

integrating, we get

1 1
Ehpn(r?m - ri}e) = §hp(rf2: - Tfu)? (2359)
or simply after rearranging
h
Ten = 4 [ = (r2 —12) + 72 . (2.360)
hopn

In a similar way, we determine the radius of the skin zone ry, by setting r, = r, and

evaluating Eq. 2.358 as follows

/ rnhn(rn)drn:/ rh(r)dr. (2.361)

we

For a small damaged region, it is reasonable to assume that r; << r. or equivalently

Ten << T'ep. In this case, we also have
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T = \/ :_p(rg —r2) 72, (2.362)

pn
The radius of convergence r,, for model 2 is different from the one of model 1. However,
it is determined by the same technique as for model 1. Using Eq. 2.358 combined with

Eq. 2.352 and its equivalence in the original coordinate system, we have

Ten 1 — Te 1-—
/ hn, [1 + (—b) (rp — rm)} rpdr, = / h {1 + ( b ) (r— rc)] rdr. (2.363)
Twe Ten — Twe T Te = Tw

Integrating Eq. 2.363 gives

B [(b+2)r§n+(b—1)rmrwe—(2b+1)rie} = h[(b+2)rf+(b—1)rcrw—(2b+1)7‘i], (2.364)

or after rearranging,

h
(b—|—2)7’fn—|—(b—1)rwercn—(2b+1)r?ye—h—[(b+2)7’3+(b—1)7’crw—(2b+1)7’fu} =0. (2.365)

n

Eq. 2.365 is a second degree equation of unknown r.,. Its positive root (positive r.,) is
given by
(1 =b)rwe + VA,

p— 2.

where A, is given by

h
A, =90+ 12, +4(b+ 2)h— (b+2)r2 4+ (b— 1D)rery — (20 + )12 |. (2.367)

The radius of the skin zone 7, for this model needs to be determined given r in the orig-
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inal coordinate system. To do so, we also use Eq. 2.361 established from the conservation
of the volume that we combine with the expression of h,(r,) in the inner region given
by Eq. 2.352 assuming that the damaged zone is small enough such that r, << r.. It is
obvious that the resulting equations are similar to the ones determined for the radius of
convergence. We simply need to replace r. by rs and 7., by 7, in Egs. 2.366 and 2.367
to obtain finally

(1 —b)rue + VA,

= 2.
= (2:368)

where

h
Ay =90+ 12 +4(b+ 2)h— (b+2)r2 4+ (b—1Drery, — 204+ )12 | (2.369)

2.4.4 Injection Solution into an Anisotropic Reservoir, Horizontal Well Case
Similarly to the isotropic case, the general solution for the wellbore pressure change

during the injection period is given by

Ap = pwf(t> —Pi = A_po + Apxnfzn (t> + Apmn <t> + Apxnfyn (t)v (237())

where Ap, is the single-phase pressure change obtained by injecting oil through a hori-
zontal well of radius 7, into an oil reservoir of permeability k(r,) defined by Eq. 2.349
to account for the mechanical skin. The terms Ap, _. , Ap,, and Ap,, _,. denote addi-
tional pressure changes expressed in the new coordinate system respectively in the (z,, z,)
plane, z,-direction and the (z,,y,) plane caused by the contrast between total mobility

behind the water front and oil mobility ahead the front. They are given by

o min(zwnyrzx,fn(t)) ): k' d
. OéQm] / < ° ) In
N 9 &n 2.371
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b ~
_ Waqmj /n /\o dxn

Apy (1) = —2 20 1 2.372
Pen () kLo Ja <At(mn,t) ) (2:372)

nl

and

. maX(Liany,fn(t)) ): d
_ OGinj / 2 ( 0 ) Tn
Apg ., (1) = ——= — 1) —, 2.373
Pen=n () kb Ao J 22 Ae(rnst) Tn (2:373)
where the constant b, is defined by
by, = min(max (2,1, Z (), Tn3). (2.374)

In the transformed system, the water distributions and consequently the total mobility
profiles are obtained using three one-dimensional Buckley-Leverett equations expressed
by equations similar to the isotropic case where r,, and L in Eq. 2.48 are replaced by 7.
and L,, respectively and the thickness h in Eq. 2.60 by h,,. For the movement of the water

in the x,-direction, the location of a saturation S, is obtained from

() Ogint dfu(S1)
o inj w \Pw
/o hn () Lydx, = 2% s, (2.375)

where the variable thickness h,(z,) is given by

22pn  for 0 <z, < x,9,

hn(z,) = . (2.376)
hn for Tn2 < Tnp S Tn3,
for model 1 and by
.
22wn for 0 S Tn S Tni,
ho(zn) = 9 by, — %(fﬂng —xy,) for zp, <xy < Xy, - (2.377)
hn for Tn2 S L, S Tn3,

for model 2. In these expressions, the positions x,1, z,2 and x,3 are the parameters of the

two models that correspond respectively to the positions x1, x5 and x3 in the real system.
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Using the derivation of Eqs. 2.45 and 2.43, it is easy to show that by applying Deppe’s

procedure in the new coordinate system, we obtain

Tpl = — Rwn, (2378)

and

o = gLn. (2.379)

As for the parameter x,5, we can compute it by applying the steady-state single-phase
theory for convergence pseudo-skin factor computations as we did for the evaluation of
x9. The result is identical to the one obtained in the real system (Eq. 2.70 for model 1

and Eq. 2.73 for model 2) with h and z, replaced by h, and z,,. Thus, we have

h h G
o " 1 2.380
Tn2 7T< hn _ 1) |: ! (27T2wn Sin(ﬂzwn/hn)> " 8 :| ( )

2Zwn

for model 1 and

w2 hn hn
8(hn/22pn—1) In (Qan) +In <2Trzwn sin(wzwn/hn))
Tz = , (2.381)

us hn/zzwn hn
Ton [(hn/2zwnl) In (2zwn) - 1]

for model 2.

2.5 Numerical Behavior and Validation
In order to verify and validate the approximate analytical results derived in this
chapter, several cases of injection/falloff test through vertical and horizontal wells were
simulated using CMG’s IMEX black oil simulator (see reference [1]). Water in each case
was injected at a constant rate into the well for a certain time denoted by ¢, and then
the well was shut-in for a falloff test. Here, we only discuss the results that pertain to the
injection period. The falloff results for each example will be considered in chapter 3. The

relative permeability curves used for all examples presented are shown in Fig. 2.6 and the
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Figure 2.6: Relative permeability curves.
Property Value
Porosity, ¢ 0.32
Rock compressibility, ¢,, psi~* 5.63 x 1076
Residual oil saturation, S,, 0.28
Irreducible water saturation, S;,, 0.25
Oil FVF, B,, RB/STB 1.318
Oil compressibility, c,, psi~! 8.0 x 1076
Water FVF, B,,, RB/STB 1.008
Water compressibility, ¢, psi™! | 2.84 x 107¢
Water viscosity, iy, cp 0.516
Wellbore radius, r,,, ft 0.35

Table 2.1: Reservoir and well data.
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Figure 2.7: Total mobility curve, unfavorable case, M = 3.165.
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basic data used for the computations are summarized in Table 2.1.

Two cases with respect to the oil viscosity were considered here. For the unfa-
vorable mobility case, y, = 5.1 cp and the end-point mobility ratio gives M = 3.165.
The favorable mobility case considered pertains to p, = 0.85 cp and M = 0.527. Total
mobility as a function of water saturation is shown in Fig. 2.7 for the unfavorable case
and in Fig. 2.8 for the favorable case. Based on the classical fractional flow theory, the
saturation of the water front is S,y = 0.275 for the unfavorable case and S,,; = 0.627 for

the favorable case.

2.5.1 FExample 1: Skin Effect on the Wellbore Pressure Response at a Vertical Well

The objective of this example is to illustrate that the analytical solution for the
injection wellbore pressure given by Eq. 2.8 for a pure radial flow is accurate for both the
zero and nonzero skin cases. We also want to show the effect of the presence of a damaged
zone around the wellbore on the pressure response. To do so, a case of injection of water
through a complete-penetration vertical well was simulated where water was injected at
a constant rate of ¢;,,; = 18,869 STB/day for ¢, = 3 days for the unfavorable case and
t, = 1 day for the favorable case. Here, the thickness of the reservoir is h = 78.74 ft
and the reservoir with an initial pressure of p; = 3461.4 psi, is isotropic of permeability
k = 2700 mD. In all runs, the mesh consisted of a 110(r) by 1(#) by 1(z) cylindrical
coordinate system for the unfavorable mobility case. However, a more extensive meshing
was needed (2400(r) by 1(0) by 1(z)) for the favorable mobility case in order to get rid of
the oscillations exhibited by the two-phase solution. For both cases, a variable gridblock
size was used in the r-direction.

To ensure the adequacy of the grid, the single-phase case based on oil properties at
irreducible water saturation was run and compared to the analytical solution. In Figs. 2.9
and Fig. 2.10, the numerical injection pressure change and its derivative with respect to
In(t) obtained for the unfavorable and favorable mobility case are shown by solid circles
whereas, the analytical solutions for the wellbore pressure change and its derivative are

represented by a solid line. As we can see, the two solutions for both cases are in good
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Figure 2.9: Comparison of numerical results to analytical solution for injectivity, single-phase
flow.
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Figure 2.10: Comparison of numerical results to analytical solution for injectivity, single-phase
flow.
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agreement. Figs. 2.9 and Fig. 2.10 also show the standard behavior for a complete-
penetrating vertical well. The semi-log slope exhibited by the pressure derivative is equal
to Ap' = ;;T”/\]O = 59.15 for the unfavorable mobility case and Ap’ = 9.86 for the favorable
case.

The same simulation grid described previously was used to obtain an injection
solution for the water-oil phase problem. In order to generate the analytical solutions
for the injection period from the model, the integral in Eq. 2.8 which represents the
multiphase component was evaluated numerically for different values of time upon the
determination of the total mobility profile from Buckley-Leverett theory (Eq. 2.37 with
b = 1) and the result was added to the single-phase solution based on oil properties. The
pressure derivative data were obtained by performing a numerical differentiation on the
corresponding pressure change data generated. Fig. 2.11 presents a comparison between
the solution for the change in injection pressure and its derivative obtained from the
reservoir simulator and the solution generated analytically. This figure which pertains to
the unfavorable mobility case with s = 0 shows a good agreement between the simulator
and the analytical solution. Equally good agreement was obtained between the analytical
and numerical solutions for the favorable mobility case with s = 0 displayed in Fig. 2.12.
Figs. 2.11 and 2.12 also indicate that at late times, the injection solution gives a derivative

value which reflects the semi-log slope based on water properties at residual oil saturation

as predicted by Eq. 2.32 and given by

’ Qi

p= 2kh\,

= 18.7. (2.382)

Note that this semi-log slope begins at ¢ ~ 0.8 hours for the unfavorable case and much
earlier (t ~ 0.1 hours) for the favorable case.

Next, we considered the same problem but with a positive skin factor, s = 4.75
obtained by setting k, = 540 mD in a cylindrical region around the wellbore of radius
rs = 1.15 ft. Fig. 2.13 compares the pressure and pressure derivative solution obtained

analytically to the corresponding data generated from the simulator with an end-point
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Figure 2.11: Comparison of numerical results to analytical solution for injectivity, zero skin
case.
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Figure 2.12: Comparison of numerical results to analytical solution for injectivity, zero skin
case.
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mobility ratio of 3.165. This figure shows a good agreement between the two solutions. It
also indicates that the pressure derivative takes negative values from 0.0009 to 0.08 hours.
According to the Buckley-Leverett Eq. 2.37, the time corresponding to when the water
front reaches the radius r, is 0.006 hours. As predicted by Eq. 2.22, as long as the flood
front is inside the skin zone, the pressure derivative is negative because the condition
given by Eq. 2.23 is satisfied for the unfavorable mobility case. Once the water front is
outside the skin zone, Eq. 2.29 predicts negative values of the pressure derivative only if
Eq. 2.31 holds which is exactly the situation as negative values of the pressure derivative
persist for a longer period of time (from 0.006 to 0.08 hours) as shown in Fig. 2.13. As
time goes on, the water saturation increases to a level such that A\,(rs, t) = 5\w causing the
derivative to reach the semi-log slope given by Eq. 2.382 in a way similar to the nonzero
skin case.

Fig. 2.14 considers the injectivity solution for the same set of parameters as in
Fig. 2.13 but with an end-point mobility ratio equal to 0.527. Again, the match between
the numerical and the analytical solutions for the pressure and its derivative with respect
to Int is quite good for this case. An interesting remark about this case is the apparent
discontinuity in the derivative data that we observe at ¢ ~ 0.008 hours. This corresponds
to the time when the water front reaches the outer radius of the skin zone. Again,
this situation occurs because the multiphase component of the pressure change decreases
rapidly due to the rapid increase of the total mobility A (7, t) and the pressure derivative
becomes negative as predicted by Eq. 2.29. Another remark is the noticeable increase
in the pressure derivative observed right before the discontinuity. This occurs because
the water front is still within the skin zone so that the pressure derivative increases to
eventually reach a value inversely proportional to k), if the skin zone is large enough.

The numerical value of this semi-log slope is given by

/. Qi

p= 2k i\,

= 49.3. (2.383)

96



Injectivity Solution
m =5.1cp, tp =3 days, s =4.75
3
10 o
2 107
8 .
2 10 i
I
8 o
100 Model
® Simulator
10"
10 10® 10® 100 10° 10
Time, t, hr

Figure 2.13: Comparison of numerical results to analytical solution for injectivity, nonzero skin
case.
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Figure 2.14: Comparison of numerical results to analytical solution for injectivity, nonzero skin
case.
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2.5.2  FExample 2: Wellbore Pressure Response at a Restricted-Entry Vertical Well

For the runs considered in this subsection, the initial reservoir pressure is p; = 3941
psi, the thickness of the reservoir A = 236.55 ft and the open interval h, = 81.69 ft from
the bottom reservoir boundary. Note that the penetration ratio is given by b = 0.345.
Water was injected at a constant rate of ¢;,; = 18869 STB/day into the well for about
300 days. Both the favorable and unfavorable mobility cases were considered here. The
horizontal permeability is given by k, = k, = k, = 2700 mD whereas, the vertical
permeability k£, = 300 mD. The permeability ratio ]’z—z = % falls into the typical range
of values for anisotropic reservoirs. Some other relevant data to this example are the
isotropic equivalent permeability (Eq. 2.240) k = 1298 mD, the effective wellbore radius
(Eq. 2.284) 1. = 0.243 ft, the total thickness of the reservoir in the new coordinate system
(Eq. 2.280) h,, = 492 ft and the open interval h,, = 170 ft. Due to this particular case
of a radial flow, there was no need to use cartesian grids when simulating the injection
test. Instead, the mesh consisted simply of 125(r) by 1(0) by 34(z) cylindrical coordinate
system. A variable gridblock size was used in both the r and z-directions. First, we set
the mechanical skin factor to zero to emphasize that unlike the complete-penetration case
(see example 1), the negative pressure derivative is not due to a damaged zone.

Fig. 2.15 illustrates a comparison between the analytical anisotropic single-phase
pressure change and its derivative with respect to In(¢) obtained with the real data of
the problem represented by triangles and the equivalent isotropic analytical solution for
the pressure drop and its derivative shown by solid lines. Both solutions match very well
validating the spatial transformation used.

In order to calibrate the black oil simulator (IMEX), the single-phase case based
on oil properties at irreducible water saturation was run and compared to the equivalent
isotropic analytical solution. In Fig. 2.16, the numerical injection pressure change and its
derivative with respect to In(¢) are shown by solid circles whereas, we kept the same legend
for the analytical solution. This is the unfavorable mobility case. The favorable mobility

case is shown in Fig. 2.17. For both cases, the two solutions are in good agreement.

Figs. 2.15- 2.17 also show the standard behavior for a partially penetrating well. At early
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Figure 2.15: Comparison of analytical anisotropic solution for injectivity and its equivalent
isotropic solution, single-phase flow.
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flow, M = 3.165.
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Figure 2.17: Comparison of numerical results to analytical solution for injectivity, single-phase
flow, M = 0.527.

times, the semi-log slope exhibited by the pressure derivative is equal to

57.46 for M = 3.165,

’ Afin;

2P Ao

Ap
9.5  for M = 0.527,

reflecting oil properties over the equivalent opening interval h,,,. At late time, the semi-log

line reflects oil properties over the entire equivalent thickness of the formation, h,, i.e.,

i 19.85 for M = 3.165,
Ap = —" = (2.385)

2khnAo 3.281 for M = 0.527.

It is important to note that the products l;;hpn and kh,, are Mhp and \/Fk:yh respec-
tively.

For the injection test with an unfavorable mobility ratio, the water front r; went
beyond the convergence radius r. for both models. For model 1, the radius of convergence
given by Eq. A.14 is numerically equal to r. = 154.66 ft. Its value in the new coordinate

system is 7., = 107.23 ft. The water front at the instant of shut-in was located at
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7 n(tp) = 489.81 ft. For model 2, solving numerically Eq. A.22 gave a value of r. = 777.9
ft in the real system and 7., = 539.37 ft in the new coordinate system while the water
front at the instant of shut-in was at 7y, (t,) = 545 ft. The same simulation grid described
previously was used to generate an injection solution for the water-oil two-phase flow
problem. Figs. 2.18 is a log-log plot that illustrates a comparison between model 1 and
the simulator for the pressure change and its derivative. Similarly, a comparison between
model 2 and the simulator is displayed in Fig. 2.19. Note that Fig. 2.18 shows that
the analytical and numerical pressure drop are in good agreement at early times but
are noticeably different at late times. However, Fig. 2.19 exhibits a much better match
between the data and model 2 for all times. This observation is better illustrated in
Fig. 2.20 which represents a semi-log plot of the pressure derivative versus time. While
model 2 follows the numerical trend, the derivative obtained using model 1 exhibits an
oscillation corresponding to the time period when, according to our Buckley-Leverett
model, the movement of water changes from propagation over the thickness h, for r < r.
to propagation over a thickness h in the region r > r.. This abrupt change in the thickness
used in the Buckley-Leverett equation causes the sharp change in the pressure derivative.
On the other hand, for model 2, the thickness in the Buckley-Leverett equation increases
continuously from %, to h and the pressure derivative is quite smooth. Another interesting
remark concerning Fig. 2.20 is that during a certain period of time corresponding to times
1.5 <t < 1700 hours, the pressure derivative is negative. For this example, the condition
M(1—b) = 2.07 > 1 (Eq. 2.104) is satisfied. Therefore, the pressure change decreases with
time during the second radial /first radial flow regime and the semi-log slope exhibited by
the pressure derivative during this time can be approximated by Eq. 2.103 expressed in

the new coordinate system by

Ap = —Q;hqmg {1 —(1- b)M] — —19.44, (2.386)
pn\w

which is represented in Fig. 2.20 by a dotted line. Note the derivation of Eq. 2.386

was based on model 1 and the solution for model 1 approximately exhibits this line for
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Figure 2.18: Comparison between the results for the injection test from the simulator and the
analytical solution from model 1, M = 3.165, s = 0.
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Figure 2.19: Comparison between the results for the injection test from the simulator and the
analytical solution from model 2, M= 3.165, s = 0.
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Figure 2.20: Comparison between the results for the derivative for the injection test from the

simulator and the analytical solutions, M = 3.165, s = 0.

10 < t < 100 hours. The derivative for the model 2 solution approaches the value
predicted by Eq. 2.386 but never reaches it. Eq. 2.127 also predicts a negative pressure
derivative during the second radial/second radial flow regime until the water saturation
at r. (or equivalently r.,) increases to a level such that the condition given by Eq. 2.129
no longer holds. Both models for the movement of water predict large values of r.. Thus,
for this example, Eq. 2.129 holds for a considerable period of time and it is not surprising
that the pressure derivative is negative throughout most of the test and never reaches the
late time semi-log line given by Eq. 2.131 and represented in Fig. 2.20 by a dash dotted
line.

Next, we consider the favorable mobility case, M = 0.527. Since the observation
from the previous test was that model 2 performed better than model 1, we give in the
following only results obtained from model 2. Fig. 2.21 shows the comparison between the
analytical results and simulation data in terms of pressure change and pressure derivative
with respect to In(t). Again, the analytical and numerical solutions are in good agreement.

At early times corresponding to ¢t < 0.03 hours, the pressure derivative increases to reach
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Figure 2.21: Comparison between the results for the injection test from the simulator and the

analytical solution from model 2, M = 0.527, s = 0.

the value Ap’ = 18.15 represented by a dashed line in Fig. 2.21. This derivative value
coincides with the value given by Eq. 2.83 for a zero skin case expressed in the new

coordinate system by

Ap = % (2.387)
pn\w

representing the signature of the first radial/first radial flow regime. Note that during
the second radial/first radial flow regime, the pressure derivative does not take negative
values for this case. This is due to the fact that Eq. 2.104 is not satisfied for the favorable
mobility cases. The semi-log slope exhibited by the pressure derivative during this time,
given by Eq. 2.386 and also represented by a dotted line in Fig. 2.21 takes a numerical
value of Ap’ = 11.88. The pressure derivative stays positive throughout the test and
eventually will reach the late time semi-log line defined by Eq. 2.131 and represented in
the same figure by a dash dotted line with a much longer injection test.

Using the same data, another injection test was simulated where a positive me-

chanical skin factor was considered by setting the permeabilities to ks = kys = 200
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Figure 2.22: Comparison between the results for the injection test from the simulator and the
analytical solution from model 2, M = 3.165, s = 14.9.

mD and k., = 22.22 mD in the first twelve radial grid blocks and maintaining the
values k, = k, = 2700 mD and k., = 300 mD everywhere else. Note that the per-
meabilities of the damaged zone have the same anisotropy ratios as the permeability of
the formation. The value of the damaged permeability in the new coordinate system is
ky = m = 96.15 mD. The corresponding radius of the skin zone r is equal to
1.15 ft and its value in the new coordinate system computed using Eq. 2.368 for model 2
is 7y, = 0.8 ft. With these parameters, the value of the mechanical skin factor computed

from Hawkin’s formula is

k Ten
s (ks ) n <7’wn) 9 (2.388)

In Fig. 2.22, we show on a log-log plot a comparison between the injectivity pressure
change and its derivative evaluated analytically and the data obtained from the simulator.
Again, an excellent match is observed between the two solutions. We also notice that the
pressure derivative exhibits negative values throughout most of the test unlike in the zero

skin case. This is due to the combined effect of skin at early time and the restricted

105



800

Injectivity Solutions for Derivatives

600 k, =9k, s=14.9
400 My
P A
200} 4
A

Dp', psi

-200 ® Simulator (s=0)
r Model 2 (s=0)
-400 A Simulator (s=14.9)
| - - - Model 2 (s=14.9)
-600 4 | 3 sl 2 T | 1 T | O. | 1. asaseud 2. assseud 3.
10" 10° 10° 10" 10° 10" 10° 10
Time, t, hr

Figure 2.23: Comparison between the results for the derivative for the injection test from the

simulator and the analytical solution, M = 3.165.

entry at later time as illustrated in Fig. 2.23. This graph presents a comparison between
the derivative obtained for the zero skin case and the pressure derivative obtained for
the same example with a positive skin. The difference between the two corresponding
curves resides in the early period of time ¢ < 0.3 hrs. In order to identify the flow regime
during this period, we note that the only case where the pressure derivative depends on
the damaged permeability during the second radial/first radial regime is when the water
front is still in the damaged zone. In this case, the semi-log slope that we may see is the

one given by Eq. 2.101 expressed in the new coordinate system as

Ap = i {1 — (1 — bk—>M] = —510.64. (2.389)
2k spm A k

However, we do not observe this value on the graph which suggests that by the time the
diffusion is in the second radial, the flood front is already moving beyond the skin region.
We should also note that Eq. 2.389 was derived based on model 1 but our computational
results indicate that model 2 is more appropriate. This also means that the effect of the

mechanical skin for this example occurs during the first radial/first radial flow regime.
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Figure 2.24: Comparison between the results for the injection test from the simulator and the
analytical solution from model 2, M = 0.527, s = 14.9.

A comparison between the injectivity pressure change and its derivative evaluated
analytically and the data obtained from the simulator for the favorable mobility ratio
case is illustrated in Fig. 2.24. Although the numerical solution provided by the simulator
exhibits oscillations, the two sets of data are in good agreement. Similar to the completely-
penetration vertical well case with a non zero skin (see Fig. 2.14), the early time derivative
data exhibit large values followed by a discontinuity at t &~ 0.01 hours. This is, as explained
for the radial flow case, a mechanical skin factor effect on the wellbore pressure response.

The next case assumes a complete anisotropic reservoir. The permeabilities in the
three directions are given by k, = 2700 mD, k, = 300 mD and k., = 200 mD. The gridding
consisted of a 69 (z) by 69 (y) by 34 (z) rectangular grid blocks. Adding to that, a 16
(r) by 1 (#) by 1 (2) was used in all the well blocks as a local hybrid grid refinement in
order to capture the early time flow. One important remark about the gridding is that
due to the anisotropy, a grid aspect ratio of about ﬁ—z = \/% = 3 was necessary when
building the grids. Except for the permeability values, all the other reservoir and well
data remained the same. Only the unfavorable mobility case was considered here. The

relevant data to this case are the isotropic equivalent permeability & = 545.14 mD, the
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Figure 2.25: Comparison of the analytical anisotropic solution results for injectivity and its
equivalent isotropic solution, single-phase flow.

effective wellbore radius r,. = 0.314 ft, the total thickness of the reservoir in the new
coordinate system h,, = 390.53 ft and the height of the open interval in the new coordinate
system h,,, = 134.87 ft. Note also that for this test, the water front, r; went beyond the
convergence radius, r. for both models. As model 2 performed better than model 1, we
will show in the following only results obtained using model 2. The radius of convergence
r. = 548.42 ft obtained by solving numerically Eq. A.22 is equivalent to r., = 426.83 ft
in the new coordinate system. At the instant of shut-in, the flood front in this coordinate
system is located at 7y, (t,) = 482.5 ft.

As we did previously, the injectivity single-phase flow solution for the pressure
change based on oil properties at irreducible water saturation was evaluated analytically
using the real data of the problem and compared to the single-phase flow solution that we
obtained by considering the equivalent properties of the reservoir and the well. Fig. 2.25
illustrates this comparison. Here also, both solutions are in good agreement validating
one more time the spatial transformation used for the conversion from an isotropic to an

anisotropic system.
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Figure 2.26: Comparison of numerical results to analytical solution for injectivity, single-phase
flow.

Fig. 2.26 shows a comparison between the single-phase pressure change and its
derivative obtained from the simulator in solid triangles and the analytical solution for
the pressure drop and its derivative shown by solid lines obtained using the equivalent
isotropic system during the injection period. The purpose of this comparison is to make
sure of the adequacy of the gridding used to construct numerical solutions. We need to
keep in mind that the validation of our models is done by comparison with simulations;
thus, accurate numerical solutions are required. As we can see from Fig. 2.26, both
solutions match very well.

In Fig. 2.27, we show on a log-log plot the results for the injectivity pressure drop
and its derivative computed using model 2 against the data obtained from the simulator.
Again, excellent agreement is observed. Note the behavior of the injection solution for the
restricted-entry well as the pressure derivative is negative throughout a specific period of
the test. For a better visualization, we also present a semi-log plot of only the pressure
derivative function of time obtained using our model as well as the simulator. As we can
see from Fig. 2.28, it is easy to identify the flow regimes that occurs during the injection

test. At very late time, the pressure derivative approaches the semi-log slope given by
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Figure 2.27: Comparison between the results for the injection test from the simulator and the
analytical solution from model 2, M= 3.165, s = 0.

400
Injectivity Solutions for Derivative
300 | m=51cp, k =9k =135k,s=0
200
3 100
a)
0
-100 Model 2
® Simulator
_200 _4. T | _3. T | _2. T | _1. T | 0. sl 1. T | 2. Y | 3. i
10 10 10 10 10 10 10 10
Time, t, hr

Figure 2.28: Comparison between the results for the pressure derivative for the injection test
from the simulator and the analytical solution, M = 3.165, s = 0.
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which is the signature of the second radial/second radial flow regime. On the other hand,
during an intermediate period of time corresponding to the second radial /first radial flow
period, the derivative takes negative values because the condition M (1—b) > 11is satisfied,

and flattens out for a very short period of time around the value given by the equation

Ap = % [1 — M(1 - b)] = 584, (2.391)
pn\w

and represented by a dot line in Fig. 2.28.

2.5.8 FExample 3: Wellbore Pressure Response at a Horizontal Well

A case of an injection test through a horizontal well distant from the top reservoir
boundary of z, = 5 ft was simulated using CMG’s Imex simulator where water was
injected at a constant rate of 31450 STB/day for 10 days for the unfavorable mobility
case with M = 3.165 and 4 days for the favorable mobility case of M = 0.527. Here, the
initial reservoir pressure is p; = 3922 psi, the thickness of the formation is h = 78.74 ft
and the length of the well is L = 1312.4 ft. See Table 2.1 for the other well and reservoir
data. In both cases, the permeabilities in the three directions are the same given by
k = 5600 mD. The gridding for this particular case consisted of a 232(z) by 89(y) by
5(z) rectangular grid blocks. Variable grid block sizes were used in all direction to better
capture the flood front moving away from the well. Adding to that, the local-hybrid grid
refinement option was also used in all well blocks. A 10(r) by 4(0) by 1(z') was used
where the z’-direction coincides with the y-direction. In this particular case, we did not
consider the mechanical skin.

In order to calibrate the simulator, the single-phase case based on oil properties
at irreducible water saturation was run and compared to the analytical solution. In
Figs. 2.29 and 2.30, the analytical solutions for the pressure change and its derivative

with respect to In(t) are shown by solid lines whereas, the numerical injection pressure
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Figure 2.29: Comparison of numerical results to analytical solution for injectivity single-phase
flow, M = 3.165, s = 0.
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Figure 2.30: Comparison of numerical results to analytical solution for injectivity single-phase
flow, M = 0.527, s = 0.
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change and its corresponding derivative are represented by solid circles for the unfavorable
and favorable mobilities respectively. Note that in both cases, the numerical single-phase
solution matches the corresponding solution obtained analytically very well. These figures
also show a typical behavior for an offset horizontal well except for the semi-log slope that
the pressure derivative should exhibit at very early times due to the first radial flow regime

which is equal to

2.87 for M = 3.165,
— (2.392)

0.48 for M = 0.527.

AGinj
Ay = —ding
b 2kLA,

What we observe in both figures is a slope equal to twice the values in Eq. 2.392, which
reflect the double slope due to the fact that the well is very close to one reservoir boundary
(recall that we considered the extreme case of z, = 5 ft). For intermediate times, the
pressure derivative shows a half-slope line which is the signature of the linear flow regime.
Finally, for times bigger than 50 hours for the unfavorable case and 10 hours for the

favorable case, the derivative is constant and equal to

Qg 47.90 for M = 3.165,
A . wm _

p= okh),

(2.393)
7.98  for M = 0.527,

which corresponds to the second radial flow period.

We used the same simulation grid described previously to obtain an injection so-
lution for the two-phase problem. In order to generate the analytical solutions from the
models that we developed, the saturation profiles corresponding to each flow period were
first constructed, then the multiphase components given by each model were evaluated
numerically for different values of time and the results were added to the single-phase
solution based on oil properties obtained previously (from the simulator). Note that for
both models, the numerical values of the parameters x; and x3 are equal to 3.93 ft and
515.4 ft respectively. For model 1, the parameter x5 = 13.75 ft and the water front at

the instant of shut-in is at 108.6 ft for the unfavorable mobility case and 40.74 ft for the
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Figure 2.31: Comparison between the results for the injection test from the simulator and the
analytical solution from model 1, M = 3.165, s = 0.
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Figure 2.32: Comparison between the results for the injection test from the simulator and the
analytical solution from model 1, M= 0.527, s = 0.

114



favorable case. For model 2, x5 = 53.44 ft whereas the flood front is at 121.6 ft and 54.0
ft for the unfavorable and favorable case respectively. Because xy < x3 for both models
and both cases, the water front did not reach the point when it would begin, according
to our model to propagate radially in the (z,y) plane.

Figs. 2.31 and 2.32 compare our analytical solution and its derivative obtained
with model 1 with the results generated from the simulator for the unfavorable and favor-
able mobility case respectively. Similarly, a comparison between the analytical solutions
based on model 2 and the simulator are displayed in Figs. 2.33 and 2.34 for both cases.
The two sets of results for injection pressure change and its derivative obtained for the
unfavorable case are in good agreement for both models although model 2 gives slightly
better agreement. As for the favorable mobility case, despite the oscillations exhibited by
the numerical pressure derivative data, both the pressure and derivative data obtained
from the simulator seem to have the same trend as the solutions obtained by our models.

The single-phase solutions based on oil properties at irreducible water saturation
were added to Figs. 2.33 and 2.34 in solid stars. A comparison between the injection
solution and the single-phase solution indicates that the two solutions correlate reasonably
well as suggested by Peres and Reynolds for an equal offset horizontal well case (see
reference [27]). Moreover, these figures show that at intermediate and late times, the
injection data are above the single-phase solution for the unfavorable case whereas, they
fall below the single-phase solution for the favorable case, behavior that is also consistent
with the results obtained by the previous authors.

In the second example, a damaged region around and along the entire length of
the horizontal well was simulated by reducing the permeability in the first 5 radial grid
blocks from k£ = 5600 mD to k; = 200 mD. The radius of the skin zone is r, = 1.06 ft and
the value of the corresponding mechanical skin factor computed from Hawkin’s formula
is s = 30. Fig. 2.35 illustrates a comparison between the simulator results with the
analytical solution generated from model 2 with M = 3.165. Note the agreement between
the model and the simulator is very good. Note also that shortly after injection starts, the

wellbore pressure change declines causing the pressure derivative to take negative values
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Figure 2.33: Comparison between the results for the injection test from the simulator and the
analytical solution from model 2, M = 3.165, s = 0.
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Figure 2.34: Comparison between the results for the injection test from the simulator and the
analytical solution from model 2, M= 0.527, s = 0.
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from 0.0018 hours to 0.38 hours. Eventually, the pressure derivative data become positive
as soon as the pressure change at the wellbore begins to increase. When deriving the
equations for the different flow regimes observed during an injection test on a horizontal
well, we have shown that the pressure derivative could become negative if the condition
given by Eq. 2.147 is satisfied assuming that the water front is moving within the damaged
zone or when Eq. 2.155 holds if the water front is beyond the skin zone. For the case
considered here, our computations based on the Buckley-Leverett equation indicate that

it takes 0.05 hours for the front to reach the location r,. Since Eq. 2.147 gives

. 2k, 500
M(1- =3165(1-2— ) =26>1 2.394
< k) 3 65( 5600) 6> 1, (2.394)

negative values of the pressure derivatives up to 0.05 hours is consistent with what we

observe in Fig. 2.35. On another hand, application of Eq. 2.155 yields

500 . 500
M(ro,t)[143165—— ) < A\y(1— —— 2.
o7, )( +3 655600) < w( 5600), (2.395)
or simply
Ae(rg, 1) < 0.71N,. (2.396)

This means that the pressure derivative data remain negative until the total mobility at
the skin radius becomes greater than 0.71),, which occurs according to Fig. 2.35 around
0.38 hours.

In Fig. 2.36, the comparison between the simulator and model 2 for the favorable
mobility case (M = 0.527) is illustrated. As can be seen, the agreement is poor at early
times. As pointed out by Peres et al. (][26]), this early time behavior exhibited by the
simulator is an artifact caused by the first gridblocks for cases where M < 1. However,
model 2 reproduces the simulator results for times greater than 0.1 hours. Here, we also
observe a decline of the wellbore pressure change leading to negative pressure derivative

data from 0.067 hours to 0.24 hours. For this case, the water front hits the radius 7,

around 0.067 hours according to the Buckley-Leverett equation. This means that the
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Figure 2.35: Comparison between the results for the injection test from the simulator and the
analytical solution from model 2, M = 3.165, s = 30.
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Figure 2.36: Comparison between the results for the injection test from the simulator and the
analytical solution from model 2, M= 0.527, s = 30.
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decline in the pressure drop does not occur until the water front is beyond the skin region
for which the condition given by Eq. 2.155 holds up to 0.24 hours. An interesting remark
is that unlike the unfavorable mobility case, Eq. 2.147 is not satisfied and the pressure
derivative does not become negative when the water front is in the damaged zone, i.e.,
for ¢t < 0.067 hours.

Next, two cases of injection of water through a horizontal well were simulated where
water was injected for a longer period of time (100 days). Subsequent to injection, the well
was shut-in for a falloff test for 100 days. The falloff data for this case will be discussed in
the next chapter. Except for the reservoir permeability field, all the other data used for the
simulations were the same as above. Here, we consider only the unfavorable mobility case.
The first case pertains to a well located in the center of the formation, that is z, = 39.37
ft whereas in the second case, the well is closer to the top reservoir boundary with z,, =5
ft. In both cases, the permeabilities in the three directions are given by k, = 2700 mD,
k, = 4500 mD and k., = 300 mD. The gridding in the first example consisted of a 104
(x) by 67 (y) by 13 (z) Cartesian grid plus a local hybrid grid refinement of 8 (r) by 1
(0) by 1 (2') used in all the well blocks where z’-direction coincides with the y-direction.
In the offset well case, a combination of a Cartesian gridding of 104 (x) by 63 (y) by 16
(z) and a hybrid grid refinement of 8 (r) by 4 (¢) by 1 (2') applied to all well blocks was
used. Due to the anisotropy, a grid aspect ratio of about ﬁ—j = Z—I = 3 was necessary
when building the grids in both cases as the horizontal well is along the y-direction. In
the new coordinate system, the isotropic equivalent permeability is & = 1539 mD and
the thickness of the reservoir is h,, = 178.34 ft. The well is characterized by an effective
length of L, = 767.5 ft and an effective radius of r,. = 0.53 ft. Other relevant data in
the new system are the parameters used to generate the saturation profiles. They are:
Tp1 = 70.03 ft and x,3 = 301.395 ft for the first example and x,; = 8.89 ft, x,, = 121.04
ft (assuming model 2) and x,3 = 301.395 ft for the second case. For both runs, the water
front at the instant of shut-in is beyond x,,3 meaning that for some times right before the

shut-in, the flood front moves radially in the (z,,y,) plane according to our model.

In the following, we give the results obtained using the model described previously,
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Figure 2.37: Comparison of numerical results to analytical solution for injectivity, single-phase
flow, u, = 5.1 cp, s = 0.

but first, we show a comparison between the results for a single-phase flow simulated using
the CMG IMEX’s black oil simulator and the corresponding equivalent isotropic analytical
solution as a step to validate the spatial transformation applied to the horizontal well case.
In Fig. 2.37, the analytical solutions for the injection pressure change and its derivative
with respect to the natural log of ¢ are represented by solid lines for the equal offset well
and by dashed lines for the unequal offset case. The circle and triangle dots represent
numerical solutions for the corresponding cases. As you can see from this figure, very
good agreement is observed. Note also the behavior of the single-phase solution for the
unequal offset well as its derivative exhibits the doubling of slope at early time due to the
top boundary effect.

Solutions under water injection were generated analytically by adding single-phase
oil solutions obtained using the simulator for both cases to the corresponding additional
pressure changes due to multiphase effects computed analytically from model 2. Fig. 2.38
presents a log-log plot of the injection pressure change and its derivative obtained from
our model as well as the solution obtained from the reservoir simulator. We also show on

this figure the results obtained from a single-phase solution based on oil properties and

120



Injectivity Solutions vs. Single-Phase Oil
ky= 4500 mD, k = 9k =2700 mD, s =0

Dp and Dp’, psi

* Single-phase oil
Model 2
® Simulator

100 raaanul aaaanul aaaanul raaanul aaaanul aaaanul 1
10° 108 10° 10°

Time, t, hr

Figure 2.38: Comparison between the results for the injection test and the single-phase oil
solution; z,, = 39.4 ft, M = 3.165, s = 0.

represented by stars. The well is in the center of the formation in this case. Two remarks
are in order here. (i) Except for the very early time period, the multiphase solution is not
as close to the single-phase solution based on oil properties as in the isotropic case (see
Fig. 2.33 for example). (ii) Excellent agreement between the two set of results for injection
pressure change and its derivative is observed up to a time of 500 hours. After that, the
derivative obtained from the model deviates from the numerical derivative. We will return
to this point later to explain the cause of this behavior in our injectivity solution.

For this example, five flow regimes are identified by the mean of the behavior of
the diffusion as well as the times for which the flood front propagates from the (z,, z,)
plane to the z,-direction to finally the (z,,y,) plane. Recall that for the definition of the
flow regimes, the first term refers to the direction of pressure diffusion and the second to
the direction of propagation of the water front. We start by the first radial/first radial
flow regime that we observe up to times ¢t < 0.15 hrs. As expected, the injection wellbore
pressure reflects the oil zone as it coincides with the single-phase oil solution ar very early

times. As predicted by Eq. 2.22, the pressure derivative during the first radial /first radial
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flow regime is also supposed to exhibit a semi-log slope given by

/ OZQmj

= " 565 (2.397)
2% Ly Aoy

Ap

However, this is not what the injectivity pressure derivative reflects as it approaches this
value but never reaches it. Note that Eq. 2.22 is derived for a non zero skin vertical well
case. In order to get Eq. 2.397, we simply set k, = k and replace h,, by Ly,.

The time between 0.15 < ¢ < 10 hrs corresponds to the first linear/first radial
flow regime. As we can see from Fig. 2.38, the two-phase solution for the pressure change
and its derivative falls below the single-phase oil solution. This is exactly what Eq. 2.171
predicts as the end-point mobility ratio M > 1.

An interesting point is that during the second radial/first radial flow regime which
we observe for times from around 40 hrs to 230.5 hrs, the pressure derivative reaches a

semi-log slope given by Eq. 2.213 that becomes for our case (k = k,)

o -~ h, .
Ap = % <M + - M]) = 64.7. (2.398)

Again, this flow regime is interesting in a sense that it represents the only period of time
where the derivative reflects some type of semi-log slopes that we observe practically.

The second radial /first linear flow regime manifests itself during the time period
230.5 < t < 992 hrs followed by a second radial/second radial flow regime. Our analytical
solution clearly indicates that not only is the derivative below the single-phase oil solution
but the shift is also increasing with time during the second radial/first linear period, a
result that agrees with Eq. 2.220. During the last flow regime observed in Fig. 2.38,
the derivative obtained from the simulator approaches the semi-log slope based on water
properties but does not quite reach it as mentioned before.

Fig. 2.39 compares our analytical solution and its derivative obtained from the
model proposed with the results generated from the simulator for the case where the
well is offset. The single-phase oil solution is also displayed in the same figure. Again,

the analytical and simulation results are in good agreement for times corresponding to
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Figure 2.39: Comparison between the results for the injection test and the single-phase oil
solution; z, = 5 ft, M = 3.165, s = 0.

t < 450 hrs. However, for longer injection times, similar to the equal offset case, our
pressure derivative obtained using the model exhibits a deviation from the derivative
computed from the simulation solution. As mentioned before, this point will be discussed
later.

Five different flow regimes occur for this particular case but only one is observable.
Note that because the water front hits the top boundary earlier as it is closer to it, the
movement of the water in the (z,, z,) plane is supposed to last for a shorter period of time
promoting the appearance of flow regimes that do not exist for the case of a well located
in the center of the formation considered here (for instance the first linear/first linear
flow regime). These flow regimes are :(i) first radial/first radial for ¢t < 0.7 hrs, (ii) first
linear/first radial for 0.7 < ¢ < 3.7 hrs, (iii) first linear/first linear for 3.7 < ¢ < 20 hrs,
(iv) second radial/first linear for 20 < ¢ < 805 hrs and finally (v) second radial/second
radial flow regime for ¢ > 805 hrs. Similarly to the equal offset well, oil mobility is
reflected at very early times. We also need to mention that the only additional semi-log

slope observed in Fig. 2.39 is the one exhibited by the pressure derivative at the end of

123



100

F Injectivity Multiphase Terms
50} ky= 4500 mD, k = 9k =2700 mD, s =0

A Simulator
—— Model

0

10 10

Time, t, hr

10

Figure 2.40: Comparison of numerical results to analytical solution for injectivity multiphase
terms, z,, = 5 ft.

the first radial /first radial period, which according to Eq. 2.153 is given by

/. AQinj

=3 (14 M) =23.5. (2.399)

Ap

As we pointed out earlier, for very long injection times, our model predicts smaller
values of the pressure and its derivative compared to the ones obtained from the simulator.
This behavior as can be seen from Figs. 2.38 and 2.39, occurs when the single-phase
based on oil properties is diffusing radially in the (z,,y,) plane and the flood front is
propagating linearly in the x,,-direction a short time before our model predicts it will begin
to propagate radially in the (x,, y,) plane. To better illustrate this discrepancy, the single-
phase oil solution was eliminated by considering only our analytical additional pressure
change terms due to the difference of mobilities which we compare to the corresponding
numerical term obtained by simply subtracting the numerical single-phase solution from
the two-phase solution obtained using the simulator. The result is shown in Fig. 2.40 for
the unequal offset case. Similar results were obtained for the equal offset well.

To have a better idea of why this behavior happens, we considered only radial then
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Figure 2.41: Comparison of numerical results to analytical solution for injectivity, linear flow.

linear flow of the injected water. To generate this case, the numerical pressure change and
its derivative were obtained using the same simulation runs but with the boundaries of the
reservoir in the y-direction coinciding with the length of the horizontal well. The analytical
solutions were generated following our model by adding to the single-phase oil solution
only the pressure drop due to the radial movement of water in the (x,, z,) plane and the
pressure change due to the linear propagation of the injected water. Fig. 2.41 compares
the two sets of data for both equal and unequal offset wells. As you can see, the agreement
between the simulator and our solutions is excellent. Moreover, this result suggests that
the problem of mismatch for long injection times encountered above is due to the way the
model parameter x,3 or equivalently x3 is obtained. Recall that this parameter given by
Eq. 2.379 is obtained by applying a Deppe’s construction that assumes a radial flow for
any radial distance r, > L, /2. However, this may be an erroneous assumption as the flow
around the horizontal well is ellipsoidal. We expect it to be radial only for much longer

injection times specially if the length of the well is very large.
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CHAPTER 3
FALLOFF TESTING OF VERTICAL AND HORIZONTAL WELLS

In this chapter, our focus is on the pressure falloff behavior subsequent to injection
of water at a constant rate ¢;,; into an oil reservoir operating above bubble-point condition.
For now, we consider only radial flow of fluids. Oil, water and rock compressibilities,
denoted respectively by ¢,, ¢, and c,, are assumed to be constant as well as are fluid
viscosities, u, and p,,. The total compressibility of the system, denoted by ¢, is a unique
function of water saturation and thus is considered to be a function of position and time

as shown by the following equation

ci(ryt) = ¢ + coSo(r,t) + e Su(r,t) = ¢ + o + (Cw — €0)Su(r, t). (3.1)

The system is also described by a total mobility given at any distance r from the center
of the vertical well at a time ¢ by Eq. 2.3. The saturation distribution, and consequently
mobility and compressibility profiles, are constructed from the Buckley-Leverett equation,
given for a radial flow by

_ 0qint dfu(Sw) | 5

r2(Sw)—7T¢h T (3.2)

In Eq. 3.1, the constant § depends on the system of units used with § = 5.615/24 = 0.23396
if oil field units are used with time in hours. The well is shut-in after injecting water for
a time ¢,. At this point, we make an important assumption: immediately upon shut-in
and during the falloff period, the radius of the water front and consequently the water
saturation distribution remain stationary. This assumption is strictly true only if the fluids
are incompressible (see reference [4]). Under this condition, the governing differential

equation that describes the physical system during a falloff test is given in field units by
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ror

Op(r, At) Op(r, At)

k(r)X(r, tp)rT = ¢cy(r, tp)W’ (3.3)

where the shut-in time is defined by At = ¢ —1¢, such that Eq. 3.3 is valid for any At > 0.

Eq. 3.3 is subject to the two following boundary conditions

Op(r, At)
r or |7’77"w 0, (3 )
and
lim p(r, At) = p;. (3.5)

The initial pressure distribution of the system is given by the injection solution at the

instant of shut-in, i.e., p;,;(r,¢,). This translates into

p(r, At = 0) = pin;(r,t,). (3.6)

At the instant of shut-in and throughout the entire falloff test, the reservoir is assumed to
be divided into two distinct regions. The first zone consists of a mixture of oil and water.
The second region is the oil zone. Water in the oil zone is immobile. It is clear that the
properties of the fluids in the two banks (total mobility and total compressibility) are
different. In the water bank, they vary with r due to the variation of the water saturation
whereas, in the oil zone, they are constant. Due to this, the pressure equation Eq. 3.3
is difficult to solve analytically. The difficulty of this problem also lies on the fact that
the initial pressure distribution is non-uniform. In this work, we present two methods
for constructing analytical solutions for the falloff response. The first one is based on
the steady-state theory of Thompson and Reynolds combined with rate superposition.
The second procedure is based on perturbation theory to solve the initial boundary value
problem. For now, we proceed with the first approach.

For the completely penetrating well case, we can apply Eq. 2.1 at the shut-in time

At to obtain the falloff solution subsequent to injection at the constant rate g;,; for a
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time t,. Replacing ¢ by At in Eq. 2.1 gives

(07

< qs(r, At) dr
A ws — Pws At) — i — T )
Pus = Pus( &) =pi =7 /Tw N (r, AL) TE(r)

(3.7)

where ¢4(r, At) gives the rate profile at shut-in time At, and p,s(At) is the wellbore
pressure during shut-in, i.e., the wellbore pressure during falloff. « is a constant which
depends on the units system used. In field units, o = 141.2. Under the assumption that

the mobility profile does not change during falloff, Eq. 3.7 is rewritten as

a [T g (r, A a [ qs(r, At)
Awsz—/ s’—dr+—/ OGN 38
P =g L NG ) TR TR g (3:8)

where r¢(t,) is the radius of the flood front at the instant of shut-in. In the region of the
reservoir uninvaded by injected water, the total rate is equal to the oil rate denoted by
Jos- An important assumption that we make is that this oil rate profile during shut-in
is identical to the oil rate profile that would be obtained in the uninvaded region for a
shut-in period obtained subject to injecting oil at a rate numerically equal to g;,;. As we
will see later, the approximate validity of this assumption has been verified numerically

using a reservoir simulator. Adding and subtracting the term

g/“”@ﬁéﬁﬁ
h Tw k’(?“))\o r

to Eq. 3.8, we obtain
75 (tp) A o0 A i) g A
prszg/ g:(r, A1) dwg/ MdH%/ oo (1, A1) dr
h)..  rk(r)\(rt,) b Jrswyy TR AT, 1) hJ., k(r)A, T

Note that for 7 > r(t,), qs(r, At) = Gos(r, At) and \(r,t,) = M. It is then easy to show

that
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0o A Tf(tp) q
a / Gos (1, At) dr a/ (qs(r,At)_qos(r,At)) dr (3.10)

b, k(r) r ' h A (r,t,) A, rk(r)’

w

Under our assumption, the first integral on the right side of Eq. 3.10 simply represents the
single-phase falloff solution that would be obtained by injecting oil into an oil reservoir
and is denoted by Ap,s. The second integral represents the pressure change due to the
contrast between initial total mobility A\, and the total mobility in the invaded zone. We

rewrite Eq. 3.10 as

o r5(tp) 5\ dr
Aws:AAos—i——A/ (—Osr,At — s r,At)—. 3.11
p P wo) Amm(}( ) = Gos(r, At) ) (3.11)

The evaluation of the multiphase component in Eq. 3.11 requires the knowledge of the
total mobility profile at the instant of shut-in. As discussed in chapter 2, models for the
movement of water based on a combination of the Buckley-Leverett equations can be used
to generate the water distribution in the reservoir at any time during the injection period
and specifically at the instant of shut-in ¢,. For a complete-penetration vertical well case,
the water saturation distribution is generated using Eq. 3.2 evaluated at the instant of
shut-in ¢,. The knowledge of the flow rate distributions ¢ and §,s during the shut-in
time is also crucial in the evaluation of the falloff pressure change given by Eq. 3.11. For
a linear problem, Duhamel’s principle, also called superposition in time, applies and is
usually used to construct single-phase flow rate profiles during buildup periods. However,
the use of superposition for a two-phase problem cannot be justified theoretically. In the
following, we will show that we can use this concept in a reasonable but ad-hoc way to

estimate the rate profiles needed to compute the multiphase component.

3.1 Rate Superposition for Single-Phase Flow
We first consider a single-phase flow problem for an oil reservoir produced at a con-

stant insitu oil rate equal to ¢;,; with water saturation fixed at irreducible water saturation
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and total compressibility equal to ¢, = ¢o(1 — Siw) + CwSiw + ¢ The production/buildup
pressure drop solution for this problem is the same as the solution for the pressure in-
crease that would be obtained by injecting oil at the rate g;,; into an oil reservoir with
irreducible water saturation as initial saturation assuming water is immobile. Thus, it is
convenient to define all dimensionless variables in terms of oil properties at irreducible
water saturation. We will denote dimensionless pressure change, dimensionless flow rate,
dimensionless radial distance, dimensionless injection (flowing) time and dimensionless
shut-in time, respectively, by pp, ¢p, 7p, t,p, and Atp where dimensionless time is based
on wellbore radius squared. Because we are interested in an injection/falloff as opposed

to a drawdown /buildup test, we define

khAo(p(r,t) = pi)

pp(rp,tp) = 3.12
b(r: 1) o (312
At the wellbore, Eq. 3.12 becomes
kh\,Ap
Pup(tp) = —2=X 3.13
p(tp) = — - (3.13)
where
Ap = puy(t) = pi- (3.14)
Dimensionless time is defined by
Bkt
tr = 3.15
D gbéto'r%u? ( )

where (3 is a constant which depends on the system of units used. If oil field units with
time in hours are used, then 8 = 2.637 x 107*. Evaluation of Eq. 3.15 at t, gives the
dimensionless injection time, ¢,p. Evaluation at shut-in time At gives the dimensionless
shut-in time, Atp. For the falloff period, we denote the dimensionless pressure change by

psp(rp, Atp), where similar to Eq. 3.12 we have

khXo(p(r, At) — p;)

Aing

psp(rp, Atp) = (3.16)
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At the wellbore, we use the notation

khAoApus
pwsD(AtD> = p_, (317)
Aing
for the dimensionless pressure change. Here,
prs = Pws — Di, (318)

where pus = puws(At) denotes the wellbore pressure during shut-in. The dimensionless

radial distance and dimensionless rate are defined respectively by
'p = —, (319)
and

q(r,1)
Qinj

qp(rp,tp) = (3.20)

Note at the sandface, rp = 1, and ¢p(1,tp) = 1 during injection and gp(1,tp) = 0 during
falloff. In general, ¢p(rp,tp) denotes the dimensional flow rate through a cylinder of
radius r concentric with the wellbore. For the analogous dimensionless flow rate during
shut-in, we will use the notation ¢sp(rp, Atp) where
s(r, At
qsp(rp, Atp) = %(r, A1) ) (3.21)

Qinj

3.1.1 Rate Superposition for Radial Flow

For a radial flow case, application of Duhamel’s principle gives

psp(Tp, Atp) = pep(rp, tpp + Atp) — pep(rp, Atp), (3.22)

where p.p represents the single-phase liquid solution for injection at a constant sand-
face rate ¢;n; and g.p(rp,tp) denotes the associated dimensionless rate at (rp,tp) (the

subscript ¢ refers to constant rate injection at the wellbore). Because

131



0
¢ep(rp,tp) = —TDa—pcD(TD,tD), (3.23)
D

we can differentiate Eq. 3.22 with respect to rp and multiply by —rp, to obtain

4sp(Tp, Atp) = ¢ep(rp, tpp + Atp) — ¢en(rp, Atp). (3.24)

Note ¢.p(rp,tp + Atp) represents the dimensionless rate that would exist at rp if we
injected at the constant rate g;,; for a total time of ¢,p + Atp.

If the line source solution applies, then

(rputp) = B, (1 (3.25)
pDTDyD—214tDa .
where
* exp(—u)
Ei(x) = Tdu. (3.26)

Using Eq. 3.25 in Eq. 3.23, it is easy to show that

(o tp) = —1p=2pep (1o tp) = ex (—i) (3.27)
4cD\T"D,1D) = DaercD D,Up) = €XP itp) .

Using this result in Eq. 3.24 gives

_ ___ "™ @\ _ _ "
qu(TD, AtD) = exXp < 4(tpD I tD)) exp < 1 tD), (328)
or equivalently
Gl = ing | &P A(t,p + Atp) P 4Atp/ | '

3.1.2  Rate Superposition for Linear Flow
For one-dimensional linear flow in the xz-direction through a uniform cross sectional

area, superposition of rates still applies such that
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qs(z, At) = q.(z,t, + At) — q.(x, At). (3.30)

For an infinite-acting linear flow problem where fluid is injected at x = 0 and flows in

both the positive and negative x-direction through a cross sectional area A, one can show

that [14]

ozk:;\oA Ope(z,t) Tp
T, t) = —Qin, = giperfec| —= |, 3.31
qe(z,t) L Gimseric| 5 = (3.31)

where erfc denotes the complementary error function defined by

erfe(x) = % /00 exp(—u?)du. (3.32)

For a single-phase case based on oil properties at irreducible water saturation, the argu-

ment of the complementary error function is given by

tp 1y OCrolbo

2Vio o [akit

Thus, the analogue of Eq. 3.29 for a one dimensional linear flow in the z-direction through

(3.33)

a uniform cross sectional area is given by

rp D
(2 AD = g [erfe| ——E2 ) _epfe( 22 )|, 3.34
a:(w A1) = 4 J{erC(Q tpD+AtD) erC(QVAtD)} (3.54)

3.2 Pressure Response
For the completely-penetrating well case, the falloff pressure change can be ob-
tained from Eq. 3.11 provided we can obtain an expression for the flow rates g,(r, At) and
Gos(r, At). For any realistic case, the location of the water front at the instant of shut-in
is beyond the radius of the damaged zone, i.e., 7¢(t,) > ry. Using Eq. 2.4 in Eq. 3.11 and

rearranging, we obtain the following expression:
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«Q k Ts A dr
Aws:AAos+—A|:<——1)/ (—OST’,At —AOST,At)—
p post o5 |\ . At(r,tp)q( ) = dos(r, A1) | =

rf(tp) ;\ d?“
© gl AL — Gos(r A ) . (3.35
+[w <At<r,t,,>““ )= sl >)7~ (3.35)

Since G,s(r, At) is a single-phase flow rate, we can use the rate superposition equation

Eq. 3.29 to obtain

2 2

; — "™ ) _ __™
Gos(r: A1) qmﬂ[e}(p( 4(tpD+AtD)> eXp( 4Atp>1' (3.:36)

Converting the dimensional variables using Eqs. 3.15 and 3.19, we can rewrite Eq. 3.36

as

0s\T At = (Ginj | €X - x — eX - — . 3.37
oulr, AF) = ]{ p< 4BkA(t, + At)) p< 461:)\0At> (3:37)

As there is no theoretical procedure for evaluating the total rate g(r, At) in the two-phase

flow region, we will apply the single-phase rate superposition equation, i.e., we will use
qs(r, At) = qo(r, t, + At) — q.(r, At), (3.38)

and formally use Eqs. 3.29 and 3.38 to obtain

2 2

s (1, At) = Gin; {exp < - m> — exp ( - 422]3)} : (3.39)

In order to apply this for two-phase flow, we have to decide what to use for mobility and
total compressibility when evaluating the dimensionless times in Eq. 3.39. We have found
that we obtain a more accurate solution if we use values of these properties that exist at
the instant of shut-in and change with r. Therefore, the definition of dimensionless times

used is actually a function of r. Specifically, we set
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top + Atp  BEN(r,t,)(t, + Al)

re oe(r,ty)r? ’

(3.40)

and

Atp  BlM(r,t,) Al

7% a pey(r, ty)r? ,

(3.41)

in Eq. 3.39 to obtain

- dcy(r,t,)r? dey (1, t,)r?
451y A1) = ding {eXp (- ABkN(r 1) (t, + At)> —exp (- 4BkN (1, tp)At>] - (342)

While Eq. 3.42 is an obvious guess for extending rate superposition to the multiphase flow
case, it is clearly ad hoc. With ¢4(r, At) evaluated using Eq. 3.42, §,s(r, At) evaluated by
Eq. 3.37, we can generate an approximation to the falloff solution from Eq. 3.35.

When comparing falloff solutions for radial flow problems, we will usually plot Ap,

and its log-derivative Ap, with respect to Agarwal’s equivalent time ¢, = tzi—AAtt, defined

respectively by

Aps<At) = Pwf,s — pws<At); (343)
and
dAp
Apl, = = 44
P = dm(t,) (3-44)

where p, s is the injection solution at the instant of shut-in given by

Ts A i (tp) A
aQing | ( Kk Ao dr /f Ao dr
pi=A n | (E )& 1) &
Pwf,s —Di po(tp)_l' /{h}\o [(ks ) /Tw ()\t(r, tp) ) , + . )\t(’l", tp) .
(3.45)

Note that Eq. 3.45 is obtained by simply considering ¢t = ¢, in Eq. 2.26. Note also that

Eq. 3.45 assumes the water front is beyond the damaged zone at the instant of shut-in
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which is generally true in practice.

It has been shown from previous work (see for instance references [4] and [11])
that the falloff solution behavior is similar to a single-phase heterogenous reservoir. At
early shut-in times, the pressure derivative reflects water mobility in the flooded zone,
then, it reflects a weighted average between mobilities. At later times, the rates ¢s and g,
predicted by rate superposition are for all practical purposes equal to zero for r, < r <
rf(tp) so that the multiphase contribution to the solution is zero and the falloff pressure
change reduces to Ap,s reflecting oil mobility in the uninvaded zone. For a completely
penetrating vertical well at very late times, the single-phase oil solution or equivalently

the falloff solution is given by

Dus(AL) — pi = Apos(Al) = ;‘qm}' In (3.46)

kb, <tpD X AtD)'

Atp

Subtracting Eq. 3.46 from Eq. 3.45 yields

_ Oéqirij n (tpD + AtD)
2khA, Atp

aQinj | (K Ts 5\0 dr / 75 (tp) 5\0 dr
i (2 1) = 1), (34
* k’h)\o [<k8 ) /rw (At(rv tp) ) r " Tw At(ra tp) r (3 7)

For the problem under consideration, the single-phase oil solution Ap,(t) is given by

Pwfs — pws(At) = Ap0<tp)

Eq. 2.19. Specifically, at the instant of shut-in, Eq. 2.19 is written as

AQinj 1 4tpD
Ap,(t,)) = 2ing |~ . 3.48
polty) = S0 S (22 (3.49

Using Eq. 3.48 in Eq. 3.47, it is easy to show that at late shut-in times

AQinj [ 1 ( 4t,pAtp ) (k >/’" ( A ) dr
s — Puws( A1) = —2 1 ] s+ (——1 1] =
Pufs =~ Pus(A1) KhA, {2 ot +atp)) 7T g, o\ (1) r

Ty (tp) 5\ dr
e 1) — 4
* /rw (At(r, tp) ) r ] - (349)
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or simply

ain; | 1 <4teD>
wf,s — Pws At) = ~— | =1In + s, 3.50
uga = pus(t) = 2253 | t (3.50)

¥
o L2 e

where t.p is dimensionless equivalent time and the total skin factor is given by

k Ts 5\0 dr ry(tp) 5\0 dr
_ LA )= 1) 3.51
msT (ks >/rw (/\t('f’a tp) ) r +/rw (/\t("’v tp) ) r 31

It is reasonable to expect that oil saturation in the skin zone will be essentially reduced to
residual oil saturation during the injection period. We therefore assume that A\i(r,t,) = Ao

for r, < r <r, It follows

A k r ri(tp) A dr
- Yo ) (E o\ m (e R R 3.52
g 8+(M, )i >“(m)+[w e )T e

or by using Hawkin’s formula for the mechanical skin and simplifying

A ri(te) A dr
=22 ° _ 1) —. 3.53
o A o /rw <)\t(7’7 tp) > r ( )

w

Eq. 3.53 represents the combination of the mechanical skin and the pseudo-skin due to
the difference of mobilities in the reservoir. It is clear that an estimate of the mechanical

skin from a semilog analysis relies entirely on the knowledge of the multiphase term.

3.2.1 Fualloff Solution, Restricted-Entry vertical Well

In this section, we assume that the vertical injection well partially penetrates the
reservoir and that the open interval to flow is h,. We also assume that the well is shut-in
after injecting water at a constant rate given by ¢;,; during ¢,. As in the complete-
penetration case, the falloff solution should be given by the single-phase solution based
on oil properties plus a multiphase pressure change term due to the contrast between

the total mobility and the end-point oil mobility in the region invaded by water. To
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compute the multiphase component of the solution requires that we are able to generate
the saturation/total mobility profile in the flooded region. For this purpose, two models
for generating saturation distributions have been proposed and provided in chapter 2.
Recall that in these models, the reservoir is pictured as two concentric regions with an
interface characterized by a radius, that we referred to as the radius of convergence, r,
(see Appendix A). For r < r., the saturation distribution is generated by a radial flow
Buckley-Leverett solution with variable thickness, h(r) where at the wellbore, h(r,) is
equal to the height of the perforated interval and for r > r., h(r) = h. In this case,
the pressure change due to water injection (the integral in Eq. 3.11) must be modified
by putting A inside the integral sign and replacing it by h(r). The approximate falloff

solution for the restricted-entry problem is given by the following modification to Eq. 3.11:

Apus = Aos + 2 / e ( Mo A (A )) dr (3.54)
ws — Aos + = ——qs(r, At) — AOS T, At —_ . .
Pus = S0 T | N t) ! ! rk(r)h(r)

It is reasonable to assume that the water front is beyond the damaged zone at the instant

of shut-in. Therefore, we can write

prs = Aﬁos + %/ S (qu(r7 At) - qAOS<T7 At)) i

) WEXN R
o Tf(tp) X d,r.

+ — S — s(1r, At) — Gos (1, At) | ——. (3.55

N / (Atwp)m ) = oo >) s (35)

By adding and subtracting to the above equation an integral from r,, to r,, we have
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«Q dr

re 5\
Aws:AAOS%——A/ ( o(r, At Tos T,At)—
Poe = Bt 5 Ry @080~ @ 80 ) 25

S

0] Tf(tp) X dr
+ — — s\T At) — Aos T, At
= / (Am)q( ) = o >) =

dr
(r)

0.0, ) — o At))

o

n K/ (At(i’ tp)qs(r , AL) = Gos (1, At)) "

kao / (

>/>
=

dr
rh(r)

or simply

- k " A dr
A’LUS:AAOS_‘__A ——1 / < . sraAt _AosTaAt>
Y P k)\o |:<k5 ) Tw At(ra Zfp)q ( ) e ( ) Th(?")
s (tp) 5\ dr
. At) — Gos(r, At - (3
" /rw ()\t(7"7 tp)qS(T’ ) = sl )) Th(r)} (3.57)

As mentioned earlier, in computing the multiphase flow component of the falloff solution,

the saturation and mobility profiles are generated from the Buckley-Leverett equation for
radial flow over a variable thickness evaluated at the instant of shut-in using either model
1 or 2 as described in chapter 2. Since this involves only one dimension, it is reasonable
to apply one-dimensionless single-phase radial flow with a variable thickness h(r) in order
to obtain a method for approximating the flow rate profiles that appear in Eq. 3.57. One

way to proceed is to approximate h(r) by the piecewise constant function as follows

hi = h(r;) forriy <r<r,fori=1,2,---n
h(r) = (3.58)

h, for r, <r < oo
where 19 = 1, <711 < -+ <1, =1, and 7; is the midpoint of the interval [r;_1,r;]. Tt
follows that we can write the single-phase oil injection problem as a radially composite
reservoir problem where except for the thickness, all zones have identical properties. If

we assume a line source well, the inner boundary condition becomes
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lim ( . rkhl)\o 8(p(T7 t) - pl)) -1

QGQinj or

(3.59)

rw—0

Note this equation also gives ¢p(rp = 1,tp) = q(rw,t)/gm; = 1. Writing the partial
differential equation describing flow in each zone and applying the condition that the flow
rates from the left and the right at each r; are equal (continuity of flow rates), it can be

shown that for r,_; < r <,

D khA, 9(p(r,t) — pi) _ _, i Open(rp. tp)
h agin; or P orp
= q¢.n(rp,tp) (3.60)
2
_ _'p
— exp ( 4tD>' (3.61)

Eq. 3.61 provides motivation for using Eqgs. 3.37 and 3.42 to compute the rate profiles
involved in Eq. 3.57 for the restricted-entry vertical well case.

Because the behavior of the falloff solution is similar to a single-phase heteroge-
nous reservoir with the heterogeneity characterized by the values of the total mobility,
the pressure derivative is expected to reflect end-point water mobility adjacent to the

perforated interval at very early times, that is

d(pwf,s _pr(At)) _ OGin;
dln(t.) 2khyAe

(3.62)

and the end-point oil mobility over the thickness of the formation at late times, that is

d(pwf,s _pr<At)) _ QQin;
dIn(t.) 2kh\,

(3.63)

When the well is shut-in, the total rate propagates out a zero rate from the wellbore. At
later times, the rate is also equal to zero throughout the flooded region r,, < r < 74(t,)

and the falloff solution given by Eq. 3.57 reduces to the single-phase oil solution as follows
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Pun(A) = pi = A (Af) = S8 (3.64)

tpD + At[)>
kh\, '

Atp

The injection solution for the restricted-entry vertical well is provided by Eq. 2.74. Specif-

ically, at the instant of shut-in, we have

T (tp) 3
i fite Ao dr
— ;. = Ap. (¢ - —1) — .
Pufs = Pi = Apolly) + A /Tw <At(r,tp) ) rh(r)k(r)’ (3.65)

that we can rewrite, assuming the water front at the instant of shut-in ¢, is beyond the

skin zone, as

QQinj k Ts 5\0 dr
—pe = Ap,(t ing | (2 _1
Pugs = Pi = Apolty) + 57 Kk )/ (w,tp) )rh(r)

+ /r:f(tp) ( Até:’tp) —1) r:(r)} (3.66)

Assuming that the oil saturation within the skin zone is reduced to residual oil saturation

by the end of the injection period and using the Hawkin’s formula, it is easy to show that

Eq. 3.66 simplifies to

. () .
aQing | [ Mo S Fite Ao h dr

wis — Di = Apo(t,) + AKA——1>—+/ < —1)——. 3.67

Pufs =P Po(ty) Ehdy L\ Ay b ). Me(r,t,) h(r) r (3.67)

Note that in deriving the preceding expression, we assumed that h(r) = h, in the region
rw < 1 < 15 which is what model 1 predicts. If ¢, is sufficiently large, then the single-phase
oil solution Ap,(t) is given by the pseudo-radial flow Eq. 2.91. At the instant of shut-in,

this equation becomes

AQinj 1 4tpD S
Apo(t,) = —=|=1 - : 3.68
polty) = S22 1o (222 ) 4 5o (3.68)
subtracting Eq. 3.64 from Eq. 3.67 and substituting Eq. 3.68 in the resulting equation

yields

141



~

QaQinj 1 4tpDAtD ) S ( )\o ) S
wfs — Pus(At) = —=L | =1 totst (-1
s = 80) = 2022 L (LB ) 2y (20

S G )] o

or equivalently

aGinj | 1 4t,pAtep
wf,s — Pws At) = — =1 - ) .
Pusa — Punl D) kmjgn( Blen) |, (3.70)
such that
Ao FIC W h dr
= —= -1 ——. 3.71
s=stprn [ (5o ) wr &-71)

A comparison between Eq. 3.61 and Eq. 3.53 indicates that for the restricted-entry case,
not only does the total skin depends on the mechanical skin and the pseudo-skin due to
the multiphase component, but also on the pseudo-skin due to the convergence of the flow
lines. The two equations are exactly the same if we set b = 1, h(r) = h and s, = 0 (which

is the pure radial flow case).

3.2.2  Falloff Solution, Horizontal Well

Here, we construct approximate analytical solutions for the pressure falloff response
subsequent to water injection at a horizontal well. Similar to the vertical well case,
the horizontal falloff solutions can be written as the sum of the falloff single-phase oil
solution and a multiphase component which represents the additional pressure change
due to contrast between \; and )\, in regions of the reservoir invaded by injected water.
Depending on the location of the water front at the instant of shut-in, the multiphase
term is presented as a sum of one to three integrals. Our computations are based on
stationary profiles for the total mobility throughout the falloff period. In other words,
the saturations profiles, or equivalently the total mobility profiles in the reservoir, are

assumed to be equal to the ones existing at the instant of shut-in. Evaluation of each
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integral in the multiphase component also requires the construction of rate profiles. Next,
we consider the falloff solutions for specific flow regimes observed in the horizontal well
case.
First Radial/First Radial Flow Regime

The analytical pressure change during falloff for this period can be obtained from
the one given for a completely-penetrating vertical well where flow occurs only in the

radial direction (the (z — z) plane). Therefore, by analogy to Eq. 3.11, we have

Q rza,f (tp) b\ dr
Aws:AAos—l——A/ ( O a.(r, At) — Gy, r,At)—, 3.72
P p ool e tp>q (7, At) — Gos (1, At) ) (3.72)

where rate superposition (Eqgs. 3.37 and 3.42) is applied to compute §,s(r, At) and
¢s(r, At) and the radial Buckley-Leverett Eq. 2.48 evaluated at the instant of shut-in
is used to generate the total mobility profile A\:(r,1,).

First Linear/First Radial and First Linear/First Linear Flow Regimes

Similar to the injection solution (Eq. 2.156), we write

(3.73)

B o ma [ gz, At) da a/“” qs(r, At) dr
Bpur =PusB) =i =37 | NG b L) Mty R

where p,s(At) is the falloff pressure as a function of shut-in time At¢. This equation
applies for both the first linear/first radial and first linear/first linear flow regimes. For
the first linear/first radial flow, however, A\(z,t,) = )\, for z > x1. For now, we derive
the equations in a general way and then address the first linear /first radial flow regime as

a particular case. By expanding the first integral in Eq. 3.73, we obtain

prs =

H/l“f(fp qs(x, At) dx L T /°° gs(x, At) du
kL 1 )\t(x t ) h( ) kL x5 (tp) )\t(]) t ) J}')

s(r, At) dr
/w N(rt) k() (3.74)
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where z(t,) is the location of the water front at the instant of shut-in ¢,. If z,(t,) < xy,
we can simply recombine the first two integrals in Eq. 3.74 and set A\ (z,t,) = A, for

x > x1. If we add and subtract appropriate terms in this equation, we obtain

Apy, = T@ [ @@ AY) dz_ | ma /°° gs(z, At) dx

KL Joy  M(zity) h(z) KL o, Ml,t,) ()

7TO[ ‘rf (tp) dm 7'('0{ /xf(tp) dx
S AOS iIZ',At T~ T T~ Aos $,At —+
kL), / os )h(:c) kLN, Ja os )h(x)

a [ qs(r,At) dr « / Fw dr « / Fw dr
— + — os (1, At) —— — —— os (1, At)——.  (3.75
L /w N(rty) k() o, o ( >7"k:(r) )t ( )rk:(r) (3.75)

Tw

In Eq. 3.75, qos(r, At) denotes the oil rate distribution under single-phase flow conditions,
i.e., if we injected oil at a rate ¢;,; RB/D. For x > x4(t,), we assume g (z, At) = Gos(z, At)
and we know that \(z,t,) = M. Thus, Eq. 3.75 becomes

o Fw dr T ee dzx
AwS:—A/ AOST,At——i——A/ AOS.%’,At —+
e =750 L A T L A

Q Fw A dr
— —2—q,(r, At) — Gos(r, At +
3 / {w, gy 2o A1) = ol )} )

Ta o) [ b\ } dx
- — 2 _q,(x, At) — Gos(z, At) | ——. (3.76
kL), / At(:r,tp)Q( )~ Gosl, A1) h(z) (3.76)

Since the sum of the first two integrals in this equation represents the falloff single-phase

solution based on oil properties, which is denoted by Ap,s, we can rewrite Eq. 3.76 as

«Q Fw A dr
AwS:AAOSjL—A/ { °_qs(r, At) — Gos r,At] +
p P ) At(mp)cz( ) — Gos (1, Al) R0
T xf(tp)[ A ] dx
- s(x, At) — Gos(x, AL) | ——. (3.77
o e a0 -t 00 5 @7

Note that for the first linear/first radial flow regime, the second integral vanishes since

the water is moving only radially in the (z, z) plane and Eq. 3.77 reduces to
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A R o /min(Zwarzw,f(tP)) )\o A ( A dr (3 78
ws = APos + —— oy 88) fo nat | |
P D LA, Jr, |:)\t (T’ tp) ! ( ) ' ) Tk(r) )

Now, the question is how to generate the flow rate during shut-in. We apply rate superpo-
sition to compute §os(r, At) and §os(z, At) according to Eqs. 3.37 and 3.34 respectively.
For the term g¢s(r, At) which occurs in the first integral of Eq. 3.77 or Eq. 3.78, we simply
use the procedure given for the vertical well (see Eq. 3.42). For the linear flow in the

x-direction, we will apply the single-phase rate superposition equation given by

Tp Tp
s(z, At) = qinj |erfec| ———me= | —erfc| ——=— | |, 3.79
(04 = j[erc(2 tpD+AtD) erC(Qx/AtDH (3.79)

and use local values of total mobility A\;(x,?,) and total compressibility ¢, (z,t,) based on
the saturation distributions computed from the Buckley-Leverett theory when evaluating

the dimensionless times. With the approach, Eq. 3.79 can be rewritten as

\/ t \/ t
qs(z, At) = gin; erfc< GAVAGEAGIL)) ) — erfc< Ty gl ty) ﬂ (3.80)
2/ Bk (z,t,)(t, + At) 21/ Bk, t,) At
Second Radial/First Radial, Second Radial /First Linear and Second Radial/Second
Radial Flow Regimes

The equation for the falloff wellbore pressure change is given by

o [Tg(rAt) dr | ma [ gs(x,At) dx
~ kh p2 Mlrty) o kL [ M(x,tp) h(x)

a [* qs(r,At) dr
7 / NGt iy 8

prs - pws(At) —Di

1

This expression applies when the steady-state zone of constant rate is in the (z,y) plane
while the water front at the instant of shut-in is in the plane (z,y) (second radial/second

radial flow). For the second radial/first linear flow regime, we simply set A\ (r,t,) = Ao
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for > L/2. If in addition, \(x,t,) = A, for > 1, then Eq. 3.81 will apply for the case
where the water front at the instant of shut-in is in the (x, z) plane (second radial/first
radial flow). Here, we derive the equation in a general way and then address each flow
regime specifically. By introducing the radius of water front at the instant of shut-in

Tuy.f(tp), we can rewrite Eq. 3.81 as

a /sz,f(tp) qS (T, At) d?" e /OO qs (T, At) d/r
prs = r
L r r

kh J) M(rty) kR S, M)

LT [Pae Al de o a / Gl &) _dr_ g o)
kL J., M(z,tp) h(z) L J,. —A(rty) rk(r)
If we add and subtract the same terms in this equation, we obtain
Ap = O /”y’f(tp) qs(r, At) dr o [ qs(r, At) dr
Po =00 Sy Nt T TRR S ) Nnty) T
Tay,f (tp) d Tay, £ (tp) d
TR Gou(r, A1) L — 2 / Gos(r, A1) -
khA, Jr/2 T khA, JL2 r
T [T qs(x, At) dx T /“A dx
+ — + < 0s ZL’,A'[I
kL / N 6) @) T ro L, A E
o [T de  « [* qs(r,At) dr
- < 0s\ T, At) — + _/
kLA, /:cl o )h(ﬂf) L J., Xlritp) rk(r)
a [ dr a [ dr
+ — Jos (7, AL ———A/ Jos (7, AL . (3.83
5|t an S - [ an S s

For r > L/2, qs(r, At) = Gos(r, At) and \(r,t,) = M. Thus, Eq. 3.83 becomes
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o #w dr T« 3 dx «Q o dr
ApPps = — / 905 (T, AL + _ / Jos (1, At) —— + ——— / Jos (1, At) —
Pus = 5 | ( )rk(r) i ). ( )h(x) Py L/Zq (r, At) —

Q Fw b\ dr
+ — ° _qs(r, At —AOST,At}

3% / {w,tp)“ ) = Gor(r A0 | s

o *3 A dx
+ — ° _qs(z, At) — Gos(x, At) | ——

kL), / [At(x,tp)“ ) = danl )} h(x)

o Tay,f(tp) |: 5\ :| dr
+ — — s\T, At) — AOS T, At)| —. 3.84
o /m o AN — (. 80| S (380

The sum of the three first integrals in this equation represents the falloff-single-phase

solution based on oil properties at irreducible water saturation. Therefore, we can rewrite

Eq. 3.84 as

Q@ Fw A dr
Aws:AAos'f__A/> |:—08T7At _Aos ’T‘,At:|—
pus = Bt | el @A) T80 80

T 3 A dx
+ — —2 g, (z, At) — Gos(x, AL) | ——
kL)\O /561 |:/\t(x7tp)q ( ) q ( )} h<x)
o sz,f(tp) 5\0
5

dr
+ — ————qs(r, At) — Gos T,At:|—. 3.85
o L ey st a0 T 359

For the second radial/first linear flow regime, the last integral of Eq. 3.86 vanishes and

the wellbore pressure change in this case reduces to

«a Fw A dr
Aws:AAos_'__A/ [—OST,At _Aos TvAt‘|
p p ) /\t(r,tp)Q( ) = Gos(1, At) h )
T xf(t"){ A } dx
- ® qi(z, At) — Gos(x, At)| ——. (3.86
kL), / At(x,tp)q( ) = Gosl, A1) h(z) (3.86)

For the second radial /first radial flow regime, both last integrals are zero since the water

at the instant of shut-in is in the (x, z) plane and Eq. 3.86 reduces to
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o rea,f (tp) A dr
Aws:AAos'i__A/v |:—Osrat _Aos T’,t .
pon = B0t | Ry T ]

(3.87)

Generalized Falloff Solution
Combining the previous results for the falloff solutions, we can show that the
generalized equation for the falloff pressure solution for an offset horizontal well in an

isotropic reservoir is given by

min(zw,rz, f(tp)) A d
[0 T
Aws_ ws i_AAos < / |: . sraAt Aos T, t:|

p p p Dos 1 _L)\O . >\t(7“, tp)q ( ) = Gos(r, At) rk(r)

. .
T A dx
+ —OQS :L’,At - dos I7At :|
. [At@:,m (72 A1) = or (. 80) | 705)
max (2 rey. ¢ (tp)) 3
Q 2"y A dr
+ — —OS’I“,At —AOST,At:|—, 3.88
khXo J1y2 {At(r,tp)ﬂ )~ ol 80| 5 (288)

where b was defined by Eq. 2.235 in chapter 2.
At late times, the rates ¢, and ¢,s in Eq. 3.88 go to zero. Thus, the multiphase

contribution to the falloff pressure change is zero which reduces the solution to

. Oinj tpp + AtD>
Apys = APps = ~— In , 3.89
T ( Atp (3:89)
where the dimensionless shut-in time Atp is defined by
4Bk, At
Atp = ————. 3.90
P ¢étoL2 ( )

At the end of injection, the wellbore pressure change is given according to Eqs. 2.231 to

2.234 by

o min(zuw,r.z, ¢ (tp)) ;\ d
B - OéQm] ( ° ) —T
Ap(t,) = wf,s = Pi — A o t 3 !
Plty) = para — = Apulty) + T [ ) R

~

_.qb \ o pmax(§ray, £ (tp))
TG / Ao ] dz QGinj / 2 Ao dr

3 — )7+ = —-1)—, (391
kLA, Ja <At($,tp> )h(as) khA, J & <)\t(r,tp) >7~ (3:9)
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where Ap,(t,) for very long times is given according to Eq. 2.341 for an isotropic case by

- QAdinj 1 4tpD ﬁ /
Ap,(t,) = . [2 In ( = ) +C+ L(sz + 5, +5)]. (3.92)

Subtracting Eq. 3.89 from Eq. 3.91 and using Eq. 3.92 in the resulting equation gives

o _ aqmj 1 4tpD ﬁ /
Puwfs — Pws(At) = Py [2 In ( = > +C + L(sz + 5L+ 5) |+

aqfn] /min(Zw,Tzz,f(tp)) ( Ao B 1) dr N WQQEnj /b < )\o B 1> dr N
L), Jr, (T, 1) rk(r) kLN, Juo \Me(x,1p) h(x)
L. max(évrxy,f(tp)) 5\ d L t At
Oé%?] / 2 ( o _ 1) r a(bn] In ( pD + D>’ (393)
kh, Ad(rstp) Atp

T 2kh),

L
2

or

g [1 At,p At h
29wf,s—z9ws(A7f)—ZZA”{—IH(67 pb—"D )+C+—(sz+s;+s)+

o L2 (typ + Atp) L
h min(zw," 22,7 (tp)) 5\0 k dr ah b 5\0 dr
i ) T 1) o
L /,,w ()\t(r,tp) ) k(r) r * L J, ()\t(a:,tp) ) h(:c)+

max( L rpy ¢ (tp)) ;\ d
/ 2 ( o _ 1) _r]. (3.94)
% At<7ﬂ, tp) r

If we assume that the skin zone is completely swept by water such that \(r,t,) = A for

re <1 <1, it can be shown that

min(zuw,rx, f(tp)) 5\ dr 1
Y 1
/ <At<7ﬂ7 tp) T’k(r) k

Tw

1 min(Zw,Tzz,f(tp)) 5\0 d
)\t(T, tp)

Tw

or by using Hawkin’s formula for the mechanical skin
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min(zw,r2z, £ (tp)) 5\0 dr 5\0 s 1 min(zw,r2z, £ (tp)) 5\0 dr
[ - (e [
(7, tp) rk(r) Ay kEk Ae(r,tp) r

Tw Tw

Finally, substituting Eq. 3.96 in Eq. 3.94 gives

O-/Qinj 1 4teD h ’ S
wf,s — Pws At - = -1 — . —
Pufs = Puws(At) k:h/\o[Qn(eV +C+ 7 S48+ =t

/min(zw,sz,f(tp)) ( 5\0 1) dr /'b ;\o 1 dx
— — 47 < - ) T
Ae(r, tp) r o A (z, tp) h(z)

I max(%,rzy,f (tp)) 5\0 dr
h /g ()\t(r, tp) ) r )] (397)

Note that the total skin denoted by s; for the case of a horizontal well is given by the

following expression:

) S min(ZwJ“za;,f(tp)) 5\ dT
= z < - o 1) o
S =S8 +SZ+M+/rw ()\t(r7tp) r+

’ A dx L [max(5rey,s(tp) A dr
— - 1) —— — o 1\ Y '

It represents a combination of the mechanical skin s, the pseudo-skins s, and s/, due to

the convergence of flow lines and the pseudo skin that combines the three integrals in
Eq. 3.98 due to the contrast of mobilities in the reservoir. An accurate estimation of s

from a semilog analysis depends therefore on the knowledge of these additional skins.

3.3 Falloff Solutions for an Anisotropic Reservoir
Up to now, all the falloff solutions that we wrote for the different geometrical
configurations considered in this work assumed an isotropic reservoir. In this section, we
construct accurate analytical solutions during a falloff test for cases where the condition

of isotropy does not hold. Based on the single-phase flow analysis developed in the fourth
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section of chapter 2, we were able to establish an equivalence between the real anisotropic

system of permeability field k defined by

k., 0 0

-

k=10 &k 0], (3.99)
0 0 k,

and the isotropic problem of permeability k given by

_ ks - \3/ kmskyskzs for Twn < Tp < Tsn,

k(r,) = (3.100)
k= {’/W for r,, > rg,.
The spatial coordinate transformation which allowed us to perform this conversion is
defined through Eqgs. 2.236 to 2.238.
Using the same theoretical approach based on the steady-state theory combined
with rate superposition applied for the isotropic case, it is easy to show that the general
solution for the wellbore pressure change during the falloff period for a vertical well is

given by

A A a /rfn(tp) < A (1, AD) (r. A )) dr (3.101)
ws — Aos + = — s\Tn, t) — Aos Tn, t 7—71’ .
P P )\0 Twn >\t (Tn? tp) 4 ! 7ank(rn)hn (Tn)

where Ap,, here, is the falloff single-phase flow pressure change based on oil properties
at irreducible water saturation assuming oil is injected through a vertical well of radius
Twn (given by Eq. 2.284) into an oil reservoir of permeability k(r,) at an injection rate
of ginj. The location of the water front at the instant of shut-in in the new coordinate
system, denoted by 7,(t,), is determined either by Eqgs. 2.354 or 2.355 if model 1 is
used or by Eqs. 2.356 to 2.357 if model 2 is applied. For a complete-penetration vertical
well case, we simply set h,(r,) = h, in Eq. 3.101 and use Eq. 2.355 with b = 1 to
compute the location 7,(t,). As seen before, the knowledge of the flow rate distributions

in Eq. 3.101 is crucial in the evaluation of the multiphase component. Similar to the
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isotropic case, os(7n, A) and ¢s(r,, At) are computed using rate superposition applied in

the new coordinate system. Thus, we have

~ stétorq% Qbétorzb :|
[oX] TLJA - m7j X - — ~ - X - - - _~ 5 31 2
oslT 88) = ¢ ”{e o 45k(rn)/\o(tp+At)) exp 4ﬁk(rn))\oAt> (3.102)

and

QSCt(Tm tp)rz gbct(Tn, tp>7"721
48K (r) N (rms ) () + At)> TP ( 48k () M, tp)At)] '
(3.103)

QS(TTLJ At) = Qinj |:€Xp ( -

For the horizontal well case, the equivalent isotropic system is also characterized
by the permeability of Eq. 3.100. However, the effective wellbore radius in this case is
defined by Eq. 2.320 and the distance from the centerline of the well to the top boundary
of the reservoir and the length of the horizontal well are given respectively by Eqs. 2.318
and 2.319. Here, we are assuming that the axis of the well is along the y,,-direction.

Similar to the isotropic case, we simply add the multiphase component to the
single-phase solution based on oil properties at irreducible water saturation expressed in
the new coordinate system. The total pressure change due to multiphase flow is now given

by the sum of the following terms:

~

min(anJ‘zz-,fn(tp)) )\ d
Aptn==n(At) = —— / [—"qs(rm AL) = Gos(Tn, At)} -
Mo Jrum Ar(

Ln o Tnatp> Tnk(rn),
(3.104)
T bn A dx
Ap*n (At) = —— — 2 qs(xn, AL) — Gos (T, AL . 3.105
Pz (A1) kL, )\, / [At(xn,tp)q (@ ) = Gul® )} ho(2) ( )

and

max( 3, ay, fn(tp)) 5\ d
a r
Apin U (At) = —— / l— Ty AL) — Gos (7, At ]—” 3.106
b (A1) khpAo J L2 )‘t(rn7tp)q< )~ dos( ) Tn ( )
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In these equations, rate superposition (Eqgs. 3.102 and 3.103) is applied to compute
Gos (T, At) and gs(r,, At). As for the flow rate distributions §,s(z,, At) and g4(x,, At) in
the x,-direction, they are computed for the same formulas as in the isotropic case, that

is Egs. 3.34 and 3.80 that we express in the transformed system respectively as

(3.107)

DB (D),

2\/ BN (t, + At) 24/ BN AL

os (T, AL) = Ginj [erfc(

and

Tn/9Ct(Tn, ty) ))_erfc< Tny/ 00T, ) )} (3.108)

s(Tn, Al) = Ginj | erfc _ /
as( ) =14 ][ <2\/5k,\t(xn,tp)(tp+At 2/ Bk (2, t,) A

3.4 Application of Perturbation Theory

In this chapter, approximate solutions for the falloff response subsequent to water
injection at a vertical and horizontal wells were constructed by using the steady-state
theory combined with rate superposition. However, as mentioned earlier, there is no
rigorous theoretical justification for using rate superposition in a non-linear problem (two-
phase flow of water and oil). In this section, we present a new procedure based on
perturbation theory to solve the initial boundary value problem given by Egs. 3.3 to 3.6.
The idea behind the perturbation method is to identify a small parameter such that when
this parameter is set to zero, the problem becomes solvable. In our case, we will see that
the use of perturbation theory is justified if one assumes a small variation of the water
saturation in the region invaded by water. Note that the derivation presented here are

only for radial flow of fluids.

3.4.1 Model Description

Assuming incompressible fluids, the water saturation distribution will remain sta-
tionary immediately upon well shut-in and throughout the entire falloff test. Thus, the
reservoir consists of two regions with distinct fluid properties. The inner region that we

also refer to as the water bank is characterized by a total compressibility and a total mo-
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bility which gradually change due to the variation of the water saturation. In the outer

region, referred to as the oil bank, the total compressibility and the total mobility are

constant and equal to ¢, and Ao respectively. Assuming that the pressure distribution is

given by p;,(r, At) in the inner region and by p,,(r, At) in the outer zone, we can rewrite

the system described by Egs. 3.3 to 3.6 as

(3.110)

(3.111)

(3.112)

(3.113)

80 Opin(r, AL)] Opin(r, At)
A k(r)A\(r)r o = ¢pcy(r) OAE for r, <1 <rp(ty,) , At >0 (3.109)
P AD | A s 0
or
Pin(1, At = 0) = Pinjin(r, tp), for ry, <r <re(t,)

Bk« O [ Opou(r, At) - Opou(r, Al)

(il W Pt AN e e S R A A

. )\087“ r o OCo AL or ry(ty) <r, At >0

lim pou(r7 At) = pwVAt >0
and

pou(ra At = O) - pinj,ou(ra tp)a for rf(tp) <r.

(3.114)

Two additional equations are needed to solve the above system. These are the continuity

of the pressure and the flux equations given respectively by

pm(rf(tp>7 At) = pou(rf (tp>7 At)v VAt >0

and
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ap in ap ou

r=r - 5\0 A
or Ir=ry () "or

/\t(T)T’ |r:rf(tp)7VAt Z 0. (3.116)

Note that Eq. 3.109 assumes a variable absolute permeability in order to account for the
change of the permeability near the wellbore region due to the mechanical skin. Note also
that in Eq. 3.112, the water front is beyond the damaged zone at the instant of shut-in
which is a reasonable assumption in practice.

For practical purposes, the dimensionless variables introduced in this section will be
defined in terms of water properties at residual oil saturation, S,,.. In the following, we will
denote dimensionless radial distance, dimensionless shut-in time, dimensionless pressure
change, dimensionless total mobility, dimensionless total compressibility, respectively, by

rp, Atp, pp, A¢p and ¢;p such that

- 3.117
D Tw’ ( )
Bk,
Atp = At 3.118
P Gy A1)
kA h
= — i), 3.119
pp == (p—pi) ( )
At
Mp = —2, 3.120
=3 ( )
and
cp = , (3.121)
Ctw

where ¢, is obtained by evaluating Eq. 3.1 at S,, = 1 — S,,.. With these definitions, the
governing differential equations and associated conditions can be rewritten in dimension-

less form as
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Opp.in(rp, Atp)
aTD

Opp.in(rp, Atp)
0Atp ’

1 i k‘(’f‘D)

EaTD k

= CtD(T’D)

>\tD<TD)TD

fOI‘1<T'D<7“fD,AtD>O

Opp,in(rp, Atp)
87“[)

D lrp=1=0,VAtp >0

PD,in(TD, Atp = 0) = Dpinjin(TD, tpp) = fi(rp), for 1 <rp <rpp

10 . Opp.ou(rp, Atp) | _ Opp.ou(rp, Atp)
D 87’1) b 87“,3 " 8AtD

,fOI'TfD<7’D,AtD>O

lim ppou(rp, Atp) =0,VAtp >0

rp—00

pD,ou(rDa AtD = O) = pDinj,ou(rDu tpD) = f2<rD)7 for TfD <rp

PD,in(TfD, Atp) = Ppou(rsp, Atp), YAt >0

and

3PD,m | - aPD,ou |
- =rsp— I'D—F =
orp "PTIP rp PTIP

M)\tD(TD)TD VAtD Z 0.

In Eq. 3.125, the parameter 7 is defined by
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(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)



n= M (3.130)

Ctw

where M is the end point mobility ratio given by M = ’/\\—Z’

Next, we transform the above IBVP by taking the Laplace transform with respect
to Atp. Throughout, u denotes the Laplace variable and a bar over a dimensionless
pressure function is used to denote its Laplace transform. After transformation, the

system given by Eqs. 3.122 to 3.129 becomes

1 0 [k Opp.in(TD, _
— (ZD))\tD(TD)TD%;DU)} = CtD(TD)(UPD,m(TD,U)—fl(TD)), for 1 <rp <rp
(3.131)
Opp,in(rp, )
—— |lrp=1=10, 3.132
= 67"[) | p=l ( )
1 0 Oppou(TD, ~
637”1) |:7’D pD,ai;‘D U)} = U(UPD,ou(TD,u) — fg(rD)>, for ryp <1p (3.133)
lim ppou(rp,u) =0, (3.134)
T pD—00
ﬁDvinOafD?u) = ﬁD,ou(TfDau)7 (3135)
and
9 aﬁD,in 8]5D,ou
M)\tD(rD)TDaT |T'D:7'fD: TDW |7“D:TfD . (3136)

3.4.2  Pressure Profile at the End of Injection-Initial Condition for Falloff
It is obvious that the knowledge of the initial pressure distribution is crucial in order

to solve the initial boundary value problem described above. In our previous derivations
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(see chapter 2), we showed we were able to construct an accurate semi-analytical solution

for the pressure during an injection test using the concept of the steady-state theory.

However, the derivation was given for only the wellbore pressure. Here, we would like to

extend the derivation to any radial distance in order to obtain the profile of the injection

pressure in particular at the instant of shut-in. We begin by writing Darcy’s law as
k(r)h Op

q(r,t) = —Tz\t(r, t)ra, (3.137)

where ¢ (r,t), A\(r,t) and p(r,t) represent respectively the total rate profile, the total
mobility distribution and the injection pressure in the reservoir during the injection test.
In Eq. 3.137, « is a conversion constant previously defined (o = 141.2 if oil field units are

used with time in hours). Eq. 3.137 can be rewritten as

op _  « qi(r,t)
or k(r)hrX(r,t)

(3.138)

Integrating Eq. 3.138 from any radial distance r to oo yields

/ @dr:_/ aa(rt) dr (3.139)

Using the fact that the pressure when r — oo is equal to the initial pressure p;, Eq. 3.139
becomes

Ap(r,t) = p(r,t) — pi = % / N iii: ?) Hf(i). (3.140)

At this point of the analysis, we distinguish two cases:

(i) For r < ry, that is, in the inner region, we are able to write that

o [T g, t) dr a [ q(r,t) dr
Apin(ryt) = 3 / NG D) k() /Tf N(r, ) TR (3.141)

By adding and subtracting the same term to Eq. 3.141, we obtain
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Tf Tf
/ a(r,t)_dr —%/ al(rit)_dr_ s 49)

Note that ahead of the water front, we have \(r,t) = Mo Thus, Eq. 3.142 becomes

a [T q(r,t) dr a /°° dr
A in(Tyt) = — N ot
Pinr 1) h/T 0 k) e s

o !

a [T dr a [ dr
. t B H—"_ (3143
a0 L a0 e

w

that we rearrange as follows:

a [ dr a [T q(r,t) dr a / ) dr
Ap; t) = — t)——+ — — — t)y——. (3.144
pulrt) =5 [Catn g [T - [ e )

The first term of the above equation represents the single-phase pressure change at the
wellbore that we would obtain by injecting oil into an oil reservoir assuming the same
injection rate. We will denote this term by Ap,(r,t). In addition, according to the
steady-state theory of Thompson and Reynolds, the equation g;(r,t) = g;n; holds every-

where behind the front so that Eq. 3.144 becomes

agim; [T 1 dr QGinj / "t dr
Apin(1,1) = Apy(T, t _ . 3.145
Pin(r;t) = Apo(rus t) + = / N TR hh, e TR (3.145)

Here, we also add and subtract to Eq. 3.145 another term as follows:
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aginj [ 1 dr QGinj / Tf dr
Apin (1,1) = Apo(ry, t —
Pin(r.1) Polruw, ) + h /T A (r, t) rk(r) X, Jr, rk‘(r)+

agm; [T 1 dr QGinj / | dr
_ 14
h /w M(r,t)rk(r) b S Nl t) rk(r)’ (3:140)

which becomes after rearranging

agin; [ ;\O dr aginj [ 5\0 dr
Apin(r,t) = Apy(ry, t)+—= / ( —1) —— / . (3.147
Pin(rt) = Apo(r, ?) e b \ Nt ) k() T A, L () rE(r) (3.147)

o

The first two terms of Eq. 3.147 is the well known injection solution for the pressure drop

evaluated at the wellbore (see Eq. 2.8) and written as

agin; [ 5\0 dr
Ap(ro, 1) = Apy (T, t) + L / (— - 1) . 3.148
Pl ) = Bpelr )+ 5,3 e \NA(E) ) TR(T) (3189

o

Therefore, the pressure distribution during injection is given by

AGinj [ 5\0 dr
Apin(r,t) = Ap(ry, t) — — ) 3.149
Pin(r 1) = Ap(ru ) h, /w Ai(r,t) rk(r) (3.149)

It is desirable to write Eq. 3.149 in a dimensionless form. To do so, we multiply both

sides of the equation by the term (’i];ﬁ in order to introduce the dimensionless pressure

ing

pp as follows

kh\ kh\ khhw aGini [T Ao dr
CApin(r,t) = —LAp(ry, 1) — — Z"J/ 2 : 3.150
AGin; Pinr 1) QGin; o ) QGinj hA, Jr Ae(r,t) Tk (r) ( )

or after simplifying and using the definition of the dimensionless mobility, \;p = 2

Ao’
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™ N\, k drp
in\T ,t = 1,t — - —
PD, ( D D) pD( D) /1 X\, k(rD) o

D 1 k drp
= 1,tp) — . 3.151
po(l,tp) /1 Mip(rp,tp) k(rp) mp ( )

At the instant of shut-in ¢,p or equivalently at Atp = 0, we have

1 k d?"D

D, tpD) k’(TD) D

Pp,in(rp, Atp =0) = pp(L,t,p) — / , (3.152)
1 Al

or since we previously set pp ;n(rp, Atp =0) = fi(rp)

1 k d?”D

TD,tpD) k(?“D) D ’

filrp) =pp(1,t,p) — /ITD W (3.153)

which represents the initial condition in the invaded zone.

(ii) For r > ry, that is if we consider the outer region, we write that

a [ q(rt)dr a /°° dr
Apoy(r,t) = — — = — ) —, 3.154
Pou(r 1) kh/,« Ae(rt) v kb, Jr alr )7“ ( )

where again, we are using the fact that ahead of the water front, the total mobility is
equal to the end-point oil mobility. We are also assuming that the water front is beyond
the damaged zone. It is interesting to note from the above equation that the pressure
drop during the injection in the univaded region of the reservoir is equivalent to the single-
phase pressure drop based on the properties of this zone, that is oil for which an analytical
expression is available in the literature (the line source solution). Therefore, Eq. 3.154

becomes

o2
Apoy(r,t) = wEi( - ¢Ct°zﬁ ), (3.155)
46kt

where w is a constant that is determined using the continuity of the pressures at the

interface r¢. Let us multiply Eq. 3.155 by % Let us also use the fact that
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r=7rurp, (3.156)

and
A2
p = Powri, (3.157)
Bk
so that Eq. 3.155 becomes
khA,, khA,, ioT2 1 Bk Ay,
Apou(r,t) = w @(—¢QP”M3 ), (3.158)
QGin; QGin; 4Bk PCryr2tp
or after simplifying,
khAy \ G T
ou T = Ez - M 5 |- 3.159
pmno-t) = = a1

Finally, using Eq. 3.130 in Eq. 3.159 and introducing a new constant wp given by

kh,
wp =w : (3.160)
QQing
we get
%
Pp.ou(rD, D) = WDEi( - 774—) (3.161)
lp
Evaluating Eq. 3.161 at the instant of shut-in gives
%
f2(rp) = ppou(rp, Atp =0) = wpE;| — U : (3.162)
tyD

As mentioned before, we use the continuity of the dimensionless pressure at the point
rsp in order to determine the constant wp. The pressure continuity is valid for any
dimensionless time ¢p, in particular for tp = ¢,p. For rp = r¢p, Eqgs. 3.153 and 3.162

give respectively

1 k d?"D

) 3.163
TD;tpD) k(TD) D ( )

Alrso) = po(Lt) = [ 5=
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and

’I"ZD
folrsp) = WDEZ( — n4f > (3.164)
tpD

Continuity of pressure at the interface implies fi(ryp) = fa(rfp). Thus, we have

1D 1 k drp < TJ%D >
1,t,p) — =wpk;| — , 3.165
pD( pD) /1 /\tD(TDytpD) k?(TD) D b 7]4tpD ( )
or
1 "D 1 k er]
wp=—"7—+— 1,t,p) — ) 3.166
Y E( _ T?‘D) {pD( pD) /1 /\tD(TD7tpD) k’(?“D) D ( )
? 4tpD
Substituting Eq. 3.166 into Eq. 3.162 yields
1 "fD 1 k drp r? )
rp)=—— 1,t,p) — E;l — ,
fro) r2p [pD( 2 /1 Aep(rp, tpp) k(rp) rp } ( "1t
Eil =,
(3.167)

which represents the dimensionless pressure profile in the outer region of the reservoir at

the instant of shut-in.

3.4.8 Perturbation Method

One way to solve the IBVP described by Eqgs. 3.122 to 3.129 in real time or by
Egs. 3.131 to 3.136 in Laplace space is to divide the invaded zone into several regions
where the saturation is approximated by its average value within each region. By doing
so, the problem is transformed into a linear, nonhomogeneous problem in Laplace space
(due to the nonzero initial condition) that can be solved analytically (see [11]). Another
way is to assume that the variation of the water saturation in the inner zone is small
enough such that perturbation theory can be used to solve the initial boundary value

problem described above. This is the method we are presenting here.
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We start the analysis by writing the following equations:

A =N+ Ao — A, (3.168)

and

Ct = ¢ + étw — ét’w' (3169)

Dividing Eq. 3.168 by Aw and Eq. 3.169 by ¢4, using Eqgs. 3.120 and 3.121 and rearranging,

we obtain
Aw — A
Mp=1-22""2 (3.170)
Aw
and
cp=1- 0" (3.171)
Ctw
At this point, we define the following spatial functions
Aw — A
Alrp) = 2224 (3.172)
Aw
and
ge(rp) = 2 (3.173)
Crw
so that Eqgs. 3.170 and 3.171, respectively, become
Aip =1 — falrp), (3.174)
and
Cip = 1-— gc(’f’D>. (3175)
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It is important to note that in absolute value, the functions f) and g. do not exceed the

value of 1 in the water invaded zone. We can therefore introduce the two perturbation

variables € and ¢ that we choose to define by

e =max | fa(rp) |,

and

d = max | g.(rp) | -

By rescaling the functions f) and g. as

(o) = 22,
and
o gc(TD)
g(TD) - 5

it follows that

Mp =1—€f(rp),

and

Cip = 1-— 5g(TD>

(3.176)

(3.177)

(3.178)

(3.179)

(3.180)

(3.181)

Since the variation of the total mobility and the total compressibility in the invaded zone

are assumed to be small (see Egs. 3.180 and 3.181), their effect on the pressure can be

described by a perturbation expansion in powers of € and d given in terms of dimensionless

variables in Laplace space by

Pp(rp,u) = ppo(rp,u) + €pp1(rp,u) + 6pp2(rp, u) + €6pps(rp,u) + .. ..
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This expression is general, that is it applies for both invaded and uninvaded regions. In the
following, we assume that an adequate description of the falloff solution for the pressure
can be obtained from the first three terms in the above series. Based on perturbation
method, the solution of the initial value boundary problem described by Egs. 3.131 to
3.136 is presented in Appendix B. This solution, in terms of falloff pressure in Laplace

space, assumes a homogeneous reservoir with no skin effect around the well. It is given

by

PD,in(TDs W) = Dpo,in + €DD1,in + 0DD2,in, (3.183)

valid for 1 <rp < ryp with a leading term defined by

4
PDo,in Kl(\/ﬂ)

[mwﬂ)fowm) ' AW)KOMTD)} n

Li(Vu)
Ky (Vu)

Ko(vairp) / e i€ Io(Vup)den + To(v/iirp) / 7 e fi (Ep) Kol Vi) den,  (3.184)

Ko(v/urp) /;fD Ep f1(€p) Ko(vV/uép)dép+

and the two terms of first order given by

A
le,zn - Kl(\/a>
0D po,in

- Tfo(TfD) orp

{Kl(\/a)IO(\/ﬁTD) + [1(\/E)K0(\/ETD>:|

Ko(v/ursp)
rp K, (/) llﬁ(\/a)fo(\/arp)+]1(\/5)K0(\/ETD)

[1(\/6) e aﬁDO,m
—\/a[(l(\/a)ffo(\/@b)/1 ¢nf(ép) 96 K1 (Vuép)dép

#Viikalir) [ nf(€0) B L(Vito)des

- V(o) [ o @f(gl))agzjj" Ky (Vap)dep, (3.185)

and
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A,
PD2.in Kl(\/ﬂ)
Ii(Vu)
Ki(v/u)

I(v/urp) /rfD £p9(€p) (UﬁDo,m - fi (51:))) Ko(vuép)dép+

D

[mm)fomm) " fl(ﬁ)Ko(\/ﬂTD)] "

Ko(\/urp) /leD £p9(ép) (UpDo,m - fi (fD)) Ko(vuép)dép+

Ko(v/urp) /1TD ¢p9(€p) (UﬁDo,m - f1(§D>>Io(\/E§D)d§D- (3.186)

In Eqgs. 3.184, 3.185 and 3.186, the parameters A;, A3 and As are functions of only the
Laplace variable u. They are obtained using the continuity equations at the interface r¢p
and are given in Appendix B by Egs. B.120, B.133 and B.148 respectively.

For rp > r¢p, the solution is written as

pD,ou(rDa U) - pDO,ou + ele,ou + 6pD2,0u7 (3187)

where the terms of this expansion ppoou, Dpi1,ou and Ppa oy, obtained in Appendix B, are

given respectively by the following equations

Ppo,ou = BaKo(y/nurp) + nlo(y/nurp) /Oo Epfa(§p) Ko(yv/nuép)dép+
nEKol/Tarp) / " ep falép) To(y/TaEp)dep,  (3.188)
T¢D

Pp1.ou = BaKo(y/nurp), (3.189)
and
Pp2,ou = BeKo(y/nurp). (3.190)

The parameters By, By and Bg are also functions of v and defined by Eqs. B.121, B.134
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and B.149 respectively.

3.4.4  Falloff Wellbore Pressure
The dimensionless wellbore pressure during the falloff period is evaluated by setting
rp = 1 in the expression for the dimensionless falloff pressure given by Eq. 3.183. Thus,

we have in Laplace space

DPp.in(1, 1) = Ppo.in(1,u) + €Dp1in(1l,w) + 0Ppp2in(1l, u), (3.191)

where ppoin(1,u), Pp1,in(1l, ) and ppan(1, u) are given respectively by Eqs. 3.184, 3.185

and 3.186 and evaluated at rp =1, i.e.,

VDRV + (DK

Li(Vu)
Ki(v/u)

Ppo,n(1l,u) = Kl(\l/ﬂ)

+

Ko(v/a) /1 7 e €0V Ko (Vi) dé
AN / T o) Ko (Vitn)den, (3.192)

A
Povn (1) = v

ap mn
— Tfo(TfD) ai(;

K (VLW + RVDK(V)]

Ko(Vursp)
R D B

/ ¢pf(ép) apzim K1 (vVuép)dép

—ﬁfowa) / N @f(@)afgzij"m(ﬁgp)d@, (3.193)

and
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rasn(1.) = 1 {Klwmw 1K)

[1(\/_
Kl(\/ﬂ

" i) [ eoateo) (uposn — 1l6)) K vieo)ieo

+ i) | ”Dapg@)(um,m fie >)Ko<st>dsD (3.104)

Using the fact that K (yv/u)lo(v/u) + I (V/u) Ko(y/u) = \/Lav these equations simplify to

pouin(1,0) = =t At [ en€o) D) | (3.195)

Po1in(l,u) = \/_Ki(\/_) [As - Tfo(TfD)agizm rfDK()(\/ETfD)_

e IPpo,in
v [ eotten B i)t (3190

and

Pp2,in(l,u) = \/_Ki(\/_) {Aer/lrfD {p9(ép) (UﬁDo,m—fl(fD))KO(\/afD)de]- (3.197)

Since the dimensionless falloff wellbore pressure is in Laplace space, the Stehfest algorithm

will be used to convert it to real time space.

3.4.5  Falloff Solution for Rate Profiles

In this section, we generate an approximate analytical solution for the total rate
at any point in the reservoir during the shut-in period using the perturbation method.
The total flow rate through a cylinder of radius r concentric with the wellbore during the

shut-in is described by the well known Darcy’s law given by
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kh dp

qs(r, At) = —E)\t(r, tp)rg, (3.198)

where A\ (r,t,) represents the total mobility distribution that exists in the reservoir at
the instant of shut-in ¢,. Introducing the dimensionless shut-in rate g,p defined by the
following expression
qs(r, At
¢sp(rp, Atp) = %(7, A1) ), (3.199)

Qinj

and using Eqs. 3.117, 3.119 and 3.120, we obtain

kh QGinj . %

s ,Atp) = — Ae(r,t = , 3.200
qsp(rp, Atp) G 10 p)kh)\w Do ( )
or simply
0
¢sp(rp, Atp) = —)\tD(TD)TDa:l- (3.201)
D
Taking the laplace transform of Eq. 3.201 gives
op
gsp(rp,u) = _>\tD<TD)TD0p£- (3.202)
D

Previously, we solved for the dimensionless pressure profile in Laplace space. Therefore,
Eq. 3.202 is useful for the determination of the dimensionless shut-in flow rate. Recall that
the pressure solution has two expressions depending on the value of the radial distance
and how far it is with respect to the position of the flood front (see Appendix B). Based
on this, we will also consider the two regions when deriving solutions for the rate profiles.
Inner Region Rate Profile

Recall that in this region, the dimensionless falloff pressure solution is expressed

by

Pp.in(TD, W) = Dpo.in + €PD1,in + OPD2.in, (3.203)
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such that ppo in, Pp1.in and ppain are given by Eqgs. 3.184, 3.185 and 3.186 respectively.

Using Eq. 3.203 for the dimensionless pressure and Eq. 3.180 for the dimensionless total

mobility in Eq. 3.202 gives

9p in op in op in
Gsp(rp,u) = — (1 — Ef(TD)) [ piO, Terp Pp1, +orp PD2, }

If we rearrange Eq. 3.204, we obtain

_ aﬁ m ﬁ mn
gsp(rp,u) = —rp 8?2 _ETD|:§;7D — f(rp)

0D po,in _sr ODp2,in
aTD b 87"D

that we can rewrite as

4sp(TDs 1) = qpo.in(TD, ) + €4p1,in(TD, U) + 8qp2,in(TD, U) + ...,

where

qpo,in(TD, ) = —Tp OPo.in ;

’ 87“,3
ale n apDO n
in\TD, U - - )
qp1in(TD, ) ) f(rp) O

and

q ) (r 'LL) — —p 8pD2,in

D2\ D, D aT'D .

Replacing Eq. B.106 in Eq. 3.207 gives
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(3.206)
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ip0inro,) = =L A (KW (Vi) ~ RV KA(Viro) )

+ K1 (vu) 1 (Vurp) /’"fD Epfi(ép) Ko(Vuép)dép
K (Va) K (Varp) / Y e fu(Ep) Io(Vatn)de
LK (Varp) / @ﬁ(@)&(ﬁ@)d@} ~ (3.210)

By writing the last integral of Eq. 3.210 as the sum of two integrals, one from 1 to rp

and a second from 7p to ryp and rearranging, we obtain

qpo,in(rp, u) = —K\{(E\r/%) [Al (Kl(\/ﬂ)fl(\/ﬁm) - ]1(\/6)K1(\/ETD))

" (Kl(\/a)ll(\/aTD) - ]1(\/5)}(1(\/67‘17)) /TfD Enfi(€p) Ko(Vuép)dép
_Kl(x/ﬂfn)/lm éDfl(éD)(Kl(\/ﬂ)Io(x/ﬂﬁD)+11(\/E)Ko(\/E£D))d§D]. (3.211)

The above expression can be simplified by using the definition of Hy and G, functions

given respectively by Eqgs. B.112 and B.113. The result is

qpo,in(Tp,u) = _K\f?\r/%) A1Gi(Vurp, Vu)+G(Vurp, Vu) /T;fD Epfi(€p) Ko(vuép)dép

- o) [ o o) (e ﬁ)d&)} C (3212)

1

From Eq. B.125, we have
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ODpo,in _ Asv/u
orp  Ki(Vu)

_ \/ﬂrfpf(TfD)a];iZm K;é;{?/?g),;) |:K1(\/a)ll<\/aTD) — Il(\/a)Kl(\/a?"D):|

I (\/u) e IOPpoin

PR ) | el g,

~ut(arp) [ o f(60) P (o)t

—uli(Vurp) / 7 e f(ep) 2BR0n ke ((Jugn)dep. (3.213)

ODp1,in
(91"D

— f(rp)

[Kl(\/ﬂ)fl(\/ﬂm) — ]l(ﬁ)Kl(\/aTD)}

Ky (Vu&p)dép

9

Here also, by writing the integral from 1 to r¢p as the sum of two integrals, one from 1

to rp and a second from rp to ryp and rearranging, we obtain

a{;ﬁ;m - f(rp)agiz;m = Kﬁa) {Ag (Kl(\/ﬂ)h(\/ﬁm) - h(ﬁ)fﬁ(ﬁm))

o r70) 2| Ko ro) (K (V(are) ~ (VDK (Vi)

rf

~ V(i) [ eosen) B (Kl(ﬁ)h(ﬁig) LV K (i) ) deo

%0
Vi B W) - B KrD) ) [ e o) B K des) |
(3.214)
or by using the definition of G,
OPp1,in Opoin VU
PO 1) 20— Y| AV, VD
i o) PP R )Gr (Vi V)
T¢D
~ V(i) [ nf(€0) DG Vi, Vadso
1 D
VG W, i) [ €nr(en) B K (Vaigo)den . (3219
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Finally, replacing Eq. 3.215 into Eq. 3.208 yields

QDl,in(rD: u) = K\l/(_\;lz) |:A3G1(\/ETD, \/ﬂ)

@]5 mn
— Tfo(rfD) ai;

Ko(vursp)Gi(vurp, Vu)

rfD

_ Jak, (Varp) / Y enten) apg‘””Gl(f £p, Va)Ep

G (i, Vi) / N ng<§D>ag§2mm<ﬁ§D>ng. (3.216)

The derivative of the dimensionless pressure in the inner region (the O(J) term)
with respect to the dimensional distance rp is given by Eq. B.139. Using this equation in

Eq. 3.209 gives

o) =~ | 4o (K (VI (Vo) ~ RV Ka(Vro) )
— Li(Vu) Ky (vurp) /rfD {p9(€p) (UI_’DO in — fl(fD)) Ko(vuép)dép
— K1 (vVu) K1 (vurp) / {p9(€p) (upmm fl(ﬁD)) o(Vuép)dép

rfD

+ K1 (vVu) I (vurp) ¢p9(ép) (UPDOm f1(€p) | Ko(vVuép) ng} (3.217)

D

or

p2,in(TD, 1) = K\{(_\T/]Z) {AE) (Kl(\/ﬂ)fl(\/ﬂm) - ]1(\/E)K1(\/ETD))

—K1(\/ETD)/ fDQ(fD)(UPDO,m—ﬁ(fD)) (Kl(\/a)fo(\/aﬁfj)-i—h(\/a)f(o(\/afz)))dﬁD

1

(V) - bR W) ) [ natéo) (uponn-fi(en) ) Kalo)dso)|
(3.218)

Finally, using the definition of Hy and G functions, Eq. 3.218 becomes simply
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QD2,in(rD7 U) - _% |:A5G1(\/ETD7 \/ﬂ)

— Ki(Vurp) /jD {p9(ép) (UPDo,m - fl(fD)) Ho(Vuép, Vu)dép

+ G1(Vurp, Vu) /;fD ¢p9(ép) (UpDo,m - fl(fD)) KO(\/agD)de:| . (3.219)

Outer Region Rate Profile

In the outer region, that is rp > r¢p, the total mobility is equal to the end-point

oil mobility. The dimensionless mobility is then given by

Ao 1
Mp(rp) = == = —,
tp(TD) .
and Eq. 3.202 becomes
_ ( ) 1 aﬁD,ou
sp(rp,u) = ——1 .
4sp\TD 7t D oo

Since the pressure solution in the outer region is provided by

pD,ou(rD; U) = pDO,ou + 6ﬁDl,ou + 6pD2,ou>

(3.220)

(3.221)

(3.222)

such that Ppo ou; Ppi1,ou and Ppoey are given by Eqgs. 3.188, 3.189 and 3.190 respectively,

then Eq. 3.221 for the dimensionless rate in the outer region becomes

1 apDO,ou + ale,ou

Gsp(rp,u) = ——|r er +or
qsp(rp, u) pva D D

E)rD aTD

We rewrite Eq. 3.223 as

4sp(TDs 1) = qpo,ou(TD, w) + €4p1,0u(TDs W) + 0¢D2,0u (1D, 1),

with
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1 apDO,ou
D

qpo,ou(rp,u) = ——r I (3.225)

1 0Ppiou
QDl,ou(T'D, ’LL) = ——=7TDp Z;DL 5 (3226)

D
and

1 aﬁDQ ou
ou 5 = — < : 3.227
qp2, (TD U) MTD orp ( )

Using Eq. B.107 in Eq. 3.225 gives

0b0.0u(r s 1) = % BoK (i) — nL(y/irn) / €0 falp) Ko /T D) dép

+ 0 (VD) / e fal€o) MDD | (3.228)

Similarly, if we replace Egs. B.128 and B.142 in Eqs. 3.226 and 3.227 respectively,

we obtain
/nur
qp1,0u(TD, 1) = I; DB4K1(\/77U7“D)7 (3.229)
and

nur
v v D Bs K, (/iurp). (3.230)

4D2,0u (TD ) u) =

3.5 Numerical Results and Validation
In this section, the numerical falloff test data for vertical and horizontal wells are
investigated. For this purpose, the same data as in chapter 2 were used (see Table 2.1
and Fig. 2.6 for the relative permeability curves). The examples cited here also pertain
to an unfavorable mobility case with the end-point mobility ratio given by M = 3.165

and a favorable mobility case with M = 0.527 (see Fig. 2.7 and Fig. 2.8 for the total
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mobility as a function of water saturation for the unfavorable and favorable mobility

ratio respectively). In most cases, we will present the falloff solution in terms of Ap,(At)

defined by

ApS<At) = Pwf,s — pws(At)a (3231)

where p, s is the pressure at the instant of shut-in. From the reservoir simulator used
(see [1]), this equation is simply evaluated by subtracting the pressures p,s(At) obtained
directly from the simulator during the falloff from the pressure py,rs = pwy(t,), also taken

from the simulator at the end of the injection, i.e., at ¢,. The log-derivative of Aps(At),

defined by
dAps(At)
Ap (At) = —=— 2 232
p,(At) Iin() (3.232)
is with respect to Agarwal’s equivalent time ¢, = t;‘jr—AAtt. These derivative data are obtained

by performing a numerical differentiation on the corresponding pressure data Apg(At).

3.5.1 FExample 1: Skin Effect on the Wellbore Pressure Response at a Vertical Well
Recall from chapter 2 that in this example, all runs assumed an injection of water
at a constant rate of ¢;,; = 18,869 STB/day for t, = 3 days for the unfavorable case
and t, = 1 day for the favorable case through a complete-penetration vertical well. The
reservoir, initially at a pressure p; = 3461 psi, is isotropic of permeability £ = 2700 mD
and has a thickness of h = 78.74 ft. Subsequent to the injection period, the well was shut-
in for a falloff test. The adequacy of the grid used (see a description in chapter 2) was
also verified by comparing the single-phase solution based on oil properties at irreducible
water saturation obtained during falloff from the simulator to the corresponding analytical
solution. This comparison is illustrated in Fig. 3.1 for the unfavorable mobility case and
in Fig. 3.2 for the favorable case. As we can see, we also get a good match between the
two solutions. Note also the standard behavior for a pure radial flow during falloff which

is similar to the injection period (see Figs. 2.9 and Fig. 2.10).
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Falloff Single-Phase Solutions
m=5.1cp, tp =3days,s=0

= .
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Figure 3.1: Comparison of numerical results to analytical solution for falloff, single-phase flow.
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Figure 3.2: Comparison of numerical results to analytical solution for falloff, single-phase flow.
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For this specific example, analytical solutions for the falloff response subsequent
to water injection were constructed using two different approaches. In the first one, based
on the steady-state theory, the falloff solution for the wellbore pressure change is written
as the sum of the single-phase oil solution and a multiphase component. To evaluate the
multiphase term, the total mobility profile at the instant of shut-in is generated using a
radial Buckley-Leverett solution and total rate distributions are obtained in an ad hoc way
from rate superposition. In the second approach, the perturbation method is used and
the solutions for the pressure change as well as the total rate in the reservoir are presented
as perturbation expansions. Solutions for rate profiles and wellbore pressure change were
also generated numerically from the simulator and compared to the analytical solutions.
Fig. 3.3 shows the total rate profile at five different shut-in times. The open data points
curves represent results from the simulator and solid curves represent results predicted
from rate superposition (Eq. 3.42). We also show in this graph in solid points results
obtained when perturbation method is used (Egs. 3.212, 3.216 and 3.219 for the invaded
zone and Eqs. 3.228 to 3.230 for the uninvaded zone). Since this latter solution is given in
Laplace domain, the Stefhest algorithm was used to do the inversion to the time domain.
The results of Fig. 3.3 pertain to the unfavorable case. The flood front at the end of the
injection for this case is located at 7¢(t, = 3 days) = 120.5 ft from the wellbore according
to the Buckley-Leverett theory. Fig. 3.4 shows similar results for the favorable mobility
case for which the water front is at r¢(t, = 1 day) = 60 ft. Although the profiles obtained
using the perturbation method exhibit oscillations (due to the numerical inversion), both
methods for generating rate distributions in the reservoir during falloff match well the
corresponding rate profiles extracted from the numerical simulator.

The derivation of the falloff solution assumed that the oil rate profile during the
shut-in is identical to the one that would be obtained during shut-in after injection of oil
at the same rate as the water injection rate. The approximate validity of this assumption
is verified numerically by comparing the falloff oil rate profiles for the two situations. In
Fig. 3.5, the oil rate profile and the total rate profile for the two-phase case are compared

with the falloff oil rate profile for the single-phase case. This is the favorable mobility
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Figure 3.3: Rate profiles from the simulator, rate superposition and perturbation method, M =
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Figure 3.4: Rate profiles from the simulator, rate superposition and perturbation method, M=
0.527, t, = 1 day.
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Figure 3.5: Comparison between single- and two-phase oil rate profiles during falloff, M =
0.527, At,, = 0.018 hours.

ratio case. Note at distances farther from the well, the oil rate profiles for the single-phase
and two-phase problems are similar. Therefore, we expect the assumption about the oil
rate profile will not have a significant effect on the approximate falloff solution.

The falloff solution for the wellbore pressure change was generated analytically
using Eq. 3.10. The integral in Eq. 3.10, which represents the multiphase pressure drop
was evaluated numerically for different values of shut-in times upon the determination
of the total mobility profile at the instant of shut-in from Buckley-Leverett theory and
the flow rate distributions using superposition principle and the result was added to the
single-phase solution based on oil properties. Fig. 3.6 presents a comparison between the
analytical solution and the data from the simulator for the pressure change and its deriva-
tive with respect to equivalent time. The pressure change and its derivative are plotted
versus the shut-in time At¢. Note the two sets of results match well. Fig. 3.7 presents
similar results for the favorable mobility case. Again, the analytical falloff solution and
its derivative are in good agreement with results obtained from the simulator. In Figs. 3.6

and 3.7, the dashed line is the semi-log slope based on oil properties at irreducible water
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Figure 3.6: Comparison of numerical results to analytical solution (rate superposition) for
falloff, zero skin case.

saturation and the dotted line represents the semi-log slope based on water properties
at residual oil saturation. Note for both favorable and unfavorable cases, the derivatives
reflect water properties at early times and oil properties at later times. This occurs be-
cause at early times, the rate transient due to shutting-in the well is entirely in the water
bank, reflecting therefore a weighted average of mobility in the invaded zone, whereas,
at later shut-in times, the rate profile becomes zero in the region behind the water front,
reflecting end-point oil mobility (see Figs. 3.3 and 3.4). The duration of the transition
data is about 3 log cycles (from 5 x 1072 to 3 hours) for the unfavorable mobility case
and only 1 log cycle for the favorable case (from 1072 to 10~! hours). Recall that for this
particular case, the well was shut-in after one day of water injection (compared to 3 days
of injection for the unfavorable mobility case) so the flood did not advance as far into the
reservoir allowing therefore the observation of the oil bank.

When performing a Horner analysis of data (derivatives) which reflect oil proper-
ties, the falloff pressure change at the wellbore is usually represented by a straight line on

a semi-log plot given by
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Figure 3.7: Comparison of numerical results to analytical solution (rate superposition) for
falloff, zero skin case.

t At
Apys(At) = pus — pi = mlog < L Zt ), (3.233)
where m is the slope defined in terms of the reservoir properties as
162.6¢;,
m = =, (3.234)
khA,

Horner analysis also provides a total skin in the system given by the following equation

m

s = 1.1513 Apy (At = 0) — Apys(At = Lhour) 4 log <tp + 1)

P

kX,
+ 3.2275 — log ( )} . (3.235)

gbétor%u

In Eq. 3.235, the term Ap,s(At = 0) is the wellbore pressure change at the instant of

shut-in, whereas, Ap,s(At = 1 hour) represents the wellbore pressure change obtained

by evaluating Eq. 3.233 at At = 1 hour. So, by performing a Horner analysis of data
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corresponding to At > 10 hours for the unfavorable mobility case and At > 1 hour for
the favorable case, Eqs. 3.234 and  3.235 give k), = 282.6 mD/cp (the true value is 286
md/cp) and s, = —3.55 for the unfavorable case and kA, = 1693 mD/cp (the true value is
1716.2 md/cp) and s; = 4.75 for the favorable case. Computation of the mechanical skin
from Eq. 3.53 gives s = —0.185 and s = —0.36 for the unfavorable and favorable mobility
cases, respectively, whereas the true skin factor is s = 0.

Next, we show the results obtained using the perturbation method. Note that
this method was applied with the perturbation variables ¢ = 0.684 and 6 = 0.243 for
the unfavorable mobility case and € = 0.34 and ¢ = 0.044 for the favorable case. These
parameters were computed from Eq. 3.176 for € and Eq. 3.177 for 6.

One important key for the use of this method to solve for the pressure drop in
the reservoir during the shut-in period is to determine the pressure distribution in the
reservoir at the end of the injection period which constitutes the initial condition for
the problem. Based on the steady-state theory, this profile was generated in terms of
the dimensionless pressure pp using Eq. 3.153 in the invaded zone and Eq. 3.167 in the
outer region of the reservoir. The resulting distribution was compared to the one obtain
numerically from the simulator. This comparison is illustrated in Fig. 3.8 for the case
M = 3.165 and in Fig. 3.9 for the case M = 0.527. Clearly, these figures indicate an
excellent match between the analytical and numerical pressure profile at the instant of
shut-in.

In Fig. 3.10, the analytical solution for the wellbore pressure change and its deriva-
tive with respect to the natural logarithm of equivalent time obtained from the pertur-
bation method for the unfavorable mobility case is represented by solid triangles. The
corresponding solution obtained using the reservoir simulator is shown by solid circles.
The solid line in this figure is the approximate analytical solution derived using rate super-
position. Excellent agreement between the pressure change curve is observed. However,
except for the early and late time periods where the pressure derivative data from pertur-
bation method match the one from the simulator and from rate superposition, a deviation

between the data is noticeable in the transition zone. We believe this is due to the fact
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Figure 3.8: Comparison between the results for the injection pressure at the instant of shut-in
t, = 3 days from the simulator and the analytical solution, M = 3.165.
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Figure 3.9: Comparison between the results for the injection pressure at the instant of shut-in
t, = 1 day from the simulator and the analytical solution, M = 0.527.
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Figure 3.10: Comparison of numerical results to analytical solutions (rate superposition and
perturbation) for falloff, zero skin case.

that for the unfavorable mobility case, the water saturation distribution behind the flood
front is more diffused with a much smaller value of water front saturation (S, = 0.275)
causing the mobility profile as well as the total compressibility distribution at the instant
of shut-in to vary over a wider range of water saturation leading to a less accurate solution
when using the perturbation method. Fig. 3.11 presents similar results for the favorable
mobility case. As we can see, the match between the three solutions is quite good but
the derivative of the rate superposition solution is in better agreement with the simulator
results than is the perturbation solution.

Since the analytical solution is written as a perturbation expansion in powers of €
and ¢, it is desirable to see the contribution of each term of the series to the general falloff
solution. As mentioned before, the O(¢) term takes into account the variation of the total
mobility with the water saturation in the reservoir whereas the O(J) term deals with the
variation of the total compressibility with water saturation. Fig. 3.12 displays these terms,
i.e., pwpo = Ppo.in(l, At), pup1 = Pp1in(1, At) and pyp2 = ppein(l, At) as a function of
shut-in time At, whereas, in Fig. 3.13, their derivatives with respect to the logarithm of

equivalent time are shown. These two figures pertain to the unfavorable mobility case.
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Figure 3.11: Comparison of numerical results to analytical solutions (rate superposition and
perturbation) for falloff, zero skin case.
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Figure 3.12: Contribution of each order to the total solution; rp = 1, M = 3.165.
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Figure 3.13: Contribution of the derivative of each order to the total solution; rp = 1, M =
3.165.
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Figure 3.14: Contribution of each order to the total solution; rp = 1, M = 0.527.
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Figure 3.15: Contribution of the derivative of each order to the total solution; rp = 1, M =
0.527.

Note that first order terms in € and ¢ do not contribute to the solution at very early and
very late time. This is due to the fact that all the information on end-point mobilities in
the water and oil banks are contained in the O(1) term that behaves similarly to a piston
displacement system. Note also that the contribution of the O(J) term to the solution is
very small compared to the O(¢e) term. This result is expected since fluid and formation
compressibility values were chosen small enough so that the assumption of a stationary
front during the falloff holds (see Table 2.1). Finally, the variation of the O(e) term in the
transition zone reflects the change in the mobility with water saturation between the two
banks. For the favorable mobility case, Fig. 3.14 shows the contribution of each term of
the series to the total solution, that is p,p o, Pwp1 and p,p 2 as a function of shut-in time
At, and in Fig. 3.15, their derivatives with respect to the logarithm of equivalent time
are displayed. We observe a behavior similar to the unfavorable mobility case, that is a
negligible contribution of the O(¢§) term and the effect of the O(e) term in the transition
zone except that in this example, this transition zone is much smaller since it’s duration
is about 1 log cycle as mentioned before. Another remark is the oscillatory behavior of

the pressure derivative also observed in Fig. 3.13 for the unfavorable mobility case which
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Figure 3.16: Comparison of numerical results to analytical solution (rate superposition) for
falloff, nonzero skin case.

is due to the use of Stethest algorithm as a tool to perform the numerical inversion of the
solution.

Next, we redid the same problem including a positive skin factor, s = 4.75. Recall
from chapter 2 that this value was obtained by setting ks = 540 mD in a cylindrical region
around the wellbore of radius r, = 1.15 ft. Fig. 3.16 compares the pressure and pressure
derivative solution obtained analytically using rate superposition to the corresponding
data obtained from the simulator with an end-point mobility ratio of 3.165. A similar
comparison presented in Fig. 3.17 is obtained with an end-point mobility ratio of 0.527.
In both cases, the two sets of data agree well. These figures also show that the falloff
pressure response is quite different from the injection response as the pressure derivatives
do not take negative values at early times due to the skin effect.

Similarly to the zero skin case, a Horner analysis of the data corresponding to
At > 10 hours for the unfavorable mobility case and At > 1 hour for the favorable case
gave kX, = 286 mD/cp and s; = —1.97 for the unfavorable case and kX, = 1650 mD /cp
and s; = 13.3 for the favorable case. Computation of the mechanical skin from Eq. 3.53

gives s = 4.84 and s = 4.35 for the unfavorable and favorable mobility cases respectively,
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Figure 3.17: Comparison of numerical results to analytical solution (rate superposition) for
falloff, nonzero skin case.

compared to the true value s = 4.75.

3.5.2  Example 2: Wellbore Pressure Response at a Restricted-Entry Vertical Well

Recall that in this example, water was injected through a restricted-entry vertical
well of a penetration ratio b = 0.345 at a constant rate of ¢;,; = 18869 STB/day. Both the
favorable and unfavorable mobility cases were considered. The test consisted of 30 days
of injection followed by 20 days of shut-in. For the first run, the horizontal permeability
is ky = ky = ky, = 2700 mD and the vertical permeability %, = 300 mD. The isotropic
equivalent permeability computed from (Eq. 2.240) is & = 1298 mD. For more data
pertaining to this example or for a description of the gridding used when simulating the
tests, see the last section of chapter 2.

Here, we also compared the falloff single-phase solution for the wellbore pressure
change and its derivative with respect to logarithm of equivalent time obtained using
the simulator to the equivalent isotropic solution generated analytically using the spatial
transformation. The result of the comparison is illustrated in Fig. 3.18 for the unfavorable

case and in Fig. 3.19 for the favorable case. As we can see, we also obtain a good match

191



| Falloff Single-Phase Solutions
m=5.1cp,k =9k ,s=0
10° W
.a o
Q
-7 102 i
8’ 3
- %
c
(5 L
" 10t 3
8 b e  Simulator
Analytical
100 R al NI (- R L
10° 10 10" 10° 10 10°
Time, Dt, hr

Figure 3.18: Comparison of numerical results to analytical solution for falloff, single-phase flow,

~

M = 3.165.

between the two solutions. Note also the standard behavior for a partially penetrating
well during falloff which is similar to the injection period.

Fig. 3.20 compares the analytical falloff solution and its derivative with correspond-
ing results obtained from the simulator for the case M = 3.165. Model 1 was used to
describe the flow of injected water when generating the total mobility profile (evaluated
at the instant of shut-in). Although the analytical solution for the pressure change at
the wellbore gives a reasonable match to the simulator solution, its derivative exhibits
an oscillatory behavior from 0.02 to around 1 hour. Fig. 3.21 presents similar results for
the case where the water saturation and total mobility distributions in the reservoir were
generated using model 2. A much better agreement between the data is obtained. Note
that at early times, the derivative reflects the mobility in the water bank. In particular,
for At < 0.01 hours, the multiphase falloff solution gives a derivative value which approxi-
mately reflects the semi-log slope based on water properties at residual oil saturation over

the opening interval h, represented by a dotted line in Fig. 3.21 and given by
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Figure 3.19: Comparison of numerical results to analytical solution for falloff, single-phase flow,
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M = 0.527.
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whereas, for times greater than 10 hours, the derivative reflects the semi-log line based

= 18.15, (3.236)

on oil properties at irreducible water saturation over the entire thickness of the reservoir

h represented by the dashed line in the same figure and defined by

p/ _ Qi _ Aing
*2kh e 2v/kakyh,

See also Eq. 2.385. For this case, M\oh is reasonable close to S\whp and if the data were

— 19.85. (3.237)

noisy, one might interpret the model as exhibiting a single radial flow period.

Next, we consider the favorable mobility case. Since model 2 performed better
than model 1, we give in the following only results obtained from model 2. In Fig. 3.22,
a comparison between the analytical solution and numerical data from the simulator is
illustrated. Again, a good match between the two sets of results is observed. We also
note that the falloff solution reflects the end-point water mobility over the open interval

(Eq. 3.236) for times At < 0.04 hours but eventually joins the single-phase oil solution
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Figure 3.20: Comparison between the results for the falloff test from the simulator and the

analytical solution from model 1, M = 3.165, s = 0.
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Figure 3.21: Comparison between the results for the falloff test from the simulator and the

analytical solution from model 2, M= 3.165, s = 0.
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Figure 3.22: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 2, M = 0.527, s = 0.

(Eq. 2.385) once a zero rate has propagated throughout the invaded region, which occurs
for this case at around 10 hours.

Using the same data, a falloff solution was generated considering a mechanical skin
factor of 14.9. Recall that to do so, we set the permeabilities to k.5 = k,; = 200 mD and
k., = 22.22 mD in a cylindrical region of radius r, = 1.15 ft and maintained the values
ky =k, = 2700 mD and k, = 300 mD everywhere else. In the new coordinate system, the
value of the damaged permeability is k; = S/m = 96.15 mD and the corresponding
radius of the skin zone computed using Eq. 2.368 for model 2 is r,, = 0.8 ft. The falloff
solution for the wellbore pressure change and its derivative with respect to the natural
logarithm of Agarwal’s equivalent time generated with model 2 was also compared against
the data obtained from the simulator. Fig. 3.23 illustrates this comparison for the case
M = 3.165, whereas, the case M = 0.527 is shown in Fig. 3.24. A good match is observed
in both plots. Similarly to the zero skin factor (see Figs. 3.21 and 3.22), the pressure
derivatives in both cases reflect the properties of the invaded zone over the open interval

of the well at early times and the properties of the uninvaded zone over the thickness of
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Figure 3.23: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 2, M = 3.165, s = 14.9.

the reservoir at late times. However, the pressure change data are much higher than the
ones obtained for the zero skin case. Clearly, this is the mechanical skin factor effect.

Based on the behavior of the pressure derivative, a Horner analysis was performed
on data which reflect oil mobility. These data correspond to times At > 20 hours. From
the semilog straight line slope displayed by the plot Ap,,s versus (t,+At)/At, we obtained
a value of 12:5\0 = 139.98 mD/cp compared to the true value of 15;\0 = 137.51 mD/cp
used in the computation for the unfavorable mobility case and a total skin of s, = 14.0.
Computation of the mechanical skin factor from Eq. 3.71 gave s = 15.17 compared to its
true value of s = 14.9. For the favorable mobility case, a Horner analysis also performed
on data corresponding to times At > 20 hours gave kX, = 821.0 mD /cp (the true value
for this case is kA, = 825.1 mD /cp) and a total skin and a mechanical skin factor of
sy = 107.2 and s = 14.3 respectively.

The last run for the restricted-entry case assumes a completely anisotropic reser-
voir. An injection test of 30 days followed by a 20 days of shut-in was run using IMEX

black oil simulator. The injectivity solution was discussed in the last section of chapter 2.
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Figure 3.24: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 2, M = 0.527, s = 14.9.

Here, we focus on the falloff test. We recall that the permeabilities in the three directions
are given by k, = 2700 mD, &, = 300 mD and k., = 200 mD with an isotropic equivalent
permeability of & = 545.14 mD and an equivalent wellbore radius r,. = 0.314 ft. All
other relevant data to this run can be found in chapter 2. Here, we considered only the
unfavorable mobility case. As we did previously, the solution for the pressure change and
its derivative with respect to the logarithm of equivalent time under single-phase flow
(based on oil properties) was obtained from the simulator and compared to the analytical
solution obtained using the equivalent isotropic system during the falloff period. Fig. 3.25
is a log-log plot which illustrates this comparison. As we can see, both solutions match
reasonably well. However, the numerical solution for the pressure derivative exhibits os-
cillations around the analytical solution at early time. Due to this early time mismatch,
the analytical single-phase solution obtained for the equivalent problem was used instead
in order to generate the analytical falloff pressure change.

Fig. 3.26 presents a comparison on a log-log scale between model 2 and the sim-

ulator for the pressure change and its derivative during the falloff period. Although the
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Figure 3.25: Comparison of numerical results to analytical solution for falloff, single-phase flow.
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Figure 3.26: Comparison between the results for the falloff test from the simulator and the

analytical solution from model 2, M = 3.165, s = 0.
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pressure derivative data generated from the simulator exhibit oscillations at early times,
the analytical solution matches fairly well the numerical data for the pressure and pres-
sure derivative. As expected, falloff data reflect mobility in the water bank at early times

(At < 0.1 hours) corresponding to a semi-log slope given by

o Xing Qfing _
T 2k e 2/ kakyhph

and oil mobility at irreducible water saturation at late times (for At > 100 hours) corre-

54.5, (3.238)

sponding to the following semi-log slope

p/ _ AGin; _ QAdin;
T2k, 2y/kakyhhe

Similarly to Fig. 3.20, the pressure derivative is almost constant throughout the entire

= 59.5. (3.239)

falloff. Again, this is due to the fact that the product j\whp is approximately equal to
Aoh. Keep in mind that the only change we made for this run was the values of the

permeabilities in the three directions.

3.5.83  FExample 3: Wellbore Pressure Response at a Horizontal Well

This example pertains to a horizontal well distant from the top reservoir boundary
of z,, = 5 feet. Subsequent to injection of water at a rate ¢;,; = 31450 STB/day for 10
days for the case M = 3.165 and 4 days for the case M = 0.527, the well was shut-in for a
falloff test. A discussion of results obtained during the injection period is given in chapter
2. Here, we focus on the falloff period. Also given in chapter 2 is a description of the
gridding (Cartesian grids combined to a local-hybrid grid refinement option) used when
simulating the different cases. Recall that the first run pertains to an isotropic reservoir
with k&, = k, = k, = 5600 mD with a non damaged wellbore region.

One of the steps taken to ensure the adequacy of the grid was to also compare the
numerical results for single-phase flow obtained from the simulator with the analytical
horizontal solution. The results, obtained for both end-point mobility ratio values are

shown in Figs. 3.27 and 3.28. As we can see on these log-log plots, the numerical single-
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Figure 3.27: Comparison of numerical results to analytical solution for falloff single-phase flow,

~

M = 3.165, s = 0.

phase solutions match the analytical single-phase solutions very well. In addition, the
behavior of the single-phase solution during falloff is similar to the one obtained during
injection (see Figs. 2.29 and 2.30).

The generalized equation for the falloff solution in terms of the wellbore pressure
change for an offset horizontal well is given by Eq. 3.88. Not only does the evaluation
of this equation require the knowledge of the total mobility profiles at the instant of
shut-in but also the knowledge of rate distributions in the reservoir during the shut-in
period. We constructed the total mobility profiles from the water saturation distributions
using a series of 1D Buckley-Leverett solutions (one for each integral in the multiphase
component) evaluated at the instant of shut-in (¢, = 10 days for the unfavorable case and
t, = 4 days for the favorable case). As for the rate distributions, we computed them using
the rate superposition equations (Eq. 3.42 when water is moving radially in the (z, z) plane
and Eq. 3.80 for linear flow of water along the z-direction). Recall from chapter 2 that for
both cases, the water front is propagating in the x-direction when the well is put to shut-

in. Specifically, for model 1, the water front at the instant of shut-in is at 108.6 ft for the

200



10
Falloff Single-Phase Solutions
. mO:O.SSCp,s:O
‘0
o
o)
©
c
©
8 10° Simulator
E Analytical
10'1 . pnl " 1 sanl ol
10° 10” 10" 10° 10 10°
Time, Dt, hr

Figure 3.28: Comparison of numerical results to analytical solution for falloff single-phase flow,

~

M = 0.527, s = 0.

unfavorable mobility case and 40.74 ft for the favorable case. For model 2, the flood front
is at 121.6 ft and 54.0 ft for the unfavorable and favorable case respectively. The falloff
solution for the two-phase problem was also generated using the reservoir simulator. In
Fig. 3.29, the solid circles are the numerical falloff pressure change Ap; = py 1,5 — Dws(At)
and its logarithmic derivative with respect to equivalent time and the solid lines represent
the analytical solution for Ap, and its derivative obtained using model 1. This figure
pertains to the unfavorable mobility ratio case. Fig. 3.30 presents similar results for the
favorable mobility ratio case. In both figures, the dotted line represents the semi-log line
based on water properties at residual oil saturation defined by the following equation
/ Aing

Ap. = 1 — 182, 3.240
P RLA. ( )

and expected to be observed at early times. This slope is equal to twice the value that
would be observed in the early radial flow period due to the fact that the well is offset
only 5 feet from the top of the formation. The early behavior of the solution is therefore

like that of a vertical well near a fault. The dashed line is the semi-log slope based on oil
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Figure 3.29: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 1, M = 3.165, s = 0.

properties at irreducible water saturation given by

47.90 for M = 3.165,
- (3.241)

7.98  for M = 0.527,

;- aqinj

* kR,

and observed at late times. Despite the fact that the analytical solutions generated with
model 1 give a reasonable match to the simulator solutions, the derivative of the solution
based on model 1 falls below the semi-log slope of Eq. 3.240 at early times specifically for
the favorable mobility case (see Fig. 3.30). This behavior is not observed in the unfavorable
case because the reflection of the properties of the invaded zone occurs at a much earlier
time (At < 107 hours). Figs. 3.31 and 3.32 compare the analytical solution for falloff
and its derivative based on model 2 with the results obtained from the reservoir simulator
for both cases M = 3.165 and M = 0.527 respectively. Better agreement is obtained when
model 2 is used in terms of reflecting the semi-log slope based on water properties at early
times for the favorable mobility case (see Fig. 3.32). However, the derivative of the solution

generated with model 2 falls slightly below (Fig. 3.31) or slightly above (Fig. 3.32) the
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Figure 3.30: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 1, M = 0.527, s = 0.
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Figure 3.31: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 2, M= 3.165, s = 0.
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Figure 3.32: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 2, M = 0.527, s = 0.

derivative from the simulator during a short time period around 0.02 < At < 0.1 hours
depending on the value of the end-point mobility ratio M. Finally, we need to point out
that the early time pressure derivative data from the simulator in the case of a favorable
mobility ratio exhibit an oscillatory behavior in addition to the fact that they fall slightly
above the dotted semi-log line based on water properties.

Next, we considered a damaged region of a radius ry = 1.06 ft around and along
the entire length of the horizontal well. The permeability in this region is k, = 200
mD. All other parameters were kept the same as previously. The mechanical skin factor
evaluated using Hawkin’s formula is s = 30. Applying the rate superposition equations,
solutions for the pressure change at the wellbore and its derivative for this case were
generated analytically using model 2 and compared to results obtained numerically from
the reservoir simulator. Fig. 3.33 illustrates this comparison for M = 3.165 whereas, the
results for the case M = 0.527 are shown in Fig. 3.34. In both cases, the two sets of data

agree fairly well.

Next, anisotropy was considered. The permeabilities in the three directions are
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Figure 3.33: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 2, M = 3.165, s = 30.
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Figure 3.34: Comparison between the results for the falloff test from the simulator and the
analytical solution from model 2, M= 0.527, s = 30.

205



Falloff Single-Phase Solutions
3| ky= 4500 mD, k = 9k =2700 mD, s =0

2
10k
a) [ AMAAA
2 M
c
I 1 )
» 10 E ® Simulator (z, = 39.4 ft)
8 E —— Equi. problem (z, = 39.4 ft)
| A Simulator (z, = 5ft)
100 . - - —Equi. problem (z, =5 ft)

PETTT| B AW AT TT| B S rW TTT] MRS S W TTT] B S ST A TTT| B AW R TTT] B

2 3

10°  10% 100 10° 10 10
Time, Dt, hr

10

Figure 3.35: Comparison of numerical results to analytical solution for falloff, single-phase flow.

ky = 2700 mD, k, = 4500 mD and %, = 300 mD. All other rock and fluid properties were
kept the same. Here, two tests were simulated where water was injected at the same rate
as previously for a period of 100 days. The well was then shut-in for a falloff test for
also 100 days. Results obtained during the injection period are summarized in chapter 2.
Here, we give only the results obtained during the shut-in period. Recall that in the first
test, the well is located in the center of the formation, whereas in the second test, the well
is closer to the top boundary with z,, = 5 ft. We only considered the unfavorable mobility
ratio. Due to the fact that the duration of the injection is long, the water front at the
instant of shut-in, according to our model, is beyond the parameter x3. This means that
the flood front reached the point where it began to move radially in the (z,y) plane.

The comparison between the falloff single-phase solution obtained analytically from
the transformation and the corresponding results from the simulator are summarized for
both cases in Fig. 3.35. The agreement, as we can see, is good.

In Fig. 3.36, we show the results for the falloff pressure change and its derivative
generated using model 2 compared with the falloff solution obtained for the reservoir

solution. Except for the slight deviation of the pressure derivative obtained from the model
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Figure 3.36: Comparison of numerical results to analytical solution for falloff, z,, = 39.4 ft.
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Figure 3.37: Comparison of numerical results to analytical solution for falloff, z,, = 5 ft.
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during the intermediate times, the agreement between the sets of data seems reasonable.
This figure pertains to the equal offset case. As expected, the pressure derivative reflects
water mobility at early times, shown by the dotted line and oil mobility at late times
represented by the dashed line. Fig. 3.37 shows the same comparison for the unequal
offset case. Here also, model 2 matches fairly well the simulator solution although not as

well as in the equal offset case.

3.5.4  Sensitivity Analysis on Gravity Effect

The approximate injection and falloff solutions constructed in chapter 2 and 3
assume negligible gravitational effects. However, gravity could have a significant effect on
the pressure response if oil and water phases segregate. The segregation of the phases is
expected to occur after some time during the falloff period. Therefore, a sensitivity study
appears necessary in order to understand the role of gravity during an injection/falloff
test.

To investigate the effect of gravity, a few synthetic injectivity /falloff tests through
a horizontal well were generated using CMG IMEX’s simulator. Two cases with respect to
the location of the well were considered. The distance measured from the well axis to the
top boundary of the reservoir is equal to 5 ft in one case and 73.74 ft in the other one. The
total reservoir thickness and all other properties were kept the same as in the horizontal
well example in an isotropic reservoir presented previously (k = 5600 mD and s = 0 case).
Two injection rates were considered in this analysis. The high rate case corresponds to a
value of 31450 STB/day whereas, the low rate case is one tenth of the high injection rate,
that is 3145 STB/day. In all cases, a combination of a Cartesian gridding of 74(x) by
67(y) by 5(z) and a local hybrid grid of 10(r) by 4(6) by 1(z’) applied to all well blocks
was used. The location of the well close to the top was simulated in layer 1 whereas, the
location of the well close from the bottom boundary was in layer 5.

Fig. 3.38 compares the injection solutions obtained from the two configurations
when water was injected at the high rate for a total time of 60 days. This figure indicates

an excellent match between the data throughout the entire test suggesting that gravity has
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no effect for this case. In Fig. 3.39, the outcome is different as a slight deviation between
the data for the pressure change and its derivative is observed for times 25 < t < 130
hours. This case pertains to the low injection rate. According to our model (model 2),
this period of time coincides with times where the water front propagates linearly in the
z-direction with a variable cross sectional area. The higher values of the wellbore pressure
change and its derivative obtained during this time period when injecting water from the
bottom are explained by the fact that in order to compete against gravitational forces,
higher viscous forces (or equivalently higher pressure change since the injection rate is
smaller) are required to move the flood from the bottom to the top over the variable
thickness when propagating linearly. For the configuration where water is injected from
the top, the direction of the flow when propagating linearly is along the direction of
gravity which explains the lower values of the wellbore pressure change and its associated
derivative. Another observation from Fig. 3.39 is that for a longer injection period (when
t > 130 hours), the simulator predicts the same pressure drop for the two configurations.
This period of time corresponds to the situation where water begins to propagate linearly
in the 2-direction but over the entire thickness of the reservoir (z(t) > x3). The location
of the well in this case, does not have any impact on the wellbore pressure response.

In Fig. 3.40, The falloff pressure change and its derivative with respect to loga-
rithm of equivalent time for each offset are displayed on a log-log scale. These data were
generated numerically considering a shut-in of 60 days subsequent to an injection of water
at a rate of 31450 STB/day for a total time of 60 days. As we see, the difference between
the solutions is negligible. However, when the injection rate is cut by a factor of ten,
the effect of gravity is clearly observable in Fig. 3.41 manifesting through a shift between
the two sets of data, particularly for the pressure derivative, for approximately At > 60
hours, the pressure derivative data obtained when injecting from the top being smaller
than the ones obtained when injection from the bottom.

Next, we set the length of the injection to 1 day and considered the lowest injec-
tion rate. At the instant of shut-in, The water front according to model 2 is located at

xs(t,) = 7 ft compared to x,(t,) = 77.75 ft obtained for ¢, = 60 days. Fig. 3.42 shows
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Figure 3.38: Comparison between the results for the injectivity test from the simulator; high
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Figure 3.40: Comparison between the results for the falloff test from the simulator; high rate
case.
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Figure 3.42: Comparison between the results for the falloff test from the simulator; low rate
case.

the results when comparing the simulator data for the pressure change and its derivative
obtained during the falloff period for both configurations. A mismatch between the pres-
sure derivative data is also observed but at an earlier time (At > 30 hours) compared to
60 hours for the case of 60 days of injection. This is due to the fact that in the case of the
long injection test, the saturation distribution of water from top to bottom is reasonably
uniform with oil saturation close to residual. Thus, it is expected that it would take

longer for the effect of gravity segregation to affect the wellbore pressure unlike the short

injection test case.
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CHAPTER 4
COLD WATERFLOODING A HOT RESERVOIR

In the previous chapters, when constructing analytical solutions for the pressure
response during an injection/falloff test on water injection wells, we made an assumption
that the injected fluid is at the same temperature as the in situ reservoir fluid. In practice,
this is not the case since the injected water is at a lower temperature than the reservoir oil.
Due to this, an expanding cold region develops around the wellbore during the injection
and because the fluid viscosities are temperature dependant, this will affect the pressure
response during the test. This chapter considers thermal effects that arise when flooding

a reservoir with water having a temperature considerably below that of the reservoir.

4.1 Heat Transfer in Porous Media

Heat transfer must occur whenever there exists a temperature difference in a
medium or between media. When cold water is injected into a hot reservoir, the for-
mation around the water injector will cool down to the temperature of the injected water.
This creates a cold water bank around the injector which expands with time into the reser-
voir. Both the solid and fluid phases contribute to the heat transfer. The heat exchange
in the reservoir occurs mainly through three processes: heat conduction, convective heat
transfer and heat transfer by radiation. From an atomistic point of view, conduction is
pictured as the transfer of energy from the more energetic to the less energetic molecules
in materials due to interactions between them without any displacement. Macroscopi-
cally, conduction is the transfer of heat through materials without net mass motion of
the material. The mathematical description of heat conduction is based on Fourier’s law

given by
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g =—KNT, (4.1)

where ¢, represents the rate of heat transfer per unit area or the heat flux and VT is the
temperature gradient. The tensor K is referred to as the thermal conductivity tensor.
Eq. 4.1 assumes an anisotropic medium. For an isotropic case, the thermal conductivity is
a scalar. In a porous medium, conduction manifests itself not only through heat transfer
in the solid phase (rock) but also in the fluids contained in the void space of the porous
medium. Moreover, conductive heat transfer that occurs in the reservoir can be split
up into two processes: horizontal conduction occurring in the direction of fluid flow and
vertical conduction that happens perpendicular to the overlying and underlying strata.
Convection is a mechanism of thermal energy transferred by a collective motion
of a large number of molecules in fluids in the presence of a temperature gradient. For a
porous medium, convection also occurs between a fluid in motion and a solid bounding
surface (rock) when the two are at different temperature. The fundamental equation for
this type of heat exchange is called ”Newton’s cooling law” and is expressed in terms of

a heat flux as

@ = h(T, — T}), (4.2)

where 7, and T} are the temperature of the solid phase and the temperature of the fluid
flowing past it. The coefficient h is referred to as heat transfer coefficient.

Thermal radiation is energy emitted by matter when changes in the electron config-
urations of the constituent atoms or molecules occur. This thermal energy is transferred
by photons (electromagnetic waves) which propagate at the speed of light without at-
tenuation (and therefore efficiently) if the medium is a vacuum. All substances emit and
receive radiation continuously. The heat flux at which radiation is emitted from a material

of absolute temperature 7" obeys to the Stefan-Boltzmann law given by

¢ = eoT, (4.3)
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where o is the Stefan-Botzmann constant of numerical value o = 1.714x10~°BTU. ft=2.h~!
.R~* and ¢ is a radiative property of the surface called the emissivity. Its value which lies
between 0 and 1 indicates how efficiently the substance emits compared to a black body
characterized by € = 1.

For a porous media, thermal radiation usually manifests itself through heat transfer
between solid grains of the formation. In order for this process to play an important role
in heat exchange, the fluid occupying the pores has to be gas. Clearly, this work is limited
to the study of oil and water flow and therefore, heat transfer by thermal radiation will
be neglected.

In the following, we write the mass and energy conservation equations that describe
the nonisothermal two-phase problem as dictated by the laws of physics. We start by
considering a small element of a porous medium of volume AV = rArAf0Az. The law of
conservation of mass for each phase m flowing through this differential element is given

in terms of rates by

rAONZ Pty | r At — TAONZ Ui | (r-ar) AL + ATAZ P Umg g At
— ArAZpmUms (0+20) A + TATAO Pt | AL — T AT APt | (24 02) AL =

rATAONZpp S| ary — TATAONZP S dle,  (4.4)

where the first term of the left hand side of this equation represents the mass of the phase
m entering the elementary volume AV during the time At along the r-direction whereas
the second quantity of the same side is the mass of the phase m leaving the differential
volume at the same time increment At along the same direction. Similarly, the remaining
terms of the left hand side represent the net mass transported along the 6 and the z-
direction respectively. The right hand side of Eq. 4.4 is the mass of the phase m that
accumulated within the differential volume during the time At. The subscript ”m” would
be 70” for oil or "w” for water and 1, is the vector velocity of the phase m given by

Darcy’s law as follows
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— kkrm — -
Uy = — . <me — pmg). (4.5)

Dividing Eq. 4.4 by rArAf0AzAt and rearranging yields

1 1
- rAr <Tpmumr|(r+Ar) - Tpmumr’r) - m (pmum9’(0+A9) - pmum9|€)

1 1
- E (pmumz’(z—i-Az) - pmumz’z) = E (pmsm(m(t—l—At) - pmsm(b‘t) . (46)

In the limit, as Ar — 0, A0 — 0, Az — 0 and At — 0, the mass equation reduces

to

10 10 0 0
_;E (T,Omumr> - ;% (pmum9> - & (Tpmumz> - a (pm‘smd))v (47)

or simply

a — —

B PnSm® | + V. (pmin) =0, (4.8)
which represents the general mass conservation equation. If fluids are considered incom-

pressible, then p,, with m = w, 0 is constant and Eq. 4.8 simplifies to

% (qus) + V. (i) = 0. (4.9)

For simplicity, if only one dimensional radial flow is considered and if in addition, we

assume the reservoir porosity to be constant, Eq. 4.9 becomes

10

oS,
-2 - 4.1
¢ ot ror (ruw> 0 (4.10)

for water and

216



25, 10
) BN +;E(TUO> =0, (4.11)

for oil. The sum of Eqs. 4.10 and 4.11 is

0 10
¢§(So + Sw) + ror <7°(uo + uw)) =0, (4.12)

but because S, 4+ S, = 1, then

T or

L9 () <o 19

which indicates that the product 7(u, 4+ u,,) is constant. By introducing the water frac-

tional flow defined by

Uny

w = , 4.14

fo= o (4.14)
it is easy to show that we can rewrite Eq. 4.10 as

05, 10
-z wFU)fw ] =0, 4.15
0% + vt + u ) (4.19
or simply

05w | Ofuw

— — =0 4.16

a or (4.16)

with v = u,, + u, representing the total fluid velocity. As we saw previously, the water
fractional flow is given by Eq. 4.14 which we can rewrite using Darcy’s law with gravity

and capillary effects neglected as

1 1

= - kro(Sw) paw(T) *
1 + Uo/uw 1 + krw(Sw) ZO(T)

fuw

(4.17)

Eq. 4.17 clearly shows that not only is the water fractional flow a function of water
saturation, but also a function of temperature, that is f, = fi,(Sw,T). Thus, we can

expand the Buckley-Leverett Eq. 4.16 to finally obtain
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ot T 4las, or Tor or| "

(4.18)

Now, let us express the law of conservation of energy for each phase flowing through
the differential element AV during the time At. Again, the system considered here is
cylindrical of thickness Ar and length Az. The equation of change for internal energy

given usually in textbooks (see for example [10]) is expressed as

rate of increase net rate of addition net rate of addition
in internal energy | = of internal energy + | of internal energy
in AV during At by convective transport by heat conduction
rate of internal rate of internal
+ | energy increase by thermal | + | energy increase by | - (4.19)

expansion or compression viscous dissipation

Note that Eq. 4.19 does not include radiative, nuclear or chemical forms of energy. Note
also that the right hand side of this equation contains two additional terms that contribute
to heat transfer. They represent the work done on the moving fluids by pressure forces
(thermal expansion or contraction) and by viscous forces respectively. According to the
literature ([8] and [22]), the thermal expansion or compression effects in porous media are
very small compared to the two main modes for heat transfer and therefore is regarded
as negligible when writing the equation of conservation of energy. Moreover, Bear [8] also
claims that it is reasonable to neglect the viscous dissipation term in the heat equation.
In the following, we let T, T, and T, respectively, represent the water, oil and rock
temperatures and we assume that convection and conduction are the only mechanisms by
which heat is transferred in the reservoir when cold water is injected into a hot reservoir
as the work done on the moving fluids by pressure and viscous forces is left out in this

analysis. Under these assumptions, the energy balance equation for water is described by
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TAONZ € Uy |r AL — T AOAZ et | (rrar) A + AT Azp e wtlwg|o Al
— AT AZpuEwUuw| (0420 At + TATAOPYEL U |- AL — T ATADPYE WU | (24 a2) AL
+ P AONZGew | AL — TAODZGers | (rrar) A + AT A2Go 0o AL
— ArA2Gew g (0+-00) A + TATAO e 2| AL — T ATAO e 2| (24 22) AL =
TATAOAZPyEwSwd|(t4ar) — TATAONZPyEW Sy @)

+ rArAOAzAthy, (T — T,) + TArAOAzAth,o (T, — T,), (4.20)

where ¢, is the internal energy of the water per unit mass defined by ¢, = C,,T,, with C,,
representing the specific heat capacity of water. The six first terms of the left hand side
of Eq. 4.20 represent the net energy transferred by convective transport along the r, 6
and z-direction respectively. The remaining terms represent the net energy by conduction
along the three directions. The vector {.,,, which has components Jew,r 1D the r-direction,
Jewp in the O-direction and @, . in the z-direction, is the rate of heat transfer per unit
area in water by conduction defined by Fourier’s law (see Eq. 4.1). The bar added over
the symbol ¢, is to emphasize that this heat flux is with respect to a unit cross-sectional
area of the porous medium. We need to keep in mind that it is necessary to average this
term for the fluids and solid matrix when deriving the equations of energy for porous

media (see [8]). Thus, we write

Cjcw,r 83%
(_?Cw = q_cwﬁ = _¢SwKw %66%5” > (421)
Gew.: 3

with the water thermal conductivity K, assumed to be constant. In the right hand side,
the first two terms are the energy accumulated within the differential volume during the
time At. The third quantity describes the energy transfer between the water and the
solid matrix. Here, we assume that the system is water-wet. The last term is also an

energy transfer but between the two fluids. If we use Eq. 4.21 in Eq. 4.20, express the
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internal energy in terms of the water temperature and divide the resulting expression by

rArAOAzAt, we obtain

1 1
_TAT' (prCwTwuwr|(T+Ar)_prCwTwuwr|7‘) AQ (pr T Uw9| 04+A0) pr T, Uw9|9>

1 1

T,
- A_Z (prwTwuwz|(z+Az) _prwTwuwz|z> + TT’ (QSSwKwT or | r+Ar) ¢S K T )

1 T, orT, oT, oT,,
+T2A9 <¢Sw w o0 |9+A0 ¢S K o0 ’9) Z(¢SwKw Oz ’erAz ¢S K Oz ’z) -

1

At (pr T S (b‘(t—l—At prwTwa(b‘t) + hwr(Tw - Tr) + hwo(Tw - T0)7 (422)

or by taking the limit as Ar, A8, Az and At go to zero and rearranging

0 10 10

a <prwTwa¢> + ;E <prCwTwuwr) + ;80 < C T, uw&)
9

0

10 oT,\ 10 oT,\ @ oT,\
+ Z(ﬂwOwTwuwz>_Ta (¢S K r ar> T_Q% QSSwKwW)_E(QSSwKwE) -

(T — T0) = ho(Tw — T,). (4.23)

Eq. 4.23 can be rewritten using a vectorial notation as

aat (pr T, sw¢) + VA puCuTitn) — V(0SwK W VTy) = —her (T — Tb) — hao(Thw — T).

(4.24)
Again, the thermal properties of water (the thermal conductivity K, and the specific
heat capacity C,,) are assumed to be constant in Eqs. 4.22, 4.23 and 4.24. We will also
assume that the oil and rock thermal properties are constant when deriving the energy

equations for the corresponding phases. If we use the fact that

V. (puCuTiin) = puCuV (Tuity) = puCl (ﬁwﬁTw + TN.@U), (4.25)
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we can rewrite Eq. 4.24 as

T R > -
PuwCowTy— 0 ( w¢) +pr’wa¢aa—t + puChy (uw.VTw —|—TwV.uw) V.(0SuKy VT, ) =

— (T = T) — huo(Toy — Tp),  (4.26)

or

0 -
PuwCow T {a (qub) +V. uw} + puwCuwSw qzﬁ R O T VT - .(qSSwKwVTw) =

— B (Toy — T0) = o (Toy — Tp). (4.27)

According to Eq. 4.9, we have

9 (chb) + V.(@,) = 0. (4.28)

Thus, using this result in Eq. 4.27 gives

T
60 CuSu

S puCutly VT =V (&S KoV Ty) = ~har (T =T,) = huo(Tu=T,). (4.29)

The energy balance equation for oil is given by

rAONZPoEotor|r AL — TAONZPESUor | (rpar) At + ATAZPoc Uap|o AL

— ArAZpoEtog|(0+20) At + TATAOPEGUG| . AL — TATAOPoE U | (24n2) AL

T, T, 10T,
—rAOAzpS, K, a—|TAt +rA0AzpS, K, ((;_’(r—i-Ar At — ArAz¢pS, K 3 \gAt

+ ArAz¢pS,K,— L 8;6: |(0+20) AL — rArA@ngOK | At +rArA6¢pS,K, %T

rATAONZP.E 00| (1421 — TA?"A@AzposoSoqﬁ]t + rArAOAzAthy, (T, — T,,). (4.30)

| z+Az) At —
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The internal energy of oil per mass unit, denoted by ¢, is also assumed to be function of
temperature only and is given by ¢, = C,T,. Similarly to the energy balance equation for

water Eq. 4.29, it is easy to show that Eq. 4.30 becomes

o,

o+ 00Colty NTy — NV (0Ss K, NTy) = —how(Ty — Th). (4.31)

¢pOCOSO

As for the solid matrix, it is obvious that the net energy transferred by convective trans-
port is zero. Therefore, the energy balance equation for the solid phase is simply given
by

aT,

(1= 0)p:Cr g = V.((1 = ¢)K,VT,) = —hp(T, — T). (4.32)

By assuming a local thermal equilibrium (which occurs at low Reynolds number flows),

meaning that T\, =T, = T,, = T and by adding Eqgs. 4.29, 4.31 and 4.32, we obtain

orT

¢(prwa + poCoSo) + (1 - ¢)prCr:| E + {pwcwﬁw + poCoﬁo:| ﬁT

~V. ( [qﬁ(SwKw + S,K,) + (1 — ¢)K,} 6T> =0, (4.33)

or simply
oT L
(pC)eE + (pCu)e.VT — V.(KEVT) =0, (4.34)
with
(po)e - ¢<,0waSw + IOOCOSO) + (1 - ¢)pr07‘7 (435)
Ke = ¢(SuKy + S,Ko) + (1 — ¢) K, (4.36)
and

222



(pCU)e = puCuly + poColly. (4.37)

Using the fact that

V.(KNT) = KN°T +VT.VK,, (4.38)
Eq. 4.34 becomes
oT - S
(PC)egy + (pC) NT = K VT = VIV, =0, (4.39)

that we can approximate to

T B
(pC)e%—t + (pCT)NT — KN?T =0, (4.40)

since the product VI.VK, is usually small. If we consider only the radial dimension,

Eq. 4.33 simplifies to

or or Keﬁ( 8T> =0. (4.41)

<pc)€§ + (pCu)e or r or TE

The coupled equations Eqs. 4.9 and 4.40 along with the appropriate auxiliary conditions
define our nonisothermal two-phase problem. One difficulty of solving the problem an-
alytically resides in the fact that Eq. 4.40 is a second order differential equation due to
conductive heat transport. Thus, it is imperative to know the order of magnitude be-
tween the convective and the conductive term in Eq. 4.40 and how to incorporate them
into the solution. Luckily, convection and conduction do not have an equal importance
in flow through porous media during the injection and the falloff period. A numerical
study conducted by Platenkamp [30] shows the relative importance of the heat exchange
processes considered here, that is convection, vertical and horizontal conduction after
100 days of injection. Fig. 4.1 illustrates the different temperature distributions obtained
when considering the different heat transfer mechanisms. The profile represented by dots

is the one obtained when considering convection only. It is a unit step function profile
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Figure 4.1: Effect of the three heat-exchange processes on the temperature profile (SPE 13746).

with a temperature equal to the injected fluid temperature up to a certain location de-
fined as the temperature front location and a temperature equal to the initial formation
temperature away from the temperature front. The curve illustrated by the dashed lines
is the one obtained when both convection and vertical conduction were considered. As
the author of the paper pointed out, the effect of vertical conduction is to increase the
temperature in the cold region without changing the location of the front. Including hor-
izontal conduction leads to a diffused temperature distribution represented in Fig. 4.1 by
the solid line. This numerical study shows that it is a good approximation to neglect the
heat transfer contribution from conduction compared to that from convection during an
injection period as long as the duration of the test is not too long and the injection rate
is sufficiently high. However, this is not the case during a shut-in period as conduction
is expected to be the dominant process by which heat is exchanged in the reservoir and

cannot therefore be neglected in the analysis.

4.2 Injection Solution Under Nonisothermal Conditions
In this study, we consider injection of cold water of temperature T,,; at a constant

rate given by ¢;,; through a vertical well in the center of a homogeneous reservoir with an
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initial temperature 7,;. For now, we assume that the reservoir is isotropic and that the
well fully penetrates the reservoir of constant formation thickness, h. It is also assumed
that the initial saturation distribution is uniform and equal to irreducible water saturation
Siw and fluid viscosities are a function of the temperature only. Note also only radial flow
of fluids is considered.

As mentioned earlier, it has been shown (see [30]) that temperature changes are
primarily due to convective heat transfer when cold waterflooding a hot reservoir and that
the effect of conduction on the temperature distribution is negligible. In this case, the

temperature distribution can be approximated by the following Heaviside function

Twi r<rp(t),
T(r,t) = (4.42)

Toi 7 2>r1p(t),
where rp(t) is the radial position of the temperature front. An estimate of this parameter
is determined using a heat balance between the injected water and the formation. To do
so, we recall that water, oil and rock specific heat capacities denoted respectively by C,,,
C, and C), are assumed to be constant. We also denote the volume of the flooded region
after an injection time of ¢ by Vj such that Vy = 2xhr}(t) where ry is the position of the
water front. The volume of the cooled region during the same injection time is denoted

by V. such that V. = 2whr2(t). Applying a heat balance on the system gives

Ty rT
/ GpuwCuwSw(Toi — Tywi)2mhrdr = / (1 = 9)p.C.(To; — Tyi)2mhrdr
rT Tw
T
+ / 0poCoSo(Toi — Twi)2mhrdr, (4.43)
where the left hand side of Eq. 4.43 expresses the amount of heat gained by the water
injected in the zone of volume equal to V; — V. while the right hand side is the amount

of heat lost by the formation and the oil in the cold zone. By adding and subtracting an

integral from r, to r7, we can rewrite Eq. 4.43 as
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Ty rr
/ GpuwCuSw(Toi — Twi)2mhrdr + / GpuwCuwSw(Toi — Twi)2mhrdr
T Tw
— / GpuwCuwSw(Toi — Twi)2mhrdr =

/ (1 = ¢)p,Cr(To; — Towi)2mhrdr + / GpoCoSo(Toi — Twi)2mhrdr. (4.44)

Simplifying and rearranging Eq. 4.44 yields

Tf T
/ OPuwCySyrdr = / [0(pwCwSw + PoCoSo) + (1 — @) p,.Cylrdr. (4.45)

By introducing the effective density averaged specific heat capacity for the porous system

defined by Eq. 4.35, Eq. 4.45 becomes

Tt rT
/ qﬁprwardr:/ (pC)erdr. (4.46)

Since (pC). is bigger than ¢p,,C,,Sy, for Eq. 4.46 to hold, the temperature front, r,, must
always be within the flooded region of radius r; during the injection period. In the follow-
ing, we will construct the injection analytical pressure solution for a cold waterflooding
case. We will show that we are still able to apply the same theoretical approach based on
the Thompson-Reynolds steady-state theory used in previous chapters to construct this

solution.

4.2.1 Steady-State Theory for Radial Flow
We begin the analysis by assuming that the total rate distribution in the reservoir
during the injection test is given by ¢,(r,t) and by expressing Darcy’s law in term of

pressure change at the wellbore as follows

a [ q(r,t) dr
Ap:pwf(t)—pizﬁ/ AGL) (4.47)
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where p,, ¢ is the injection pressure at the wellbore and p; is the initial reservoir pressure.
Here, the permeability k is set to be a function of the spatial coordinate r in order to take
into account the change of this parameter near the wellbore region due to the mechanical
skin. The way the skin is input into the system is by assuming a reservoir with a thick
skin zone concentric with the well with a radius rs. The total mobility of the system \;
is defined as

kro(Sw) | Kruw(Sw)

METT) T () (4.48)

At this point, it is important to note that due the the fact that the system has two
temperatures (see Eq. 4.42), we introduce a total mobility computed at the temperature

Twi, denoted by M. and defined by

kro(Sw) krw(Sw>
Ate = + )
' Mo (Twi) joon (Twi)

(4.49)

which is valid for r < rp. We also define a total mobility determined at the initial

formation temperature T,; that we denote by A, such that

krosw krwsw
o = ) | ()

(4.50)

valid for » > rp. By introducing the radius of the temperature front r; and the radius

of the water front r; and also by adding and subtracting the same term, we can rewrite

Eq. 4.47 as

where j\oh is the oil mobility evaluated at irreducible water saturation and at the initial

reservoir temperature given by



kro(Siw)
:U“o(Toi) ‘

Based on the steady-state theory [34], the equation ¢(r,t) = gi,; holds everywhere behind

/\oh =

(4.52)

the flood front, i.e., for r < r;. Note also that ahead of the water front, i.e., for r > ry,

we have A\, (r,t) = Moh- Thus, Eq. 4.51 becomes

L. rr(t) L ry(t) 00
Qi / T 1 dr  aginj 1 dr « / dr
Ap = + +— T, +
b e e ) TR() T Jow Aa(rt) tR(r) T hA,, Tf(t)‘ﬁ( )rk(r)

a ry(t) dr agm: [T 1 dr
- rt S UM / . . (453
hth/ WS T T L ke Y

Tw

or simply,

ap= o [ Lt [T T
P20 L M) k) T TR S a8 R B, S T TR

ry(t)
i f 1 dr
- — — ——. (4.54
h S, Ay TE(T) ( )

If we add and subtract the term % T’Z(t) /\thtr 5 Tg(rr) to the above equation and rearrange

the resulting equation, we obtain

~

Q@ *° dr agini [TF® Aoh dr
A :A—/ rt) —— + f’”/ h 1) —+
P s S @) rk(r) ko Awn(r,1) rk(r)

w. o prrr(t) 1 1
Alling / - a4 55)
hJ., Ae(ryt)  Ap(ryt) ) rk(r)

Note that the first integral of Eq. 4.55 represents the single-phase pressure change that

we would obtain by injecting oil through a vertical well into a hot oil reservoir of constant
temperature T,;. Let us for simplicity denote this term by Ap, as we did before. The
second integral represents an additional pressure change due to the contrast between oil

mobility at irreducible water saturation and total mobility in the zone invaded by injected
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water also evaluated at the initial temperature of the reservoir. The sum of the first two
terms is the isothermal solution for the injection pressure that we denote by Apir—ro).
Therefore, it becomes clear that the nonisothermal injection solution for the wellbore
pressure change can be written as the sum of the isothermal injection solution based
on the initial temperature of the reservoir and an additional pressure change that takes
into account the difference of mobilities due to the temperature in the cold region of the

reservoir. Thus, we rewrite Eq. 4.55 as

rr(t)
Qi [T 1 1 dr
Ap = Apirmo - , 4.56
P = 8Pr=To) + /w ()\tc(r, 0 n(n)) TR (4.56)
with
A ) = Ap, + Lind / S R N (4.57)
P(T=Toi) = RPo h;\oh . )\th(T, t) T]{}(T’) . .

At this point of the analysis, we have to consider three distinct cases:(i) the flood front
is still moving in the skin zone of permeability ks. The solution for the pressure change
in this case is obtained by simply replacing the permeability k(r) in Eq. 4.55 by k, for

r < rg where r, is the radius of the skin zone. If we do so, we have

o rf(t) A d
s 2 [ () £

k’shj\oh >‘th (r’ t)
ro(t)
Qinj 1 dr
k.h / ()\tc(r,t) )\th(r,t)> r (4.58)

Tw

Recall that Z is the radial Boltzmann variable defined according to Eq. 2.10 by

r
7 = 4.59
iy (159
and that for any fixed ¢, we also have
dz dr
— =2—. 4.60
Z r ( )

229



2
We also define the Boltzmann variable at the temperature front by Zr = 1—7; and the

7,2
Boltzmann variable at the water front by Z; = 4£. Then, by making this change of

variable in Eq. 4.58, we obtain

OGini Zs A dz

anj oh

Ap = Ap, + = / ( — 1) —+
2k h Ao, r2, /At )\th<Z) Z

.. f4r
O‘%nﬂ/ ( 11 >d_Z. (4.61)
2hh Ja e \Ne(Z)  Mn(2)) Z

Two remarks are of order. First, in terms of the Boltzmann transform, the location of the

temperature and the flood fronts are stationary, i.e., they do not vary with time. Secondly,
as noted in the above equation, the total mobilities s, and A;. are unique functions of Z
and 80 Ay (7,t) = A (Z) and Ae(r,t) = Me(Z). This of course assumes injection through

a line source well. Taking the derivative of Eq. 4.61 with respect to the logarithm of time

gives
dAp AQin; . d Zf(;\h )dZ
Ap = — = Ap), ot 2~ 1) =+
Pt T T i mAg, dt e s \Mn(2) Z
O‘qmjti/ZT L __1 V2 e
2ksh dt [z 4 \Ne(Z)  Ma(Z)) Z°

Using Leibnitz integral rule, it is easy to show that

d/Zf Mo N2 _ (e N[
dt Jyz a0 \ Aen(Z) Z  \u(rl/4t) ro\ At

_ %(—Ath(i%h/%) - 1). (4.63)

Similarly, we have
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4 /ZT 1 1 \dZz __ 1 1 o
dt Jyz e \Ne(Z)  Mn(Z2)) Z \e(r2/4t)  Aan(rd /4t) ) 12, 4t

~—

& | =

1 1
<)\tc(?”3,/4t) B )\th(’f’%u/llt))' (4.64)

Substituting Eqs. 4.63 and 4.64 into Eq. 4.62 gives

~ ~ ~

QAQinj >\oh QaQinj )\oh >\oh
Ap = Ap 4 i ( _1)+ y ( - ) 465
P P 2hkshAon \Ain (12 /41) hkshhon \Aie(T2/48) N (r2 /4t) (4.65)

or simply

i
Ap = Ayl + —2ing oh 1), 4.66
b Po 2k P\, (Atc(r%u/4t> (4.66)

Using the fact that at ry, A\ (r2/4t) = Awe Where A, is the water mobility evaluated at

krw(l_sor)

residual oil saturation and at the injected water temperature given by Awe = e (T

and assuming that the steady-state region of constant total rate has propagated beyond
the skin zone such that the single-phase flow solution Ap, based on oil properties at the

initial reservoir temperature is given by the following semilog straight line

QAdinj 1 4770t
Ap, = —— | =1 , 4.67
g khxoh[2 n(@”’?ﬂ i 4.67)
therefore,
= (4.68)
2khon

and replacing Eq. 4.68 into Eq. 4.66 gives

Ap = Qi | F o] (4.69)
Uhdon L Fs \ e

By introducing oil mobility evaluated at irreducible water saturation at the injected water
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temperature given by Noe = ]Z”:((ﬁl‘_’)), we can write Eq. 4.69 as

inj k 1 Ao
Ap = i [1——(1—TA’1)}. (4.70)
2khAon ks M, e
In this equation, M, represents the end-point mobility ratio evaluated at the injected
water temperature and defined by

>
>

wce

M, =——.
/\oc

(4.71)

It is interesting to see that Eq. 4.70 indicates a negative pressure derivative at early times
provided that

(4.72)
or equivalently
~ ks 5\0 oc
M1 — 22 > 2o = Hee (4.73)
k )\oc Hoh
When o = pon, and Mc =M , Eq. 4.73 simplifies to
N ks
M(1 - ?) > 1, (4.74)

which is exactly the same condition given by Eq. 2.23 and obtained for an isothermal
injection.

(ii) If the water front is beyond the skin zone but not the temperature front,
Eq. 4.55 becomes

T khgy Jr.

AGinj " 5\oh dr AGinj r) 5\oh dr
By = dp, 0 [ ( - 1) Lyt .
b b ]{Sh)\oh Tw )\th (ra t)

e (1, 1) 7
v (1)
O{qlnj T 1 1 dT’
Y
o /Tw ()\tc(r,t) )\th(r,t)> o (470)
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By adding and subtracting to Eq. 4.75 an integral from r,, to r,, we have

s 3 r¢(t) A
AGing /\oh dr QAGing ! )\oh dr
A:AO—F—A/ ( _1>_+ ; / ( )&
p=ar kshon Jro \Awn(7,1) T khdop Jr An(T, 1) r
QGinj rr(t) 1 1 dr — ogm; [ j\oh dr
+ - — 4+ ~1
ksh Tw )\tc(ra t) )\th<7n7 t) r kh)\oh Tw )\th<7n7 t)

s
 Qing /TS ( Ao 1> &6
khon Jro \Aun(7:1) 7 (470

or simplifying,

~

AQinj k s Aoh dr rs(®) Aok dr
ety S [(E) [ (D)o Y
b P khXg, L\ ks rw \Aen(7,1) r . Aen(1,t) r
rr(t)
i T 1 1 dr
— —. (4.77
T /Tw ()\tc(r,t) Ath(r,t)> o @)

By making the same change of variable given by Eq. 4.59 and using the same arguments

as before, Eq. 4.77 becomes

r2 /4t N VA N
QGinj k s >\oh dz f >\oh dz
p=ap 2khA,, L\ ks 2 4 \Ain(Z) Z Sz m \An(Z) Z
Zr
a%nj/ ( 1 1 )dZ
+ — —. (4.78
2k Jo2 e \Ne(Z)  Mi(2)) 2 (4.78)

By taking the derivative of Eq. 4.78 with respect to Int, we obtain

QGinit k Ao At r? At r2
Ap =Ap+—2 | ——1 — 1 - ) 1) (-5
=gt | () (Gt (3 )
) 4 2 inj 1 1 2
Atn (T, t) 7’2 42 2ksh \ Nie(Tws 1) An(T, 1) 7‘ 442

which simplifies to
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~

/ / Aing k >\oh ( k ) 5\oh :|
Ap = Ay, + i [— B (AR B — 4.80
b b Qkh)\oh ks )\tc(run t) ks )\th (7‘5, t) ( )

Substituting Eq. 4.68 for Ap! into Eq. 4.80 and noting that A\.(ry,t) = Ay, We obtain

mi [k k A
A’:Lﬁ”[——<——1)$}. 4.81
P Sk Lk K, Atn (s 1) sy
Note here that Eq. 4.81 might take negative values for the pressure derivative when
k k Awe
——(——1)— 4.82
ks <ks ))\th(r&t) = 07 ( s )
or equivalently
« ks
)\th<7"3,t) < )\’wc<1 — Z) . (483)

(iii) If the temperature front is beyond the skin zone, Eq. 4.77 needs to be extended

to

T N r¢(t) N
B Ainj k ) / ( Aok > dr / f < Aok ) dr}

Ap = Ap, + i | (T _ 1) &y 1)
p=ap khAo, Kk o \ At (7, 1) N A (7, t) r
agin; [ 1 1 dr — 0qQin; / rr(t) 1 1 dr

— —_ 4 —= — —. (4.84

Tk / (/\tc(r,t) )\th(r,t)> T L Gt e ) e 48

Similarly to case (ii), by adding and subtracting an integral from r,, to rg, we obtain

s 3 r¢(t) 3

_ AGing k ) / ( /\oh > dr / ! < >\oh )
Ap = Ap, + — ——1 —1)]—+ 1) —
p=ar khon [(k e \Awn(7,1) A An(7,t) r
QGinj / Ts 1 1 dr — agin, / rr(t) 1 1 dr
+ —~ —+ - =
ksh Jo, \e(rst)  Awm(r,t)) r kh J,, Me(ryt) (i t) ) r

dr

r

AQini [ 1 1 dr  agm; [ 1 1
4 J _ ar J _
kh )., \Me(r,t)  Aa(rt)) r kh o J, \Me(r,t)  A(r,t)

or by rearranging the above equation

<
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QGinj k Ts Ao dr rs(t) S\Oh dr
s BE[(E ) [ (i) ()
P e T o L\ s ro \Aw(7;1) o Jr \Au(rt) r

oh

QGini k s 1 1 dr rr(t) 1 1 dr
+ 0 =—1 — — + — — .
kh ks rw \ (s t)  Ap(ryt) ) T - Aie(ryt)  Ap(ryt) ) 7

Assuming that the total mobility correlates in terms of the Boltzmann transform, we can

rewrite Eq. 4.86 as follows

.. s/4t A Zf
Qin;j k az Ao d
Ap = Ap, + in {(--1)/ ( 1>—+ ( 1)
b P 2khAp ks r2 /4t >\th Z Z r2 /4t >\th<Z)

A
)L Ga ) 7 L G wm) 7
2kh [\ %, s \e(Z Ath Z Tz 1t \Mel(Z Ath 2)) Z

(4.87)

Taking the derivative of Eq. 4.87 with respect to Int gives

aqmj k 5\oh 5\oh 5\oh
Ap = Ap, 4 ini K_ - 1) ( - T 4
- 2hehhon, L\ Nlrant)  Aa(rat) ) A1)
Lo [(k U S SR P S
2kh ks /\tc(rwa t) /\th (va t) /\tc(rsa t) )\th (7“5, t) )\tc(run t) )‘th (Twa t)

QAQinj k 5\oh 5\oh 5\oh
= Apl, + —=2 {—( - >+ —1|. (4.88
p 2kh)\oh k:s Atc(rwa t) )\tc(rsa t) )\tc(rsa t) ( )

Using Eq. 4.68 into the above equation and simplifying gives

Tk k A
Ay = v {— . (— _ 1> we 1 4.89
b 2khAye LKs ks Ate(Ts, ) (4.89)

As seen from the above equation, once the damaged region is completely flooded, A;.(r,t) =

Awe and Eq. 4.89 simplifies to
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r aqinj

TS W

(4.90)

So, as time increases, we expect to see a semilog slope that reflects water properties
evaluated at the injection temperature T,,;.

In order to compute the two additional pressure changes due to the multiphase and
temperature effects, it is necessary to construct the profiles for the total mobility \; via the
saturation distributions. Previously (see chapter 2), we were able to obtain these profiles
using the Buckley-Leverett theory assuming isothermal flow of incompressible fluids in
the reservoir. The situation here is somewhat different as the flow is nonisothermal. In
the following section, we will show that we can still use the same theoretical approach of
method of characteristics to generate saturation distributions during a cold waterflooding
assuming that convection is the only heat exchange mechanism in the system. This has

been previously established by Bratvold and Horne [11].

4.2.2  Nonisothermal Buckley-Leverett Saturation Profile for Radial Flow
As mentioned earlier, we will assume that convection is the only heat exchange
mechanism in the system during the injection period. In this case, the heat equation

given for a pure radial flow by Eq. 4.41 simplifies to

orT orT

(pC)e—r + (pCU>e§ =

o 0. (4.91)

Using the definitions of (pC). and (pCu). given respectively by Egs. 4.35 and 4.37 in
Eq. 4.91 yields

T,
ot

[pwcwuw + pocouo a_T =0. (492)

Ww@@ﬁwﬂww+ﬂ—@ma} il

Using the fact that S, +.5, = 1 and introducing the water fractional flow f,, through the

velocities u,, and u, as follows: u,, = f,u and u, = fou = (1 — f,)u, Eq. 4.92 becomes
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(1-9¢) oT

¢

¢ (pwcw_poco>5w+pooo+ at

or equivalently

ar u [(pwc‘”

o qﬁ{(m% PoCo)Sw + poCo

For simplicity, we set

_ PG
B prw - poCo7

and

poCo + 52, C,

T T puCu— poCo ’

so that Eq. 4.94 becomes
a_T + u Ju £ A a_T —
ot ¢\ S, +7)0r

oT
prCr:| —+U [(pwcw_poco)fw+poco‘| E

fw+p0 :| a_T_
C’} or

=0, (4.93)

(4.94)

(4.95)

(4.96)

(4.97)

The rearranged Eqs. 4.97 and 4.18 can be expressed by a vectorial equation as follows

b
Il
SIS
/\
Sk
+ 1|+
3>
~~
o

u Ofw u Ofw
6 oT % 95w

(4.98)

(4.99)

In order to solve this system, we need auxiliary conditions. The following boundary and

initial conditions are used:
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T(r,t) =Ty forr=r,andt >0, (4.100)

Sw(r,t)=1—2S, forr=r,andt >0, (4.101)
T(r,t=0)=1T, forr>r,, (4.102)

and
Su(r,t=0) =S5, forr>r,. (4.103)

Note that the system described above is a generalization of the Buckley-Leverett equation
which is obtained when T is constant. The eigenvalues of the matrix A are obtained by
computing the determinant of the matrix (A — 1) and finding the roots of the resulting
second degree polynomial equation. But since A is a lower triangular matrix, its eigen-
values are the diagonal elements and therefore readily obtained. Thus, its eigenvalues

are

_u fw+)‘ _ Ginj fw+)\
Y= q_b(Sw —1—7’) ~ 2mhor (Sw +T>’ (4.104)

and

uafw_ Qing afw

2= 6058,  2rher 0S,’

(4.105)

An important result is that the two eigenvalues of the system are real and are functions
of the variables T" and S,,. The system described by Eq. 4.98 along with the associated
boundary and initial conditions Eqs. 4.100 to 4.103 constitutes a quasilinear hyperbolic
system that can be solved by the method of characteristics. This method consists in

finding a family of characteristic curves in the (r,t) plane such that
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dr
== (4.106)

with + = 1 or 2. However, the integration of Eq. 4.106 is not a straightforward process
as the eigenvalues are functions of the variables 7" and S,. We will solve the problem
differently (see [7]) by considering the left eigenvectors of the matrix A that we denote by

7; with ¢ = 1 or 2 and defined by the following equation:

(7)" (A =) = (0,0). (4.107)

The left eigenvector 7} of the matrix A with the associated eigenvalue 1), is therefore given

by

()T (A =i I) = (], 1Y) = (0,0), (4.108)

which gives

r? =0, (4.109)

and

(s — 1b1)r'? = 0. (4.110)

Thus, T§2) = 0 and the left eigenvector 7 is

%

3L
I

(4.111)
0

where 7’51) is any nonzero real number. Similarly, the left eigenvector 7 of the matrix A

with the associated eigenvalue 1) is given by

239



(7)T(A = oI ) = (1§, r$?) — (0,0), (4.112)
leading to the following equation

wdfw (2)

(1 4
e =0. 4.113
(= v+ S (1113)
Thus, the left eigenvector 75 can be chosen such that
udfw
= 2 . (4.114)
Yo —

Let us multiply Eq. 4.98 by the left eigenvector 75. We have

oT o (T
(7o) " = + ()T A= =0. (4.115)
From the definition of a left eigenvector given by Eq. 4.107, we can write (7)) A = 1y (75)7.

Using this result in Eq. 4.115 yields

u 0 fy oT w0 fy oT B
(MT,wg ¢1)a . + 1y (MT,% wl)a— . =0, (4.116)
or simply,
udfy, 0T u 0 fy, 0T 0S|
o dT ot + (12 wl) + 1y 5T or + (=) 5= | = 0. (4.117)
From Eq. 4.104, we have
877[}1 u 1 8fw
= 4.11
T ~ 68, +7 0T (4.118)
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or

u0fw
¢ OT

= (S, +7)%. (4.119)

If we also take the partial derivative of Eq. 4.104 with respect to S,,, we obtain

Opr w1 | 0fw  futA
- _Z — 4.12
0S,, ¢Sw+¢[asw Sp+T1]’ (4.120)
or using Eqs. 4.104 and 4.105
oYy 1
= — 4.121
95, ~ Sy sz (4.121)
which we rewrite as
0
Yo — 1 = (S + T)a—g. (4.122)
Substituting Eqgs. 4.119 and 4.122 in Eq. 4.117 and simplifying gives
O 0T | 09105, s 0P 0T 01 05| _ (4.123)

oT ot ' 39S, ot oT or ' 39S, or

Since 11 = 1(T,S,) is a function of only the temperature T' and the water saturation

Sw, we can rewrite Eq. 4.123 as

L pghp—— = 0. (4.124)

Therefore, Eq. 4.97 and 4.124 can be expressed by the following vectorial equation

oT o (T ,
o + B =0, (4.125)
(G

where B is a 2 X 2 matrix given by
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Figure 4.2: Solution in (T',11) space.

=" " (4.126)

0 9,

An important remark about the diagonal matrix B is that it has the same eigenvalues
as the matrix A. Note also that by using the new formulation of the problem given by
Eq. 4.125, the derivative of the fractional flow with respect to the temperature is not
needed anymore as in the case of Eq. 4.98. Moreover, Eq. 4.125 suggests that T" and
must be constant along the characteristic curves % = 1 and % = 1)y respectively. The
variables T" and v; constitute the Riemann invariants. For a detailed discussion on the
Riemann problem, see references [32] and [7]. The structure of the solution consists of
a combination of shocks, where T is constant and the shock speeds are 1, or 15, and a
contact discontinuity, where ¢/, is constant across the discontinuity and the speed of the
discontinuity equals to 1.

Fig. 4.2 shows the solution in the (T’,1;) plane. Fig. 4.3 is the fractional flow

diagram where the fractional flow curve represented by the solid triangles corresponds to

the temperature of injected water. We refer to it as the cold fractional flow whereas, the
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Figure 4.3: Solution on the fractional flow curves.

curve plotted in solid circles corresponds to the initial reservoir temperature. It will be
referred to as the hot fractional flow. The dashed line, tangent to the hot fractional flow
curve, represents the characteristic curve with slope 15. The dotted line, also tangent to
the hot fractional flow curve, is the characteristic curve with slope ;. The point m; on
both figures corresponds to the initial condition provided by Eq. 4.102 for the temperature
and Eq. 4.103 for the water saturation. Thus, starting from the initial condition my, we
follow the hot fractional flow curve until the point ms is reached. This tangent point to
the hot fractional flow curve is the first discontinuity point in the profile representing the
flood front saturation S,¢. In the (7',¢) plane (see Fig. 4.2), this point corresponds to
¥y evaluated at Sy, r and Tp,;. We continue from the discontinuity point ms along the zone
of constant temperature T' = T,; to the point m3 which represents the tangent point of
the characteristic curve with slope ¢ to the hot fractional flow curve. The corresponding
water saturation, called temperature front saturation and denoted by S,r is obtained
by equating the functions (S, To;) and 19(Sy, Tp). Due to the temperature change,
the solution jumps from the discontinuity point ms to the landing point m,4 on the cold

fractional flow curve. The location of this point in terms of water saturation is obtained
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from the equation (S5, Twi) = U1 (Swr, Toi) where the only unknown is S¥. Finally,
the remaining segment of the solution is obtained by going from the point my4 on the
cold fractional flow curve to the injection point ms characterized by a water saturation
of 1 — S, and a zero speed. This is how the water saturation profile is constructed when
cold water is injected in a hot reservoir assuming only convection is the main mechanism

to heat transfer. Later, we will proceed to determine some profiles using numerical data.

4.2.8  Generalization to Horizontal Well Case

In this section, we consider injection of cold water of temperature T;,; at a constant
rate given by ¢;,; through a horizontal well of radius r,, and length L that penetrates a hot
reservoir of temperature 7T,; and of constant formation thickness h. As we proceeded for
the vertical well case, we use the Thompson-Reynolds steady-state theory to construct the
injection analytical pressure solution for a cold waterflooding case through a horizontal
well. We will also show that this nonisothermal injection solution for the wellbore pressure
change can be written as the sum of the isothermal injection solution based on the initial
temperature of the reservoir and an additional pressure change component that takes into
account the thermal effects. Similarly to the isothermal case, several flow regimes can
develop during an injectivity test in a horizontal well due to the fact that the propagation
of the pressure diffusion and the propagation of the water front occur on different planes.
But unlike the isothermal case, the propagation of the temperature front needs to be
included into the analysis. Therefore, there will be a third name in each flow regime
which is associated with the propagation of the temperature front in the system. In the
following, we consider the injection solutions for the specific flow regimes that can be
observed in the horizontal well case.
First Radial/First Radial/First Radial Flow Regime

This is the case when the steady-state zone, the flood front and the temperature
front are all moving radially in the (z,z) plane. The wellbore pressure change for this

particular case is expressed by
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o [T _alnt) dr
Ar=7 /Tw k(M) T (4.127)

By introducing the flood front 7., and the temperature front r,,r in Eq. 4.127, we

obtain

A _g/szT(t) qt(n t) @+g/rzx7f(t) qt<r7t) ﬂ—i_g/oo qt(rat> ﬂ
P2T ), ko) T L) ROAant) T L KONt T

(4.128)

By adding and subtracting to Eq. 4.128 an integral from r,, to r,, r, we have

A _a/TZ””’T(t) qi(r, t) dr_i_a/r”’f(t) q(r, t) dr+a/°° q(r,t) dr
PTT). Rt 7 L KOAa(nt) T L KA t) T

+ & / rer® g(rt) dr o« / @ g(rt) dr (4.129)
LJ,., k(r)\(r,t) » L J,, k(r) A (r,t) 7’ '

which reduces to

Ap _ g /Tzz,f(t) qi (’I"’ t) ﬁ " g /OO qt(’r, t) ﬁ
LJ,., E(r)A 0 E(r)\(r,t) T

szT(t)
« ’ 1 1 q(r,t) dr

— — —. (4.1
+L/w (/\tc(r,t) )\th(r,t)> ) oo (4180

According to Eq. 2.135, the sum of the two first terms in Eq. 4.130 represents the isother-

mal injection solution for the wellbore pressure change based on the initial temperature
of the reservoir that we denote by Ap(T = T,;). Another expression for this isothermal

solution is derived in chapter 2 and given by Eq. 2.137 which we rewrite here as

Toa, f (t) A
Qing ! )\oh dr
A T:Toi :AOT:TOZ' +f\/ ( —1) 5 4.131
p( ) = Apo( ) i, (1) h ) (4.131)

Tw

245



where Ap,(T = T,;) represents the single-phase solution based on oil properties at irre-
ducible water saturation evaluated at the initial temperature of the reservoir and defined
by Eq. 2.138 for an offset well and by Eq. 2.139 for a well in the center of the formation.
Based on this and using the fact that the temperature front is within the steady-state

region such that g(r,t) = gin; for r < r., 7, Eq. 4.130 becomes

T2e.1(t)
QGQinj T 1 1 dr
Ap=Ap(T =T, — : 4.132
p = Ap( )+ /w ()\tc(r,t) )\th(r,t)) & (r) (4.132)

Here, we distinguish three situations with respect to the positions of the water front and
the temperature front. These are:
(i) The case for which the water front is in the skin zone. This also means that the

temperature front r,, p < 5. Therefore, Eq. 4.132 becomes

T2z T(t)
O : 1 1 dr
Ap = Ap(T =T, — — 4.1
p p( O’L) + ksL / ()\tc(’["’ t) )\th(r’ t)) r Y ( 33)

Tw

with Ap(T = T,;) provided by Eq. 2.141. By introducing the Boltzmann variable and
by assuming that Ay, and A, are unique functions of Z so that Ay, (r,t) = Mp(Z) and

Aie(1,) = Me(Z), we can rewrite Eq. 4.133 as

~ ~

Z
QQinj )\oh >\oh dZ
Ap = Ap(T = T.,;) + . / ( - )—. 4.134
p= Al ) 2k Lo Jr2 st \Nee(Z)  Aan(Z)) Z ( )

If we first take the derivative of Eq. 4.134 with respect to the natural logarithm of time

(using Leibnitz’s rule) and then use Eq. 2.144 in the result, we obtain

~ ~

QAQinj k )\oh Aing )\oh 5\oh
Ap = J{H (—_1)]+ : ( - L (4135
b k‘L}\Oh 2k75 )\th (Twa t) QkSL)\Oh Atc(rwa t) )\th (run t) ( )

or simply
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/ aqinj k ( 5\oh ):|
Ap' = — |14+ ——= -1 4.136
b k’L)\Oh |: 2k8 Atc(rwv t) ( )

At the wellbore, \jo(7y,t) = Awe. If we use the definition of the end-point mobility ratio

evaluated at T,,; denoted by MC, Eq. 4.136 simplifies to

inj k 1 5\o
a = el g (1)) (4137)
oh S c Noc

or equivalently

. . k 1 /[l/
Ay = 2ing 14 = Hee ). 4.138
b k)L)\oh |i i st (Mc Hoh )1 ( )

This equation indicates that the pressure derivative can be negative at early times if

k(1 poe >
+ = —1) <0, 4.139
2ks (MC Hoh ( )
or after rearranging
9 ka Hoc
M. 1- > . 4.140
( k ) Koh ( )

(ii) The case for which the water front is beyond the skin zone but the temperature front
is still in the damaged region. In this case, the injection wellbore pressure change is also
given by Eq. 4.133 but with an isothermal component provided by Eq. 2.150. We rewrite

the nonisothermal solution as

~

QGinj k Ts Aoh dr
Ap = Ap,(T =T,) + o {(——1)/ ( —1>_
b P ( ) kl/)\oh ks Tw )‘th(r7 t) r

~ ~

vz, () Aoh dr AGin; [T Aoh Aoh dr
n oh___ 1)U L X / ( oh__ _No )—. 4141
A Cr R R vy ICT R VIT) A

Tw

In terms of Boltzmann variable, Eq. 4.141 can be expressed as
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LD\ dz
QQZn] oh
Ap = Ap,(T =Ty _
b Po )+ sz,\thk ) 72/4t Ain(2) ) Z

Zs Mo az ag; Zr h\ dZ
4 oh_ _q ing / ( Ao ) —. (4.142
\/7‘;20 /4t (Ath(z ) ) } ks Lo, Jr2 2 /4t Ae(Z )\th (z2)) 2 ( )

From Eq. 2.138, we have

Aing

kLN,

Apo(T' =Ty) = (4.143)

So taking the derivative of Eq. 4.142 with respect to the natural logarithm of time and

using the result from Eq. 4.143 gives

. e A A A
A I Oéqunj + Oéqm}] |:(_ _ 1) ( oh N oh ) + ( oh _ 1):|
P, kLA, L\ K A(r2/4t)  An(r2/4t) Aun (13, /4t)

Qinj )\oh j\oh )
+ = — . (4.144
L (Atc<rzu/4t> () A

Simplifying more the above expression leads to

i k A koA
N — [1 = (— = 1) _Coh | B Joh } 4.145
b 2kL>\oh ks /\th(TSa ) k Atc(rwa ) ( )

or by noting that \.(ry,t) = Awe and introducing the end-point mobility ratio evaluated

at the initial temperature of the reservoir T,; and denoted by Mh

Aing s k 5\wh k 5\wh
Ap = —2 {1+M—(——1)<——1)+—(A -1)]. 4.146
b 2kL)\wh " ks >\th (Tsa t) ks )\wc ( )
Eq. 4.146 shows that the pressure derivative can take negative values during this period

of injection if the following condition is satisfied:

~ k 5\wh k 5\wh
1+ M, — (k_s — 1) (—)\th(rs,t) - 1) + k_s (S\wc — 1) < 0, (4.147)
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or equivalently

wce ks 9 Q ]{?5
)\th(rs, t) ('u + ?Mh) < A\wh (1 — E) . (4148)

Hwh

(iii) The case for which both the water front and the temperature front are beyond the

damaged region. In this case, the injection wellbore pressure change is given

aGinj [ 1 1 dr
p = Ap( )L / ()\tc(r,t) /\th(r,t)) .

Tow, 1 (t)
Qi T 1 1 dr
OGing _ ar 414
L / <)\tc(r,t) o) 7o 49

where Ap(T = T,;) is given by Eq. 2.150. We rewrite Eq. 4.149 as

5\oh 5\oh ) ﬁ

AGing k "
Ap = Ap(T = T,) + 2% K——l)/ _
s AU B A Wy R e § s

72,7 (%) A h 5\ h dr
° — ° — 4.1
+/ <)\tc(r, t)  Awm(r, t)) r’ (4.150)

Tw

or in terms of the Boltzmann variable as

r2 /4t N \
Gin; k ) / : ( Aoh Aok )dZ
Ap=Ap(T =T,) + - ——1 — -
b o ) 2k LA, [(ks 2 /At Me(Z)  Mn(Z)) Z

Zr Aok Ao )dZ}
+ - 0 (4151
/ra/4t<Atc<z> w(2)) 7| WY

where again Ap(T = T,;) is given by Eq. 4.131 and Eq. 4.143 applies. Taking the derivative

of Eq. 4.151 with respect to In(t) yields
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~ ~

i mi [k A A A
A I aqinj + OZQZCL] |:(_ . 1) ( oh . oh > + < oh B 1):|
P, 2o, [\ ks Nin(r2 /4t)  Nn(r2/4t) Ain(r2,/4t)

~ ~

QAdinj |:<£ _ 1) ( /\oh i )\oh + /\oh . )\oh )
2/{:L5\Oh ks An(r2/4t)  Ne(r2/4t)  Ne(r2/4t)  An(r2/4t)

5\oh 5\oh
— . (4.152
e ) 1

+

If we simplify and rearrange Eq. 4.152, we obtain

/ QAing k 5\oh 5\oh 5\oh
Ap = A 1+<——1)( — )+ : 4.153
b 2kL)\oh |: ks )\tc<7ﬂwa t) /\tc<rsa t) /\tc(Twa t) ( )

which we can rewrite as

AQinj k 5\oh 5\oh oh
Ap = e {1+(——1)(A ——)+A } 4.154
P kL ks Awe  Me(Tsit) ) Ao ( )
or
0in; [ pon v, [k Aue
A’:—Ajlle Mc—i-(——l)(l——)}. 4.155
b QkL/\wc ,uoc ks )\tC(TS7 t) ( )

~

Once the damaged zone is completely flooded, A\i.(rs,t) = Aye and Eq. 4.155 becomes

Ap = ing [1+’“‘ hM} (4.156)
2ULhpe | Hoc

First Linear/First Radial/First Radial Flow Regime

This flow regime corresponds to the case when the steady-state zone of constant
rate is moving linearly in the z-direction while the flood front and the temperature front
are still propagating radially in the (z, z) plane. Recall that the horizontal well is assumed
to be along the y-direction. Similarly to the isothermal solution (see Eq. 2.156), the

wellbore pressure change for this case is given by
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kL [, M(x,t) h(z) L N () (4.157)

Ap— T< gz, t) dx Oé/zw q(r,t) dr
P= RN ) T

If we introduce the the water front location r,, ; and the temperature front 7., r, we can

rewrite Eq. 4.157 as

T &  TGin; d aqm rza,7 (1) 1 dr
Ap— / ot ; / AT Oing /
b kLo, x:oqt( ) h(x) k:Lth h(x . Ate(ryt) k(1)
t)

AQinj /TZE 4 1 dr QQin;j /Zw T
+ 4+ . (4.158
L Jovi dn(n) vk () Loy Jrs ) 7RO) (4.158)
By adding and subtracting an integral from r,, to r,, 7, Eq. 4.158 becomes
To o dx TG [ dx QGini rea,7 (1) 1 dr
Ap = —— / qr(x,t — / + J /
tLo S ™V R T kL h(:c) REEE
+ aQing /Tzz’f(t) 1 QQZn]
L rzac,T(t) )\th (T t) Tk LAOh, Tzx f(t
Tz (t) T2a,T t)
AQinj - 1 a(_hn] / 1 dr
4.159
+ L /Tw Aen (7, 1) rk Ain(r,t) rk(r)’ ( )

or after rearranging,

To e dx TG, [ dx afin; [ ® N\, dr
Ap = ———— / x,t — ol / — + / T~
S @(z.1) h(z) kLA, h(z) L A (1, 1) Tk(r)

Zw Tzx T(t) )\ \
QAdinj / dr Ainj / ' < )\oh )\oh ) dr
+ —= — 4+ —= — . (4.160
L/\oh 7o, £ (1) Tk(T) L)\Oh Tw )\tc(ra t) /\th<r) t) Tk(r) ( )

A comparison between this equation and Eq. 2.157 indicates that the nonisothermal so-

lution for the wellbore pressure change is expressed as the sum of the corresponding
isothermal solution (Eq. 2.157) and a component that takes into account the difference of

mobilities in the flooded bank. Thus, we have
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e )
AQinj - Aoh Aoh ) dr

Ap = Ap(T = T.,;) + —2 / ( - : 4.161

p = A ) S M) n(r8) ) TR(F) (4.161)

Tw

with Ap(T = T,;) given according to Eq. 2.163 by

Ap(T = Tp;) = —< / qt(m,t)d—w 4 Ximg {ﬁ(sz—ks)]

kLop Ja=0 h(z)  kh),, LL
| Oing / rens () ( Aon 1) dr
L>\oh Tw /\th(r>t) 7"]{3(7“)
Tzx (t) 3
QAfinj & >\0h dr
=Ap,(T =T, + — / ( —1) . 4.162
pM=T)+ 3% | Gt~ Y ey 419

Similarly to the first flow regime, we observe three different situations:

(i) The water front and the temperature front are in the skin zone. Eq. 4.161 becomes

~

Tzx (t)
OQinj f Aok dr
Ap = Ap (T =T,;) + = / ( —1)—
b Pol ) ks Lo, An(7,t) r

2w, (1) I\
QQinj / = ( Aoh Mok )dr
L Y _ (4163
ksLon Jr Ae(r, 1) Aw(rt)) T ( )

Tw

that we rewrite in terms of the similarity variable Z as

~

Z
AGing ! )\oh az
A:AOT:TOZ'—F—A/ < —1)—
p =gl ) 2k Lon Jr2, /a0 \Atn(Z) Z

Zr 3 \
Ot%’nj / ()\oh )\oh )dZ
L - —. (41064
ks Lop Jr2 e \Nee(Z2)  Mn(2)) Z ( )

Differentiating Eq. 4.164 with respect to In(t) yields

252



~

- Ao
Ap = Ap(T = Tp) + —dins ( ° —1)
P= APl =) 55\ a2 D)

~ ~

Qdinj /\oh >‘0h )
. - . (4.165
2 Lhon (Atxra/zu) (g ) (4105)

or simply

~

/ / QAfinj )\oh
Ap = Ap. (T = Ty) + : ( —1). 4.166
b b ( ) 2ksL>\oh /\tc<rwa t) ( )

The pressure derivative of the single-phase oil solution is defined by Eq. 2.170. Therefore,

using this equation along with the fact that A(r,t) = Awe in Bq. 4.166 gives

i AnBkigt Bk [ on
Ay — Xing [1/ ’ +——(A —1)], 4.167
Po 2khop PCroL? Lks\ \ye ( )
Wini | [A7BkI ot h k[ o 1
Apl = = [ - +—— ——1]]. 4.168
b Qkh)\oh QZ)CtoL2 L ks Hoh Mc ( )

(ii) The case for which the water front is beyond the skin zone but not the temperature

or finally

front, is also described by a wellbore pressure drop given by Eq. 4.161 with the isothermal

component Ap(T = T,;) provided by Eq. 2.173. In this case, we have

~

Ts Tzx (t) 3
B B Ainj k ) / < Aoh ) dr / S < Aok ) dr
Ap = Ap, (T =T,;)+—= ——1 -1 —+ -1 —
b Pol ) kLA, |:(ks o Aen (7, 1) r - Ain (T, 1) r

- . .
QQinj / n ( Aoh Aoh )dr
+ = — —. (4.169
ksLon Jra, Aie(ry ) Aa(rt) ) 7 (4.169)

In terms of Boltzmann variable, Eq. 4.169 is rewritten as
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r2 /4t 1 VA N
AQin; k s )\oh dz f >\oh dz
TS K__l)/ < _1)_+ !
b Pol ) 2k LAy L\ Ks 2, /4t Ain(Z) Z )2 m Ain(Z) Z

Z . "
quinj / (th )\oh )dZ
+ - — —. (4.170
ks Lop Jr2 e \Nee(Z)  Aan(2)) Z ( )

By using Leibnitz’s rule when differentiating Eq. 4.170 with respect to In(t), we get the

following expression for the pressure derivative

~ ~ ~

/ / a(ij k )\oh )\oh )\oh
AP = AP (T = T) + [(__1)( _ )+ 1
V= Ap ) A Mn(r2 /4 Na(r2f4t) ) " (12 /4t)

~

AGing /\oh )\oh )
: . (4171
L (Atcvz,/zxt) ()

that we simplify to

inj k 5\oh k ;\oh
Ap = Ap(T = Tp;) + —dind {—A —1—(——1)—]. 4172
P ol ) 2k Loy LK Ain (75, t) ( )

5 Awe

Introducing the end-point mobility ratio evaluated at T;, it is easy to show that FEq. 4.172

can be written as

. -k k Aun
Ap' = Ap(T = T,) + —dins {1—M +—( we —1) . (-—1)(*—1)},
P p( ) QkiL)\wh " ks Hwh ks )\th<rsat)

or,

inj 476k;\oht QAing 9 k Hwe k 5\wh
Ap = g [TIPRChT y  Ying [1—M +—( S [ ua ) | L.
b 2kh>\oh ¢Ct0L2 2kL>\wh " ks Hawh ks >\th (Ts> t)

if we use the expression of Ap! (T = T,;) provided by Eq. 2.170.
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(iii) This is the case where both fronts are beyond the skin zone. The wellbore pressure

change is expressed in terms of (r,t) variables and the Boltzmann variable respectively

by

Ts 3 Tz (t) 3
_ - QGQinj k ) / < Aoh ) dr / f < Aok ) dT‘]
Ap = Ap (T =T,;)+— —1 -1 —+ -1 —
P = Aol LA, Kk: a7 () )T

in; K k > / ( Ao Ao > dr /Tzw(” ( Aoh Aoh ) dr]
+ =1 — —+ - —1,
kLA L\ Fs v \Aie(r5t)  Ap(r,t) ) T . Aie(r,t)  An(r, t)

r

(4.175)

and

" 2 /4t 3 Zy
agm; [( k S iz S iz
sy antr - [ (£ [ _Q_+ )
P = Apol ) 2kL,;, L\ ks v2 1t \An(Z) Z 2 a )\th Z) Z

i QQin; {<£—1>/T§/4t< S\Oh _ ;\0h )d_Z+ Zr < ) 1
QkLS\Oh ks r2 /At el Z) n(Z)) Z Me(Z )\th

r2 /4t

(4.176)

Differentiating Eq. 4.176 with respect to In(t) gives

otk . . .
o st 2 () i)
p= AR =Ta) 4 oo s Nn(2J40) (2 ) T N2 /48

QAQing |:<£ . 1)( )\oh . )\oh + >\oh _ 5\oh )
2/€L5\Oh ks A (r2/4t)  Ne(r2/4t)  Ne(r2/4t)  An(r2/4t)
5\oh 5\oh
— . (477
R aen) 41

+

If we simplify and rearrange the above equation, we obtain

>/>

o=y =+ 2 [Ny (£ (

oh 5\oh ):|
2 ), 4.178
2k LAy, LA ks Awe  Ae(ra t) ( )
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or equivalently,

nj 47Tﬁk5\oht Ainj Hoh 3 k 5\wc
Ap = dimg_ J2T0 i—— {1— Mo+ (= —1)(1——2% )|, (4.179
b Zkh/\oh d)CtoL2 QkL/\wc Koc ks Atc(rw t) ( )

where the derivative of the single-phase oil solution, Ap/ (T = T,;), was replaced by its
expression given by Eq. 2.170. As time goes on, the water saturation increases leading to
an increase in the total mobility in the damaged zone. Eventually, A\.(rs,t) = j\wc and

the pressure derivative becomes simply

mnj 4 k;\o t mj 0 ~
Ap = Oni_, [4TD kT ing {1—’“"%\4. (4.180)
2kh\,, | OCioL 2k L)y, Hoc

First Linear/First Linear/First Radial Flow Regime

This flow regime occurs when both the pressure diffusion and the water front move
linearly in the z-direction whereas, the temperature front is still propagating radially in
the (z,z) plane. In this case, the wellbore pressure drop is described by the following

expression

Ap — & i il
PZRL ), Nale ) h(@) T kL Sy Al t) B(@)

+g/%T(” q(r.t) dr +g/zw wlnt) _0r_ -y gg)
LJ. Me(ryt) TR(r) L S— A (7, t) TE(7)

ra [“O g(x,t) dz 7ra/°° q(x,t) dx

w

By adding and subtracting to Eq. 4.181 an integral from 7, to 7., 7, we obtain

B k_L 1 Ath('rat) h(l’) k_L

A ra [“O gz, t) dz 7ra/°° q(x,t) dx
p=
wp(t) Mn(T,1) h(z)

+ ¢ / e qlnt) dr o [ grt) dr

Lt Nelrt) vk(r) T L)y A t) rk(r)
+E/TZI'T(t) qt(r,t) dr a 722,17 (t) qt(’r‘,t) dr 7 (4182)
L Aalrt)vh(r) L, Aart) rh(r)
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or after manipulating

Ap = — — 4 — A Sk
PZRL ), Nalw ) h(@) kL Sy Al t) B(@)
a /Zw q(r,t)  dr g/””(t) [qt(r, t)  q(r,t) ] dr

L), Nty k() T L Nelrnt) Al t) | TR

ra [“O g(x,t) dz 7ra/°° q(x,t) dx

(4.183)

From Eq. 2.182, we have

a /z“’ q(r,t) dr Ainj /z” ( o > dr
a _— 1 +
L Tw )‘th<r7 t) Tk(?”) L)\oh Tw >\th (T7 t) T’]{Z(T’)

~

Substituting this result into Eq. 4.183 and setting Ay, = Ao, ahead the front and ¢; = gin;

behind the front gives

zf(t) )\ )
TOGin; ! Aoh dx e / dx
Ap — T4 / L o)
P kLo S M@ ) B(@) T kLo xf(t)%( )h(x)

o [ () o ()]
LAon Jrw )\th(rrat> T]f(T) kL), Tw

oo o(t) i .
QQinj / T [ Aoh Aoh } dr
L - . (4185

L)\, Me(ryt)  An(r,t) | rk(r) ( )

Tw

Except for the last component, the sum of all the other terms in Eq. 4.185 represents
the isothermal pressure change according to Eq. 2.183. Thus, based on this and using
Eq. 2.188 which gives a simplified form of the isothermal solution, our nonisothermal

pressure change is rewritten as
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Zw \ T (t) 3
QZn] )\oh dr 71-OZQZ‘TL]‘ / >\oh dz
A Ap (T = Tp)+—— / < —1) +—= / ( -1
p= Aol o b Gt ) o i, L Ut ) @)

oo o(t) . .
AGin; / - |: Aoh Aoh 1 dr
Lo _ . (4186

Lo, Me(ryt)  An(r,t) | rk(r) ( )

First Linear/First Linear/First Linear Flow Regime
This situation pertains to the case when the steady-state zone and both fronts are

propagating linearly along the z-direction. The wellbore pressure change in this case is

expressed by

Ay T o2 g (x,t) de Wa/f(t) q(z,t) dx
PTRL ), M@ty h(@) T KL Jop M) hx)
t)

= a(r. ﬁ—+%/w%mw dr_—(yas7)

TR Ly Al t) Biw) No(rit) TR(r)

Here, we add and subtract an integral from x; to 7 and another one from r,, to z, to

obtain

Ap = E wr®) Qt(x7 t) dx @ /xf(t) qt(xa t) dzx

kL z1 )\tc(xat) h(ﬂ?) k_L 7(¢) ( (:C)
+@.WQMJ dx g/
kL zs(t) )\th( h L 7“)
o [T g, (w t de _a/ (z,t)  do
kL 1 )\th (ZE L )\th .Z't ( )

(z,
a qi(r,t) a [ q(rt) dr
I / AT, )rk:(r) I /w A, 0) riry A

or
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Ap =

o 2O gz, t)  dx E/OO qi(z,t) da
kL [,  Aw(z,t) h(z) kL (2, 1) h(z)

v [T aen by %/M [A: -0 - f:z:;} =0

. qi(z,t) | dx
{ Aie(, t B )\th(x,t)} h(x) (4.189)

According to Eq. 2.177, the sum of the three first terms in the above equation represents
the injection pressure change evaluated at the initial temperature of the reservoir. This
solution as mentioned in our discussion about the first linear/first linear /first radial flow
regime is provided by Eq. 2.188. Therefore, if we substitute Eq. 2.188 in Eq. 4.189, we

obtain

Ay = B (1 =T+ 9% [ (Fe 1)

Aoh An (7, 1) rk(r)
+7T0zqinj /If(t)< S\Oh _1) dz +Oéqmj /Zw[ S\Oh B S\Oh } dr
kL), Je Ain(z, 1) h(z) Ly Jrw LMe(rst)  Xn(rt)] rk(r)
7 (t) 3 3
TQin; / T { )\oh )\oh :| dx
+ 2 — . (4.190
tLh Sl ) ) iy A0

Generalized Injection Solution

In the above subsections, we discussed the main flow regimes that can be observed
when injecting cold water through a horizontal well. However, we did not derive equations
associated with the flow regimes corresponding to times when the steady-state region
of constant rate propagates radially in the (x,y) plane. These are: second radial/first
radial /first radial, second radial/first linear/first radial, second radial/first linear /first
linear, second radial/second radial/first radial, second radial/second radial/first linear
and second radial/second radial /second radial flow regimes. This is due to the fact that
the procedure to do so is similar to the one used in chapter 2 for an isothermal injection.

So, based on the analysis of the different flow regime observed during a cold injection
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test through a horizontal well, we show that the equations derived for each period can be

represented by one general expression given by

Ap = pur(t) —pi = Ap(T =Ty) + Apy—er(t) + Apur(t) + Apy_y (), (4.191)

where Ap(T = Ty;) is the wellbore pressure change obtained by injecting water through
a horizontal well of radius r,, into an oil reservoir of permeability k(r) at the initial
temperature T,;. The general expression of this solution is provided by Eq. 2.231 along
with Egs. 2.232- 2.234. The terms A p,_. v, A p, 7 and A p,_, r denote additional pressure
change expressed respectively in the (z, z) plane, z-direction and the (x,y) plane caused
by the contrast between total mobility in the cold water bank and total mobility in the

hot water bank. They are given by

o min(2zw,rzz, 1 (t)) )\A /\A d
O“bn] oh oh r
Ap,.r(t) = —= — : 4.192
Po—zr(t) L., /rw ()\tc(r, t)  Awm(r, t)) rk(r) ( )
b R N
. TQ(in; / ( )\oh )\oh ) dx
Ap,7(t) = - — , 4.193
par® = | e Fmen) B (4:195)
and
o pmax(§ray g (1) 0\ \ d
_ QAfinj / oh oh T
Apy_,7(t) = = — —. 4.194
Py (1) kh Ao, J 2 <)\tc(r,t) )\th(r,t)> r ( )

In Eq. 4.193, the constant of integration b is defined by Eq. 2.235.

4.3 Falloff Solution under Nonisothermal Conditions for Radial Flow
During falloff, it is expected that heat conduction will be the dominant cause of
temperature changes and that the transfer of heat through convection will be small. So, by
assuming only conduction, the temperature distributions will spread out as a consequence

of an increase of temperature with time behind the temperature front. Eventually, the
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temperature front will disappear when the system recovers its original reservoir temper-
ature. On the other hand, the water saturation distribution will remain stationary when
the well is shut-in and throughout the entire falloff test since the fluids are considered to
be incompressible. The problem consists of finding the temperature of the system during
a falloff test in the reservoir which initially has a spatial distribution established within
it at the end of the injection test. The falloff pressure solution can then be constructed

once the temperature profile is known. These two points are addressed in this section.

4.8.1 Model Description for the Temperature

Throughout, water, oil and rock thermal conductivities, denoted respectively by
K,, K, and K, and water, oil and rock specific heat capacities denoted by C,,, C, and
C, are assumed to be constant. The thermal conductivity of a porous media, denoted by
K., is defined by Eq. 4.36. Recall that this expression is giving by

K, = ¢(KpSw + K,5,) + (1 — ¢)K,, (4.195)

or simply using the fact that S, + S, = 1,

K. = §[(Ky — K,)Sy + K] + (1 — 9)K, . (4.196)

We also introduced a total specific heat capacity of a porous media defined by Eq. 4.35

and given by

(pC)e = (b(prwa + poCoSO) + (1 - ¢)prcra (4'197>

or

(PC)e = l(PwCuw — PoCo)Sw + poCol + (1 — ¢)p,C. (4.198)

Eq. 4.196 and Eq. 4.198 indicate that K, and (pC'), are unique functions of water satura-

tion. For simplicity, we let K, and (pb)ew be respectively the thermal conductivity and
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the total specific heat capacity of the porous media evaluated at residual oil saturation.
They are respectively given according to Eq. 4.196 and Eq. 4.198 by

A

Kew = ¢[(Kw - Ko)(l - Sor) + Ko] + (1 - Qb)Kr, (4199)

and

(PC)ew = D[(PuCis = PoCo) (1 = Sor) + poCo] + (1 = $)p,C. (4.200)

The initial spatial distribution of temperature in the reservoir is given by the following

step function

Twi r S TT(tp)v
T(t=t,) = (4.201)

Toi T2 r1r(ty),

where T,,; is the temperature of the injected fluid and 7T,; is the initial temperature of
the reservoir. The details of the model proposed here are shown in Fig. 4.4. As we can
see, the system considered is represented by three distinct regions: the wellbore region,
ie, 0 < r < ry, the water bank, ie, r, < r < r; and the oil zone such that r > ry,
where r¢ = r4(t,) represents the water front evaluated at the instant of shut-in ¢,. Based
on the results of Witterholt and Tixier [35], we may assume that in the uninvaded zone,
the temperature distribution is uniform and equal to 7,;. Moreover, the boundary r =
should be maintained equal to the temperature T' = T,; so that the system recovers to
the geothermal temperature that exists initially in the reservoir.

Next, we write the conservation of energy equation in the region r,, < r < 7.
Fig. 4.4 also shows the energy terms to be considered here. It is a system of length Ar in
the r direction with a cross sectional area A, normal to the r-direction and a length Az in
the z-direction with cross sectional area A, normal to the vertical direction z. The system
has an elementary volume of AV = 27rArAz. The #-direction is not considered here.
The important energy terms during a shut-in are the horizontal and vertical conduction

into and out of the system during an interval of time At and the energy stored in the
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>N

T=Toi Krb

Figure 4.4: Well and reservoir model with important energy terms indicated.

volume AV during the same time interval. The energy balance is written directly from

Fig. 4.4 as

Qh,in + qv,+ + qv,f - qh,out _'_ 65, (4202)

where the symbol g ;, denotes the rate of energy flow by conduction at the radial position
r + Ar, while g, o, denotes the rate of energy flow by conduction at the radial position
r. Similarly, the rate of energy flow by vertical conduction at the position z is denoted
by the symbol ¢, _, whereas g, is the rate of energy flow by vertical conduction at the
position z + Az. These rates are given by the well know Fourier law. As for the rate of

energy stored in the system, it is described by the following equation:

Eg = (pC)eAV(T|t+At — T|t) (4203)

In Eq. 4.203, the term (7T'|;1ar — T'|;) represents the increase of temperature within the
volume AV during the shut-in time At = t—t,, with ¢, representing the instant of shut-in.
Expressing the rates of energy due to conduction by Fourier law and using Eq. 4.203 into

Eq. 4.202, we have
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or or orT

KA, — At+ K A, — At — KA, —| At =
or r+Ar " 0z z+Az 0z z
oT
KEATW At + (pc)eAV(T’tJrAt — T‘t) (4204)

Introducing the definition of the cross sectional areas and rearranging Eq. 4.204 give

T T T
Ke27r7“Aza— At — KezﬂTAZa— At + Ke27TTAT6— At—
r r+Ar 87” r z z+Az
oT
KBQ’/T?“A?“E At = (pC)2mrArAz(T|ioae — Tt), (4.205)

or dividing by 2mrArAzAt

1

19T
rAr

or

T
0T

{K el 9%

oT 1 oT
-k [+ 2[5

r+Ar z4+Az

= (po).(Hler2 Tl (4 906)

In the limit, as Ar — 0, Az — 0 and At — 0, the heat equation reduces to

10 or 0 ar oT
;E (KeTE) + % (Ke%) — <p0)6@ (4207)

To give a more simplified representation to the model, we will eliminate the dependence
of the temperature in the reservoir on the depth z. We need to keep in mind that water
saturation distributions derived from the Buckley-Leverett theory are 1D profiles (pure
radial) and there has to be a certain consistency between the variables involved in the
system when it comes to dimensions. The other reason for a simple theoretical model is
to better understand the basic physical processes involved with the ability to establish a
reasonable quantitative analysis of the system. In order to do that, we consider only one

grid block in the z-direction of thickness Az = h and we assume that the cap and base
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rock of constant thermal conductivity coefficients K,; and K, respectively to be infinite
heat sources at the constant temperature 7,; such that the amount of heat ¢, _ transferred
from the cap rock to the reservoir during the time At is giving by

oT

Qv,— = rtAzE

T, —T
At = K, A, —2——At, 4.2
A (4.208)

z4+Az
and the amount of heat ¢, transferred from the base rock to the reservoir during the
same time At is provided by

oT

v+ — Kr Az_
Qv+ b 92

T—-T,
At = KA, ———=At. 4.2
A (4.209)

z

Replacing Eqgs. 4.208 and 4.209 into Eq. 4.205 gives after rearranging and simplifying

1 or orT 2 B Tlesnr — T
E |:K6TW T+AT—K6TE 7q:| +ﬁ<Krt+Krb)(Toz_T) = (00)6<T), (4210)
or when Ar — 0 and At — 0
10 IT o 2 0T,
-—| K, — (K + Kp) (T — Tow) = — 4.211
Tar( - 8r)+h2< b )T~ ) = (pO). 52 (4211)

where the notation T,, is introduced to indicate that the solution is valid in the water

bank, that is for r,, <7 <r;. Eq. 4.211 is associated with the boundary condition

Tou(r =1y,t) =Ty, (4.212)

valid at any time At and with an initial condition given by Eq. 4.201.

In the wellbore, ie., 0 < r < r,, the system is characterized by the thermal
conductivity K, and the specific heat capacity C,, (the wellbore is filled with water). If
we assume that conduction is the main mechanism for heat transfer in this region, and by
performing a similar energy balance on an elementary cylindrical element in the wellbore,

it is easy to show that we obtain a similar 2D heat equation Eq. 4.207 with K, and (pC).
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replaced respectively by the constants K, and p,C,, as follows

19 ( 0Ty 0 (9Tw\ oT;

One of the boundary conditions associated with this partial differential equation is of an

adiabatic type to ensure symmetry. It is given at any time At by

0Ty,
" or

= 0. (4.214)

r=0

The two other boundary conditions are provided by

T%n(ra z=0, At) = Toi, (4215)
and
0T
= 0. 4.21
0z iz 0 ( 6)

In these equations, the z-axis is chosen such that z = 0 represents the bottom of the
reservoir and z = z; is assumed to be the surface. As for the initial condition, according
to Eq. 4.201, we have T;,(r, z, At = 0) = Ty; forany 0 <7 <71, and 0 < z < z.

Two additional equations are required to solve the system above. These are the
continuity of the temperature and the rate equations at the interface r = r,, for any z

between 0 and h and given respectively by

Tin(r =1, 2, At) = Tou(r = 14, AL), VAL > 0 (4.217)
and
oT; oT,
K,—= =K, —= At > 0. 4.21
or — or T:rwv =0 ( 8)

In the following, we define the dimensionless variables in terms of water properties

at residual oil saturation, S,,.. We will denote dimensionless radial distance, dimensionless
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vertical distance, dimensionless shut-in time, dimensionless temperature, dimensionless
thermal conductivity, dimensionless density averaged specific heat capacity, respectively,

by rp, zp, Atp, Tp, K.p and (pC).p and define these variables by

= — 4.21
D Tw7 ( 9)
z
=7, (4.220)
Atp = AK#AL (4.221)
(PC)ewh?

Toi — T(r, z, At)

Tp = 4.222
P Toi - T’wi ’ ( )
K
K.p = —%, 4.223
D= (4.223)
and
(pC)e
(pC)ep = == . (4.224)
(PC)ew
For simplicity purposes, we also define the following quantities
rip =L, (4.225)
rop = L. (4.226)
z
2p = Et (4.227)
K
Kyp = —2, 4.228
D=F (4.228)



and

(0C)wp = (Z ’i”c) . (4.229)

With these definitions, the governing differential equations and associated conditions can

be rewritten in dimensionless form as

O*Tp,in(rp,2p, Atp) ~ h* 1 0 . 0T p,in(rD, 2D, Atp)
D pr—
87”1)

(92,23 % E (9rD
(pC)wp OTp in(rD, 2D, Atp)
K,p OAtp

,forO0<rp<1,0<zp<zpand Atp >0, (4.230)

Ipin(rD, 2D, Atp)

D =0, for 0 < zp < zp and Atp > 0, (4.231)
GTD rp=0
Tpin(rp,zp =0,Atp) =0, for 0 <rp <1 and Atp >0, (4.232)
oT in ) 7At
Dan(rp: 2p; Atp) =0, for 0 <rp < 1and Atp >0, (4.233)
dzp Zp=2p
Tpin(rp,z2p, Atp =0) =1, for 0 <rp <1land 0 < zp < zp, (4.234)
1 0 8TD Ou(Tp,AtD) 27"2 Krt + K’/‘b
—— | K. : — 2 ~ Tp.ou(rp, Atp) =
rp Orp p(rp)rp orp h? K. Doulrp; Atp)
T12u a,-TD,ou(TDy AtD)

F(pc)eD IAL, , for 1 <rp <rgpand Atp >0, (4.235)
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TD,ou(TfDa AtD) == 0, for AtD Z 0, (4236)

TD,OU(TD, AtD = O) =1- H(TD — TTD) = f1(’l"D), for 1 < rp < T¢D, (4237)

TD,in(rD = 1, ZDaAtD) = TD,ou(rD = 1, Atp), for 0 < zp < 1 and AtD >0, (4238)

and

aY‘ID in (TD7 ZD, AtD)
K, : = K.
D orp D(TD)

a,-TD,ou (TD ) AtD)
87“D

Y

rp=1 rp=1

for 0 < zp < 1 and Atp > 0. (4.239)

Note that in Eq. 4.237, the function denoted by H is the heaviside function. Here, we
need to point out that the thermal conductivity K. and the density averaged specific heat
capacity (pc)., or equivalently K.p and (pc)ep are independent of time during shut-in.
They depend only on the radial position r via the water saturation distribution S, (r,t,).
Another remark is that we expect the variation of the temperature in the wellbore along

the r-direction to be insignificant. Therefore, we introduce an average temperature that

we denote by T, = Tm(z, At) and define by

~ 1 Tw
Tin(z, At) = rw—/ T (1, 2, At)27rdr, (4.240)
Jo 2mrdr Jo
or simply
) 9 [T
Tin(z, At) = ﬁ/o Tin(r, 2, At)rdr. (4.241)
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In terms of dimensionless variables, Eq. 4.241 becomes

1
TD,m(ZD, AtD) = 2/ TD,in(TDa ZD, AtD)’)“DdTD. (4242)
0
Applying this averaging procedure to Eq. 4.230 gives
1 92
0°Tpin(rp, zp, At 0 ITpin(rp, 2p, At
2/ D, (T’D2ZD D)TDdTD—i—Q ( p.in(TD, 2D D)>d7’D _
0 027 r2 Jo Orp orp
1
C wD aij Jin TD7 ZD, AtD)
2 d 4.243
ety [Tl p 20 S0 iy, (4249

or simply

32TD,m(2D, Atp) h*  OTpn(rp, 2D, Atp)
—f- 2—27“D a’[“
D

2
0z1, r2

rp=1 -
b (pC)wp OTp in(2p, Atp)

= : . (4.244
} K.p OAtp ( )

rp=>0

If we use the adiabatic boundary condition given by Eq. 4.231 in Eq. 4.244, we obtain

PTpm B2 ITpum wp OTD in
Din | 9%y, L. _ (pup OToin (4.245)
8rD rp=1 KwD 8AtD

2 2
0z, r2

Note that from the continuity of the fluxes represented by Eq. 4.239, we have

OTp in(rp, 2p, At K. ITp.ou(rp, At
o D, (TD ZD D) _ D 5 D, (TD D) ‘ (4.246)
orp rp=1  Kuwp Irp rp=1
Using this result in Eq. 4.245 leads to
PTpin W Kp  OTpou wp 0T in
Din | g2 Zely D — (p9up OTin, (4.247)
82D Tw KwD 87"1) rp=1 KwD 8AtD

Similarly, if we apply the averaging procedure to Eqs. 4.232, 4.233 and 4.234, we obtain

rp=1
2/ Tpin(rp,zp =0,Atp)rpdrp =0, (4.248)

p=0

which leads to
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Tpin(zp = 0, Atp) =0, (4.249)

and
"= 9Tp,; At
2 / D.in{rD: 7p; Atp) rpdrp =0, (4.250)
rp=0 aZD ZD=%tD
or
= =0, (4.251)
920 |, pesy
and
rp=1 rp=1
2/ TD,in(TD; ZD, AtD = O)TDdT’D = 2/ TDdTD = 1, (4252)
rp=0 rp=0
giving
Tp.in(zp, Atp = 0) = 1. (4.253)
By noting that the term rD% in Eq. 4.247 is non zero only in the region 0 <

rp=1
zp < 1, we can rewrite the dimensionless governing differential equations and associated

conditions as

82TD,inu o (PC)wD aT‘D,inu

= for 1 < < dAtp >0 4.254
922 K. DAL, or1<zp<zpand Atp 20, ( )
D, =0, for Atp >0, (4.255)
aZD ZD=Z2tD
TD,inu(ZD; AtD = 0) = 1, forl1 < zp < ZtD, (4256)
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aQTD,ml 2h2 Kep  0Tp o (pC)wp 3TD,mz

_ r _ 7
822D T%le) b aTD rp=1 KwD 8AtD

TD,ml(ZD = O,Atp) = 0, for AtD 2 0,

TD,inl(zDaAtD = 0) = 1, for 0 < zZp < 1,

TD,inu(zD =1,Atp) = TD,inl(zD =1, Atp), for Atp >0,

D, = Dint s for AtD > 0,
82[) 2p=1 8zD 2p=1
1 8 8TD Ou(T’D,AtD) 27"2 Krt +K’/‘b
5 Ke 7 - = ~ T ou 7At =
rp Orp p(rp)rp orp h? K., poulrp, Alp)
2 OTp ou(rp, At
Z—Z(pc)eD D, a(AT?D D), for 1 <rp <ryp and Atp >0,

Tp.ou(rsp, Atp) =0, for Atp >0,

TD,ou(rD;AtD = O) =1- H(?”D — TTD) = f1<TD>, for 1 < rp < T¢D,

and

TD,inl(ZD; AtD) = TD,ou<TD = 1,AtD), for 0 < zp < 1 and Atp > 0.
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, for 0 < zp < 1 and Atp >0,

(4.257)

(4.258)

(4.259)

(4.260)

(4.261)

(4.262)

(4.263)

(4.264)

(4.265)



The notations TDﬂ-nu and T p.in1 Were introduced to differentiate between the solution in

the upper part of the wellbore, ie., for 1 < zp < zp and the solution in the lower

part of the wellbore, i.e., for 0 < zp < 1. Having said that, we can apply the Laplace

transform to the above IBVP. Throughout, u denotes the Laplace variable and a bar

over a dimensionless temperature function is used to denote its Laplace transform. For

simplicity, three constants denoted by a, b and ¢ are introduced. They are defined by the

following equations:

a=2ry/h,

b= (,Oc)wD/KwDa

and

Krt + Krb
2o

Thus, the system of Eqs. 4.254 to 4.265 becomes

a27A_’D,mu =
02 buTp jny = —b, for 1 < zp < zip
D
aT‘D,inu
B =0
“D lzp=z:p
82 :D' 1 - 8 K D 8TD
2’m — buTp jny + — “~rp o =—b, for0<zp<1
023, @ Kyp ~ Orp |,

fD,ml(ZD =0,u) =0,

TD,inu(ZD =1,u) = TD,inl(ZD =1,u),
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(4.266)

(4.267)

(4.268)

(4.269)

(4.270)

(4.271)

(4.272)

(4.273)



aj—‘D,z'nu _ aT‘D,inl (4 274)
82’[) 2p=1 8zD zD:I, '

]_ 8 aT ou e T 2
KeD(’/’D)’/’D D, :| — (12 <C—|— (pC) DU> TD,ou = —%(PC)eDfl(TD),

TDaT’D

forl <rp< T¢D (4275)

TD,ou(TfD, u) =0, (4.276)

and

Tpami(2p,1) = Tpoulrp = 1,u), for 0 < zp < 1. (4.277)

4.3.2  Temperature Profiles from Perturbation Theory

Here, we present a method that we applied when solving the pressure equation
during a falloff test under isothermal conditions. This procedure, as seen in chapter 3
and appendix B, is based on perturbation theory and its justification lies on the fact that
the variation of water saturation in the water bank is small enough so that it can be used
to solve the initial boundary value problem described above. We start the analysis by

writing that

K, = K, + Koy — Kew, (4.278)

and

(pC)e = (pC)e + (PC)ew — (PC)eu- (4.279)

If we divide Eq. 4.278 by K., and Eq. 4.279 by (pC)ew, we obtain
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Kep=1-—2—"C°—1— fx(rp), (4.280)

and

(pC)eD =1- S =1- ng<7nD)> (4281)

fr(rp) = =—=—=, (4.282)

and

gpc(rp) = (b C)(S;”AC_)eip 9 = (4.283)

do not exceed the value of 1. By introducing the two perturbation variables € and §

defined by

e =max | fx(rp) |, (4.284)

d =max | g,c(rp) |, (4.285)

and by rescaling the functions fx and g,c by € and 0 as follows

flrp) = fK(Erw, (4.286)

g(rp) = 220 ”C((;TD), (4.287)
Eqgs. 4.280 and 4.281 become

KeD =1- €f<7"D), (4288)
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and

(pC)ep =1 —0g(rp). (4.289)

Thus, the temperature function is described by a perturbation expansion in powers of €

and 0 given in terms of dimensionless variables in Laplace domain by

TD(TD,U) == TD()(T‘D,U> + ETD1(7"D, U) + 5TD2(TD,U) + 65TD3(TD,U) —+ ..., (4290)

This expression is general, that is it applies for both the wellbore and the invaded regions.
In the following, we assume that an adequate description of the falloff solution for the
temperature can be obtained from the first three terms in the above series.
Water Bank Region Solution

In this zone, the temperature distribution is described by the dimensionless differ-
ential equation Eq. 4.275 and its associated boundary condition Eq. 4.276 and continuity
condition Eq. 4.277. Based on the perturbation method, we write our solution in this

region as

TD,OU(TDa u) = TDO,ou + EifDl,ou + (STDQ,ou' (4291)

Substituting this equation along with Eqs. 4.288 and 4.289 into Eqs. 4.275, 4.276 and

4.277 gives

1 0

0 - _ —
— a_ (1 - E,]C(TD))TD_(,I’D(],ou + 6CTDl,ou =+ 6TD2,ou)
rp Orp

87’D
2
a — _ _
— Z[4C + (1 — 6g<TD))U](TD0,Du + GTDl,ou + (5TD2’0U) =

a2

1 (1 =96g(rp))fi(rp), (4.292)
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Tpo.ou(TiDs 1) + €Ip1.0u(TiD, 1) + §Tp2.0u(rsp,u) = 0, (4.293)

and

TDO,ou(la u) + GTDl,ou(L u) + 5TD2,ou(17 u) = TDO,mz(Zm u) + ETDl,ml(ZD, )

+ 6T poam (2, ). (4.294)

Expanding Eq. 4.292 and dropping higher orders of € and ¢ yields

_ ) _ _
Lo (TD aTDO’Ou) — a—(4c + u)Tpo.ou + € {i 0 (TD Mbron _ TDf(TD)aTDO’Ou> —

Ea’f’p 8rD 4 rpé)rD 87“D 87“D
a’ _ 1 0 9T s a? _ a? _
—_— 4 T ou 5 — i - 4 T ou e T oy
1 (4de 4+ u)Tpy, } + |:TD o (TD o > 1 (4c+ u)Tp2ou + 1 ug(rp)Tpo, }
2 2

_ _“Zfl(rD) 4 5%]“1(7“[))9(7“[)). (4.295)

If we compare both sides of Eqs. 4.295, 4.293 and 4.294, we obtain the following three
system of equations

The O(1) system:

a? _ a2
) - Z(4C +u)Tpo,ou = _Zf1<TD), (4.296)

TDaT‘D 8rD

1 0 < 9T po.ou
D

Tpo,ou(rsp, u) =0, (4.297)

TDO,ou(la u) = TDO,inl(ZDa u). (4.298)

The O(€) system:
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o (o) = et o = o (rof ) ), (4209
D

D aT'D 8rD
Tp1ou(ryp,u) =0, (4.300)

TDl,ou(la ’LL) = TDl,inl(ZDa u) (4301)

The O(0) system:

1 0 OTps ou 2 _ 2 _
— (T’D D2, ) — %(46 +u)Tpoou = —azg(rD) <uTD0,Ou — f1<TD)), (4.302)

D 87“[) 87"D
TDZ,ou(TfDa 'LL) = 07 (4303)

Tpo,ou(1,w) = Tpoimi(2p, u). (4.304)

The leading system is a non-homogeneous second order differential equation whose solu-

tion is the sum of any particular solution Tg and a corresponding homogeneous solution

0,0u
Tgom obtained by setting fi(rp) = 0. In appendix B, a similar system given by Eq. B.6
was already solved using the variation of parameters technique. Its solution is provided
by Eq. B.30. However, this solution has to be modified accordingly in order to be able
to apply it for our case (Eq. 4.296). That means that the argument /urp of the Bessel
functions and the function fi(rp) in Eq. B.30 need to be replaced by %\/MTD and

%fl (rp) respectively. By analogy to Eq. B.30, the solution of Eq. 4.296 is given by
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— a a
TDO,ou = 31]0(5\/ (40 + U)TD) + B2K0<§ v (40 + U)T’D)
2

+ azfo(gv (4c+wu)rp) /”f Epf1(€p) Kol \/ (4c+u)ép)dép

D

+ K (oot ) | oG ViieT wo)icn, (1305

where B; and By are two constants to be determined using the boundary conditions
Eqgs. 4.297 and 4.298. If we replace rp by 7p in Eq. 4.305 and we set the solution to

zero, we obtain

Bulo(5v/(e+ u)rsn) + BaKo(5 /(e + u)ryo)

+ CLZKO(%\/(élc%—u)rfD)/ nf1(En) o \/ dc + w)ép)dép =0, (4.306)
1

or simply,

o o(5v/ (4c+u)rsp) _a?
By = BlK (2 /T T w)rso) / Epfi(€p)1o( \/ (4c+u)ép)dép.  (4.307)

Replacing Eq. 4.307 into the general solution of the leading system Eq. 4.305 and rear-

ranging yields

TDo,ou = Ko(g\/(échlTU)TfD) {Ko(g V (de + U)TfD)]O(g V (4e + U)TD)_IO<g\/ (de+u)rsp)
Ko /Tae uirm) | = Kol VTt ) [ o0l VT ey
+ SR wro) [ eofi(eo) (G e e

+ “{Mgmc +u)rp) / v Epfi(6p) Kol(5/ (e + u)ép)dép.  (4.308)
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For simplification purposes, we use the definition of the new function Gv(ax, ay) intro-

duced in appendix B and given by Eq. B.111. In particular, for v = 0, we can write

0(%\/(4C+U)TD7g\/(4C+U)TfD) = KO(%\/ (de+u)rip)lo(= \/ (4c 4+ u)rp)
—Io(g\/(élc—i—u)rfD)K0(§\/(4c+u)'r’D). (4.300)

[\

Using this result in Eq. 4.308 yields

_ B1 a a
Tho.ow = —\/(dc+u)rp, =+/ (4c + u)r
R TN P B Go(5V( )rp, 5V )r¢D)

- %Ko(gv (4c+u)rp) /;fD §Df1(§D)]o(gv (4c +u)ép)dép

+ GZQKO(g\/ (4¢c +u)rp) /;D Epfi (fD)Io<g\ /(4c + u)ép)dép

+ %fo(g\/ (4C+U)TD)/ Enf1(€p) Ko( \/ (4c +u)ép)dép. (4.310)

If we replace rp by 1 in Eq. 4.310 and we set the solution to T po,inl (2D, 1) according to

the condition Eq. 4.298, we obtain

. B,
Tpo,ini(2p,u) =
Ko(5+/(4c+u)rsp)

- %Ko(g (4C+U))/T Epf1(En) 1ol \/ (4c +u)ép)dép
1

+ Zlo(g (4C+ u)) /T fpfl §D KO \/ 4C+ u §D de, 4 311)
1

Go(5 /(e +u), /(e + u)rsn)

2 2

or using the definition of the function G
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= Bl a a
Tpo.ini(zp, u) = T (%\/mrfD)Go(ﬁ\/(Zlc—l—u), 5\/(4C+U)TfD)

- " o hen)Gu(g A E wlen, ST whden. (4312

Thus, we can write

By 1 a
Tpoini(2p,u
Fol5v/Tet wryo)  Gols/The s ), 5/ e T o) | om0

a2 T§D

+7 Enf1(€0)Gol 1/ (4c +u)ép, = \/ (de+u))dép|, (4.313)

1

and Eq. 4.310 becomes

_ %\/ 4c+urD,2\/ (dc+u)rsp)
Go(

T Go(ey/(Bctu), 8/ (Ac u)w)

TDO,ou -
—I—az/ Epf1(Ep)Gol(5 \/ (dc+ wiép, o 5V (4c +u))dép
2 T‘

- %Ko(gv (4C+U)7’D)/ Epf1(Ep)1o( \/ (4c +u)ép)dép

1

[ DO mz(ZD7 U)

2

+ Kol VTe T arn) [ ool T wen)deo
+ Gyl [ e KoGy et ien)den. (1310

DO0,ou

The term TDa Br is needed to obtain a solution in the wellbore region according

rp=1

to Eq. 4.271. But first, note that

_Go \/ (dc+ u)rp, = \/ (dc+u)rsp) = % KO(%\/(40+u)rfD)Io(g\/(Zlc—l—u)TD)
—Ig(g\/(élc—{—u)rfD)Ko(g\/(Zlc—l—u)rD) . (4.315)
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Taking the derivative of the right side of Eq. 4.315 gives

a%Go( vV (4e + u)rp, 2\/(4c+u D) V(4 + u) \/ (dc+u)ryp)
D

CL
X [1(3\/(4c—|—u rp) + 1o( 5\/ (de+u)rep) K

l\DIQ

\/ (dc+u)rp)|. (4.316)

According to Eq. B.110, we have

Ho(%\/mHD %\/MTD) - Kl(g\/mm)l()(g\/m

D)

+ h(5/(e+urp) Ko(5/Te+u)rp). (4.317)

Using Eq. 4.317, Eq. 4.316 becomes

—GO \/ (dc +u)rp, = \/ (de+u)rsp) \/(4c—|—u)H0(g\/(4c+u)rfD,g\/(4c+u)rD).

(4.318)
Taking the derivative of Eq. 4.314 with respect to rp gives

ajﬂDO ou

7 a et )< o(5v/ (4c+u)rsp, 5+/(4c+u)rp {T (211
= — C U . )
Orp 2 Go(gv/le+u), 5y/(e+uwryp) [

s /" ,stl(éD)Go(—ng,—JWM&D]
RNz Y " o (o) ol 2/ Tae T wien)de
-G wr) [ (o) e indes

+ LGy Teram) [ oGyt mee ). @51)

Evaluating the above term at rp = 1 yields
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— Ha(2. /(4 4./(4 =
rDaTDO’Ou = et )( o(5v/ (4c+u)rsp, 54/ (4c+ u)) {Tpo,ml(ZDau)
orp 2 GO(%\/(4c+u) 2/ (4c+w)rsp)

2 TfD
+az/f Epf1(€p)Go( —\/ (4c + u) §D7—\/ 4C+U))d§D}
1
2 TfD
+%K1(% (4c—|—u))/ Epf1(Ep)To( \/ (4c+u)ép)dép
1
Zfl 4c+u / Enfi(€p) Ko \/ (4e +u)ép d{D) (4.320)

which is also equal to

Ho(&+\/(de +u)rsp, 24/ (4c + u)) |:TD0‘ o
Go(2y/(Ac+u), 2\ /(e + wyryp) [ 0"

+ %2 /;fD fol(fD)Go(E\/ (4c + u)ép, 5@)0@3}
" GZQ /1% &0 f1(ép) Ho(5 v/ (e + u)éo, g\/M)dgp). (4.321)

aTDOou
—77‘ 4
e N

For simplicity, we introduce the functions M;(u) and Ms(u) defined respectively by

a —H %\/ 4c+urfD,2\/ (4 +w))
Miu) = 2 (4C+U)G (44/(4c + u), \/(4c+u)rfD) (4.522)

and

2 Ty
My (u) = aZM (u)/ Epf1(€p)Go( \/ (4c +u)ép, = \/ (4c +w))dép
+ & \/ (4dc + u) / Epfi(€p)Ho( \/ (4c +u)ép, = \/ (4c +w))dEp, (4.323)

such that Eq. 4.321 becomes simply

aT'DO,ou
87“[)

= My ()T po.m (20, 1) + Ma(uw). (4.324)

T‘DZI
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Next, we move to the O(e) system. Recall that the ODE and the associated

boundary conditions that describe this system are given respectively by the following

equations
1 0 8TD1 ou a2 — 1 0 87_-'DO ou
- ) — 2 (4 Tpioy = —— ’ , 4.325
D 87’D (TD 87‘13 ) 4 ( et U) DL, D 8rD TDf(’/“D) (97"]) ( )
Tp1ou(rsp,u) =0, (4.326)
and
To1ou(l,u) = TD1,inl(ZD, u). (4.327)

The right hand side of the above ODE is function of only the dimensionless radial distance

rp. Thus, we set

_ 1 a aT‘DO,ou
Q(rp) = - <f(7”D)7”D O ) (4.328)
and Eq. 4.325 becomes
1 8 8TD1,OH a2 — -
p Orp (TD orp ) — et u)Tpion = =Q(rp). (4.329)

Note that Eq. 4.329 is similar to Eq. 4.296. Therefore, they have the same solution with
%fl (rp) replaced by the function that we defined as Q(rp). So, by analogy to Eq. 4.305,

we have

TDl,ou = B3]0(g\/ (46 —f- U)T‘D) —I— B4K0(g\/ (46 —|— U)T’D)
+Io<g V/ (4e +u)rp) /r DfDQ (&p) Ko \/ (4c +u)ép)dép

TD

+ Ko(g\/(élc—i—u)rp) /1 fDQ(fD)IO(g\/(Achru)fD)df‘D, (4.330)
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where B3 and By are the new constants of integration. If we use the expression of Q(rp)

given by Eq. 4.328, we have

" oo VaeT s = - [ 52 (e e | ng T oo,

9¢p
(4.331)

that we integrate by parts to obtain

/ EnQ(En)Io(2/The + w)en)de = ~En (Ep) aTDO"“ (&t + weo)
+ = \/ 4c+u / fo fD aTDOOU \/ 4C+U€D de, 4332)

or simplifying using the fact that f(rp =1) = 0 (see Eqgs. 4.286 and 4.282),

/TD 5DQ(§D)IO<2\/ (4c+u)ép)dép = —TDf(TD)aTDO’Oufo(gv (4c+u)rp)
1
= \/ 4+ u) / Enf(€p) aTDO"“ \/ dc+u)ép)dEp. (4.333)

Similarly, we have

/T EpQ(Ep) Ko \/ (e +u)ép)dép =

_ / e (f(sD»:DaTDO”") Kol /(e + u)ép)dép. (4.334)
o Op %p 2

Integrating the above equation by parts yields
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/ X EpQ(En) Kol \/ e+ u)ép)dep = —Ep f(Ep) aTDO”“ \/ 4+ u)ép)

TD D

——\/74c+u/ éf(En) aTD‘”“ (&t wep)den, (433)

or

/T EpQ(Ep) Ko \/ (4c+u)ép)dép = TDf(TD)agDO OUKO(2\/ (4c+wu)rp)

D

aT ou
—71¢pf(rD) 8?0?

Ko(5V/ (e +u)rsp) = 5/ (e +u)

T’fD 2

« [ Enf(En) 8TD0 e \/ dc+u)ép)dép. (4.336)

D

Replacing Egs. 4.333 and 4.336 into Eq. 4.330, rearranging and simplifying gives

Thiou = B3]0(%\/(4c Fu)rp) + B4K0(g\/(4c +u)rp)
T 0,0 Kg(gw/@c T u)rfD)Io(g\/(Zlc u)rp)

- T‘fo(TfD) arp
TfD

—i—g\/(4c—|—u)Kg(E\/(4c+u)rD)/ Enf(ép) aTDOO“ \/ (e +w)ép)dép

1

- g\/(4c+u)[0(g\/ (4¢ +u)rp / Enf(€p) 8TD°0“ \/ dc+u)ép)dép, (4.337)

which constitutes the general solution to the O(e) system. The expression above contains
two constants. In order to eliminate one constant, B4 for instance, we need to apply the

outer boundary condition given by Eq. 4.326 as follows
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— a a
Tp1,ou(rsp,u) = 3310(5\/ (4c+u)ryp) + B4K0(§v (4c +u)ryp)

9T r0.0u
—71ipf(rsp) ai; Ko(g\/ (4e + U)T‘fD)fo(g\/ (4c+u)rsp)
rfD
8T ou 1
+gv(4C+U)Ko(gv (4c+u)rsp / Enf(Ep) =2 \/ (4c +u)ép)dép = 0,
(4.338)
or
[0(% (4C + U)TfD) GTDO ou a
By = — : Io(=+/(4c+

T R aer a0 o, Pl Ve i)

TfD

\/4c+u/ 5ngD8TD“°“ \/4c+ung§D (4.339)

If we replace B4 in Eq. 4.337 by its expression provided above and rearrange, we obtain

B3 aTYDO,ou

Tpi1,ou = <Ko(%\/m7"fz)) —ripf(rsD) e rfD) [Ko(g\/mrm)
< o1 0)rm) — I /e T W) o TTe+ w0ro)
~ VAT k(s i) [ €60 T2 1 T o)
- g\/mffo (5v/(4c + wyrp) / nf(p) 8TDOO“ \/m )d¢p
e (e T / £pf(€p) 8TD“0“ (& Vet ulen)den, (4340)

or using the definition of the function Gy,
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T < Bg f( )aTDO,ou )
Dl,ou = a —TfpJ\T"fD)—F —
K0(§\/ (4C+u)rfD> Orp TfD

X GO(g\/me /et ursp)
- gVlaeT kG Gietum) [ eos(en) aTDO"“ (& /lae + weo)des
+ gmm(gmw / énf(€p) aTDOO“ \/m p)dép
Vet (et wro / Epf(6n) aTD“"“ (& et u)tp)dep. (1.341)

In order to obtain the constant Bs, we use Eq. 4.327 in Eq. 4.341 as follows

= B
TD1,mz(ZD,U) = < o 2 - T’fo(TfD) :
Ko(5+/(4c+u)rsp) Orp

X GO(%\/(40+U) 2\/(4c—|—u)rfp)
—g\/(4c+u)Ko(g\/(4c+u))/r ¢Enf(ép) aTDOW \/ (4c +w)ép)dép
1
— g\/(élc—i-u)lo(g\/ (4dc + u)) / ¢nfép) aTDOO“ \/ (4 +u)ép)dEp. (4.342)

We can simplify further this expression by using the definition of the function Hy to

combine the two integrals. The result is

O e oo F22] )
ini(Zp,u) = —7r rip)———
D1 D Ko(% (4c T u)rfp) fD fD OTD oy

x Go(5 /(e + ) 5/ (e +ujryp)

a Tfp 9T po.ou a
— 5V ler) [ o0 Tt G T ). §

5 —/(4c + u)ép)dép. (4.343)

From Eq. 4.343, we have
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Bg 8TD0 ou
- —rpf(rp)—F——
(K (2 ?

1
v (dc+u)rsp) rfD)  Go(&/(c+ ), 2y/(dc+ u)rysp)
[Tmml (20, w)+5V/(dc + ) / énf(€p) 8?200“ o(5 v/ e+ u), 5/ (e +w)En)den|

(4.344)

Finally, we replace Eq. 4.344 in Eq. 4.341 to obtain

— - G(](%\/(ZLC—FU)TD,%\/(4C+U)T’fp> =

Dlou = GO(“\/(4c+u) a\/(4c—|—u)rfp) |:D1,inl(ZD7u)

+ (4¢ + u) £Df £p) aTDO"“ \/ dc + u), \/(4c+u)£p)d§D
_ 5\/ (4C+U)K0<§\/ 4C+U)TD> EDf(fD aTDOOU \/ 4C+U D ng
1

+g\/(4c+u)K0 2\/ 4dc + u)rp / Enf(ép) aTDOou \/ (4de +w)ép)dép
—g\/(élc—l—u)lo(%\/ (4dc+ u)rp / énfép) aTDoou \/ (de +w)ép)dEp. (4.345)

If we take the derivative of Eq. 4.345 with respect to rp and use the result of Eq. 4.318,

we obtain
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a,-Z_—‘Dl,ou _

HO(%\/MUD,Q\/WTD) f’py (2D, u)
o int(2D,

a
arD _5 %\/ 4C+U \/4C+U)TfD)

+g (e tu) / {pf(ép) aTDO’Ou Hy —\/ (4c+u), EV(4C+U)§D)d€D
(4c+u)K1(2\/(4c+u D / nf(Ep) 3TD00u /—4c+u Yep)dEn

(4c + u)

a?
7

CL airDOou

Z(4c—|—u)K1(2\/(4c+u rD/ Enf(ép) \/ (4c +w)ép)dép

2 TfD

- e wnGyaer o) [ ) aTDOW (& e u)én)des

8T 0,0u
+ 2 /(e + w)rpf(rp) af; K0(2 (4¢+u)7«D)L(5 (4c +w)rp)

2
6TDo,ouI (_\/MTD)KI(%\/MTD), (4.346)

a
+§ (4c+u)rpf(rp) o, 0lg

or using the fact that

Io(g\/(Zlc n u)rD)Kl(gx/(Zlc Fu)rp) + Ko(g\/(élc ¥ u)rD)Il(g«/(élc Fu)rp)
1
. (4.347)

- 5V (4c+u)rp

aTDl,ou o a
8’[“D N 2

+5viaera [ eofien)
(4C+U)K1(2\/ <4C—|—U D / fo £D 3TD00u \/ 4C+U éD ng

2
(4c—|—u)K1(2\/(4c+u D / nf(Ep) aTDOou /—4c+u Yen)dén

(4c + u)

Ho(§/(4c +u)ryp, §+/(4c + u)rp) To (20, )
( Jin D>

2/ (dc+u), 4/ (4c + u)rsp)

5’TD0,ou Hol _m g\/MSD)de

+

NS

@

-7
2 TfD
Z(4c+u)11(2\/(4c+u)n)) ' Enf(ép) aTDOO" \/ (4dc +u)ép)dép

+ f(rD)agi"D"“. (4.348)
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At rp =1, Eq. 4.348 becomes

aTDl,ou
(9rD

a Ho(5v/ (e +w)rpp, §+/(4c+u)) [ 5
= —\/(4dc+u Tp1imi(2p,u
2 (de + )G( \/(4c—|—u) \/(4c+u)rfD)[ ani( )

rp=1
+ = \/ (4e + u) / Enf(ép aTDOOu \/ (4e + u), \/ 4c+u)§D)d§D}
+ & e+ 0Ky (3Tt ) / Enf(€n) aTD““ (& /e F W)t

T

a2 a 1 8TDOou
- Z(4C—|—u)]1(§ (4c+u)) ¢nf(ép) \/ (4de +u)ép)dép, (4.349)

1

D

or equivalently,

ajﬂDl,ou

Hy(5+/(4c+u)rsp, §+/(4c +u))

a

N 4 T in 5
v Op lper 2 (e U)G(g\/4c+u g\/4c+u D) {Dl (zp, u)
3T ou
s [t S
e aT ou
+az(4c—|—u) Enf(€p) DO ,/ 4c—|—u§D, «/ (4c +u))dép, (4.350)
1
with

Gl(g\/(4c+u) D,g\/(4c+u)):Kl(g\/ (4de+u)) o ( \/ (dc+u)ép)— \/ (4dc + u))
x K ( \/ (4dc +u)ép), (4.351)

according to the definition of G, (Eq. B.111) with v = 1. By introducing the function

My(z2p,u) = g (dc +u) {Ml () /1 e f(gD)é’Tazo,ou %\/ (dc+ ), 5

+ = \/ (4c + u) / Epf(ép) aTDOW \/ (4c + u) D, 4c+u ))dép|, (4.352)

2 Vet w)ép)dep

Ho(
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Eq. 4.350 can be rewritten as

aT ou S
D ail’ = My ()T pyim(2p,w) + Ms(2p, ), (4.353)
D

rp=1

where M, (u) was previously defined (see Eq. 4.322 ). Note that the dependance of M; with
the variable zp is through the function M;f,% as the solution TDO,ou implicitly depends
on the vertical distance.

Finally, we solve the O(0) system. Recall that ODE and the associated boundary

conditions that describe the system are given respectively by

2

1 8 aT ou 2 _ —
(TD D2 ) - %(4C + U)TD2,0u = _azg(rD) <UTD0,OU - fl (TD))7 (4354)

’I“DaTD 87“D

Tpo.ou(Tip,u) =0, (4.355)
and
Tos.ou(1, 1) = Tpo i (2, ). (4.356)
We set
P(rp) = %QQ(TD) <UTD0,ou — fl(TD))- (4.357)

Eq. 4.354 becomes

1 9 ( T pa2.ou
D

2
a =
— — —(dc+uw)Tpooy = —P , 4.358
o Or Or > 4( ¢+ u)Tp, (rp) ( )

which is again similar to Eq. 4.296. Based on the previous results for the leading problem,

we can write our general solution for the O(9) system as
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TDQ’OU = B5]0(%\/ (40 + U)TD) + BGK()(g\/ (40 + U)T’D)
+Io(g\/ (4C+U)7“D)/ D5DP (€p) Ko \/ (4c +u)ép)dép

+ Ko(GV/Tietwyrn) [ 0P (o)l Te T ién)dep, (4350

where B; and Bg are the new constants of integration. Using the expression of P(rp)

given by Eq. 4.357, we have

_ a a
Tpoou = 3510(5\/ (4c+u)rp) + BGK0(§ (4c+u)rp)
2

Gy aeram) [ esten) (uTDo,au Al ) (&t + wjen)des
2 D
+ %Ko(g\/ (dc+u)rp) / §p9(ép) (UTDo,ou - f1(§D)> fo(g\/ (4de + w)ép)dép.
1

(4.360)
Applying the outer boundary condition given by Eq. 4.355 yields
B5IO(%\/ (4c+u)ryp) + BsKo %\/ (4e+u)rsp)
a’ a
+ ZK0(§\/(4C+U T¢D / $p9(€p) <uTDOOU fép > \/ (4c + u)ép)dép = 0,
(4.361)

or

_ I(%\/(4C+UT’JCD _a ( )
Bg = BSK (%\/Wrw / ¢pg(€p) | uTpoou—fi(€p) | Io( 5V 40—1—“(4/3366525)13

Substituting Eq. 4.362 into Eq. 4.360 gives
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_ Bs a a a
Tpoou = e (%\/mrw) [Ko(g\/ (4c+ U)TfD)IO(§\/ (4e+ U)TD)—IO(§V (4c+u)rsp)

x Ko(%\/mm)]
_ GZZKO(g\/MTD) / " epglen) (uTDo,ou ~fi <5D>)Io<9\/M§D)d§D
+ (& e F ) / ng<5D>(uTDoou fi(én ) (& /et ujen)den
+ RV wr) [ 6nol0) (1T — f(60) ) 1 THeF Wi o,
(4.363)
or simply,

Bs

= a
Tp2,ou = K, (%\/MWD) 5\/ (4c+uw)rp, = \/ (dc+u)rsp)
2
- a—Ko(E\/ (4c+u)rp / $p9(€p) <uTDo,ou - f1(§D)) Io(g\/ (4c +u)ép)dép
1

4
2 TfD
+%fo(g\/(40+u)ﬁj) / ' ng<5D>(uTDoou fi ép) \/ dc + u)ep)dip
2 D
+ TRV Tetur) [ €ngen) (uTDo,w ~ <5D>)fo<§\/<4c + u))dép.
1

(4.364)

To evaluate Bs, we use Eq. 4.356 in Eq. 4.364 as follows

= B5 a a
Tpo.ini(zp, u) = KO(%\/mTfD)GO<§ V(4 + u), 5\/(40 +u)rsp)

— QZQKO(%\/(Zlc—l— w)) /leD §Dg(§D)<uTDo,ou filép ) \/ (4c +w)ép)dép
+ St [ eooteo) (oo — o) ) Kol (et o) dep, (1365

that we can rearrange to obtain
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< B
Tpoini(2p, u) =
K, (%\/(40 +u)rep)

_ CLZ TfD ¢p9(€p) (UTDOO'LL fi(ép ) \/ (4c + u) §D, \/ (4c +w))dép, (4.366)

Colg v/ (e +u), 5v/(de - u)ryp)

or equivalently,

~ a2

B 1
> Tpo,ini(2p, 1) + 1

Ko(5+/(4c+u)rsp) GO(%\/(4c+u),%\/(4c+u)TfD) [
X /1 £p9(€p) (UTDO,ou - f1(§D)>Go(g\/ (4c +u)ép, g\/ (dc+ u))dép|. (4.367)

Substituting Eq. 4.367 in Eq. 4.364 yields

_ B Go(5+/(4c+u)rp, §+/(4c+u)ryp)

TD ou —
? Go(2\/(Ac + u), 2/(4c + w)ryp)

< / ”Dng@D)(uTDo,ou f 5D) (5/TeT wén, 5 Jﬁund@]

- VG aro) [ eoolen) (uTDO,W  f(eo) )y T ol
+ L 1 T o) [ evsten) (100 = o) ) Kol T e
+ “;Kdgm%) / " enalen) (uTDo,ou = f1(€z>)>lo(§\/m p)dép,

(4.368)

= a?
[TDz,mz (zp,u) + 1

D

which represents the dimensionless temperature solution for the O(J) system. Taking the

derivative of Eq. 4.368 with respect to rp gives
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OTp2ou _ @ Ho(5+/(4c+u)ryp, 5+/(4c+u)rp) [ = a2
2 ( TD2,mz(ZD, u) + Z

orp 2 V (4c +u), \/(4C+U)Tfp)

X /TfD §D9(§D)(UTDoou filép ) \/ (4c 4+ u)ép, —\/ 4c—|—u))d§D}
1
2
SV am GVacTam) [ e >(uTD00u o) ) /0o i)
1

2 D

—I—azg\/ (4c—|—u)11(%\/ (4c + u)rp) f ng(fD)(UTDo ou—f1({D ) \/ (4c +u)ép)dép
2

—azg\/(élc—iru)[(l(%\/ (4c +w)rp / épg £D)(UTD00u fiép > \/ (4c+u)ép)dép.

(4.369)

If we evaluate Eq. 4.369 at rp = 1, we obtain

3 ‘D
+ %\/ (4C+U)K1(g\/ (4C+U))/ ! SDg(gD) (UTDOOU fl fD ) \/ 4C+U SD ng
1
3 TfD
+%\/ (4C+U)]1(g\/ (4C+U))/ ' §D9(§D)(UTDoou fiép ) \/ (4c+u)ép)dép,
1

(4.370)

which becomes

Ho(3+/(e + u)ryp, §/(e + i
rp—F—— |rD:1: - (4C-|—U) 0<2 ( - U)TfD = ( . U)) [TD?inl(zDau) + o
orp 2 Go(&+v/(4c+u), 4\/(4c+ w)rsp) 4

X /1”[) EDg(ﬁD)(UTDo ou — f1(€D ) \/m D g\/W)de}
+ Saer ) [ oateo) (uTonm 1 (§D))H0(§\/M5D, S Vet u)den,

(4.371)
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by using the definition of the function Hy. Introducing the following function,

MiCep.10 = 0(0) [ €nateo) (Tonn— o) ) Gall VTt e, 5/ Ter s
+/TeTa [ enato) (1o ~ F(6o) ) Hal v TTe T Wi, §/Tle T i,

(4.372)
we can rewrite Eq. 4.371 as
aT ou S
. aﬁl’ = My (w)Tpoimi(2p, 1) + My(zp, u). (4.373)
rp=1

Wellbore Region Solution 0 < zp <1
As mentioned previously, the dimensionless temperature in the region 0 < zp < 1

is also given by

TD,ml(zm u) = TDO,inl + GTDl,inl + 5TD2,ml- (4.374)

Substituting Eqs. 4.374 and 4.291 into Eqgs. 4.271 and 4.272 gives

82 = = = = N =
97 <TD0,ml + €I'pi,inl + 5TD2,ml> — bu <TDo,ml + €I'p1,int + 5TD2,ml>
D
8 K. 0 (- _ _
Y & 'p~— TDO ou + 6T‘Dl ou + 5TD2 ou = _b7 (4375)
a? KwD 87",3 ’ ' ’ rp=1
and
fDo’ml(zD = 0, u) -+ EfDl,inl(ZD = 0, u) =+ 5fD2,inl(ZD = O, u) = 0 (4376)

By noting that K.p(rp = 1) = 1 and rearranging Eq. 4.375, we obtain
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027:—’D() inl -~ 8 aT‘DO ou
— " buT in >
022, UL D0,int + aQKwDTD Ip |,y
327§D1 inl S 8 T p1,ou
L ’
+e{ 92 Ul piint + 2Kon P orp L
anDQ inl = 8 aT’D2 ou
0| ———— — bulpoin : = —b. (4.377
+ |: az% UL D2, 1+ aQKwDTD 67“[) - ( )

A comparison of both sides of Eqs. 4.377 and 4.376 yields the following three system of
equations

The O(1) system:

32%D0 inl = 8 aTDO ou
——— — buTpon : = —b, 4.378
023, wLDojint + aQKwDrD orp rp=1 ( )
Tpo.m(zp = 0, 1) = 0. (4.379)
The O(e) system:
827:—1[)1 inl -~ 8 aT’Dl ou
——— — buTp1n ’ =0, 4.380
A L )
Tpram(zp = 0,u) = 0. (4.381)
The O(0) system:
asz2 inl S 8 aTD2 ou
il Ty , —0, 4.382
022 UL D2int 2Kop © 0rp rp—1 ( )
Tp.m(zp = 0,u) = 0. (4.383)

We discuss first the solution of the leading system by using the expression that we derived

for the term TD% given by Eq. 4.324 in Eq. 4.378 as follows
=1

D=
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2 ~
0*T'po,ini

023, (Ml (u)fDO,inl(ZD, u) + Mz(U)) = —b, (4.384)

— buT'po,ins + S
a KwD

where the functions M;(u) and Ms(u) are defined respectively by Eqs. 4.322 and 4.323.

If we rearrange Eq. 4.384, we obtain

827§D0 inl 8M1 (U) N 8M2<U)
— — | bu — Tooini + 0 =0. 4.385
025 ( YT K ) P T R g ( )
Let us introduce a new variable U po,in defined by
_ < b+ 2t
Upo,in = Tpo,int — bu_aWT(Z)' (4.386)
a2KwD
If we express the O(1) equation in terms of Upg ., we obtain
820130 in 8M1 (u) —
in by — Opoin = 0, 4.387
022 Y ?K,p ) P ( )

whose solution is a combination of exponential functions as follows:

_ SMi(u S8M;i(u
Upo,in = A1 exp {— \/(bu - GQI;EU;)ZD] + As exp [—1— \/(bu — &K;fw))@] , (4.388)

where A; and A, are two constants of integration to be determined. Note here that the

aszD

term (bu — M) is positive because M;(u) is negative (Eq. 4.322). In terms of the

dimensionless temperature TDo,ml, the solution is obtained by simply replacing Eq. 4.388

into Eq. 4.386. The result is




For zp = 0, we have

8 Mo (u)

+ G/2K’UJD
_ 8M;(u)
bu — = o

fDO,inl<2D =0,u) = + A+ Ay, =0. (4.390)

Thus,

8 M (u)
b + a2[§wD

—Ay — — L 2uwbD_
_ 8M1(u) ?
bu Py

A

(4.391)

and Eq. 4.389 becomes

8 Mo (u)

= b+ 2Kuop 8M1(u)
Toves= 3t (1o |/ (=35 )
SM 8M-
+ A2(exp {—1— \/(bu — aQI;(u))ZD} — exp [ — \/<bu - az;;(U)>zD] ), (4.392)
wD wD

or simply,

8M>(u)

- b + 2K, 8M1 (U)
TDO,inl = —bu = %1(2) (1 — €XP |:_ \/(bu — 2K 5 )ZD:|>
a2KwD v
+ 24, sinh {\/ (bu . iﬁﬁ(“) ) zD} . (4.393)
wD

Recall that the first order system in € is given by Eqs. 4.380 and 4.381. But,

because we have an expression for the term TD% provided by Eq. 4.353, we can
rp=1
use it in Eq. 4.380 to obtain
anDl,mz S S
Y buTDLml + D) M1 <U>TD1,inl<ZD7 u) + Mg(ZD, U) = O, (4394)

or after rearranging
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(4.395)

82TD1 inl 8M1 (U) ~ 8M3(2D, U)
— 5 — | bu——; Tprim = ——%+—-
023, a*Kyp ’ a*Kyp

Eq. 4.395 is a non-homogeneous second order differential equation whose solution is the
sum of any particular solution denoted by fgl,inl and a corresponding homogeneous so-

lution TABLW that we obtain by setting Mj(zp,u) = 0. It is easy to show that the

homogeneous solution is a combination of exponential functions that we write as

T:Bunz = C)exp {— \/(bu — ii\ié(zg>,2p} + Cyexp [—l— \/(bu — i%g?)zD} , (4.396)

where C] and Cy are two constants. In order to find a particular solution, we apply the
variation of parameters technique which assumes for our case, a particular solution of the

form

Tjglvml = uy(zp, u) exp [—\/<bu — i‘;‘igg)zl)] +us(zp, u) exp l+\/(bu — ii\i;ilg)@] )
(4.397)

The functions u; and us are underdetermined so we have the freedom to impose a con-

straint which simplifies subsequent equations. This constraint is chosen to be

ey [ (oo S ] ey [ (b0 S)] <o,
(4.398)

where the notation v} and uj is introduced to refer to the derivative of u; and wus with
respect to the variable zp. The general solution to the O(€) system is then given by the

following expression
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= 8M1(u) 8M1(u)
Tp1,im = C1exp [— \/(bu — Ko )ZD} + Cyexp [—i— \/(bu — K, Zp

+ uy(2p, u) exp [— \/<bu — i‘;\ﬁit)))z[)] + ug(2p, u) exp {%— \/(bu — i%;gg)zl)].

(4.399)

Next, we differentiate Eq. 4.399 with respect to zp to obtain

() (e [ i)
v [+ (10 S0 ] s - (- ).,
(e, ) exp {+ \/ <bu - iMKSDzDD (2 ) exp { _ \/ (bu . 81‘252)@}
Tz, w) exp {+ \/ (bu _ 8%12)@} - (4.400)

Using the constraint defined by Eq. 4.398, Eq. 4.400 simplifies to

il ) (o[-l )
cvem [ (- D)) sy (- S0
(2, 1) oxp {+ J <bu - %;SDZD} ) (4.401)

Differentiating the above expression yields
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e () (oo [ (-555)
(O e R (GO
oo [ (o S0, ) < - S8) (4

o [ (10 20 o0] —sgpmess [ (- 22),]). qaaom

Replacing the result of Eq. 4.402 and Eq. 4.399 into Eq. 4.395 gives

(- ) o [ (- 52 o
oo [+ (1= S0 0] s - (- L),
oo [+ (o= 2o, ) - 200 (s
oo [ {o- )] e - 2]
(D (- B
oo [+ (1= S0 0] s - (- ).,
runpaeny [ (s S0, ) < SR,

which simply can be rewritten as
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) exp | - \/ (10

- 8@?@32)@} — uy(2p, u) exp |:+ \/<bu —

8M;3(zp,u)

), ]

CLQKwD

(4.404)

aQKwD\/<bu —

8Mi (u)
CL2KwD

The solution of the simultaneous equations Eqgs. 4.398 and 4.404 for v} and ) is

8M3(zp,u)

8M
1 aQKWDJ (bua%;;u;

) —exp {+\/(bu—iZMK;£Z))zD]

uy(zp,u) = W
0 exp {%—\/(bu—%ﬁ)zD}
1 8M;5(zp, u) 8 M (u)
— W » exp | + bu — a2KwD ZD |, (4405)
a’K,p <bu — —anésg)
exp | — \/ (bu — —ié\/ﬁg) 2D 8Ms(zp )
1 ) T a?K, u—ngl(u)
oo = o (o 22)
exp | — \/(bu — %1(@2) ZD 0
1 8M3(ZD,U) _ 8M1(u)

W
a’K,p <bu —

where W is the Wronskian defined by

)ZD} . (4.406)

o

CZQKwD

8M (u)
a?Ky,p
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exp [— \/<bu — —igﬁg) ZD:| —exp [\/(bu - —ié\ﬁg)z[)}
8 M (u) 8 M (u)
exp [— \/<bu - aQKwD>ZD} exp l\/(bu — angD>zD]

Integrating Eq. 4.405 from 0 to zp gives

=2, (4.407)

/OzD ull(ZDau)dZD = 4 /OZD M3(’lbD,u) exp |:+\/< U — iéi;fjg)’lﬂD} dl/)D,

i (- 22)

(4.408)

or

4

i (- 22)

X /OZD M;(¢p,u) exp {+ \/(bu — 8M1(u))wD} dyp. (4.409)

u1(zp,u) = uq1(0,u) +

a2KwD

Similarly, if we integrate Eq. 4.406 from zp to 1, we get

1 1
/ uy(zp,u)dzp = — 1 / Ms(¢p,u) exp {—\/(bu - ii\i;(l;))@bg} dip,
ZD ) ZD w

i (- 22)

(4.410)

or
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4

a2KwD\/(bu — %ﬁ)
! 8M-
X /ZD M3(¢p,u) exp {— \/(bu - aQI;il;))wD} dyp. (4.411)

Now, if we replace Egs. 4.409 and 4.411 into the general solution given by Eq. 4.399, we

us(zp,u) = ug(1,u) +

obtain

N

Tp1int = Crexp [— \/(bu — CLQI;UD) D:| + Cyexp [—f— \/(bu — a2fl(iD))2D]
8M; (u 4
+exp | — bu — zp | | ui(0
aQKwD
a’K,p (bu 8M1(u)>

T @®Kup

< [ da(um ) exp +\/< o )wp]dw,;)

8M;(u 4
+exp | + bu — zp || ue(1
CLZKU,D
a’K,p <bu—22MTlsg)

X /; M3 ()p, u) exp {— \/<bu — iﬁfg)%} d@Z)D), (4.412)

or after rearranging,
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= 8M1 (U) 8M1(U,)
Tpi1im = Asexp [— \/(bu - 2K, )ZD:| + Ajexp [—F \/(bu — 2K Zp

+ ! / M3(¢p, u) exp [4‘ \/(b %11(3) (¥p — ZD)]dl/JD

a2KwD\/<bu i%éwD)

+ i / M3(¢p, u) exp [ \/<bu — iﬁ%i?)(@% - ZD)} dp,

a2KwD\/(bu ié\/; “;)

(4.413)

where for simplicity, the new constants A3 and A4 are introduced and defined respectively

by

Ag = Ol + ug (O, U), (4414)

and

A4 == 02 + UQ(]_, u) (4415)

Recall that the O(e) system has an outer boundary condition given by Eq. 4.381. If we
replace zp by 0 in Eq. 4.413 and we set the solution to zero according to the boundary

condition, we obtain

Az + Ay + 1 /M3 Yp, )exp{ \/<b —8Ml(u)>@/)D]d¢D=07

2KwD
a2KwD\/(bu — z%é(i)

or equivalently,

(4.416)
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Ay =—A) — i /01 M;3(¢p,u) exp {— \/(bu — SMI(U))wD} dyp.

CL2KwD
a2KwD\/(bu — SZMTT:Q)

Finally, replacing Eq. 4.417 into the general solution Eq. 4.413 and rearranging yields

(4.417)

= M 4
Tp1 iny = 2A4 sinh [\/(bu — 82 1<u>>zp} + X
a KwD

a2KwD\/ (bu . %)
< - /01 M3(¥p,u) exp [ - \/(bu - i%l(ilg) (¥p + ZD):| dip
- /OZD Ms(¢p, u) exp [+ \/(bu - i%;g) (¥p — ZD)} dop

+ /Z; M3(¢p,u) exp {— \/(bu - i%;ilg) (¥p — zD)} d@Z)D). (4.418)

The first order system in ¢ is given by Eqgs. 4.382 and 4.383. By substituting the

term TDB’Z;L;% by its expression provided by Eq. 4.373, Eq. 4.382 becomes
rp=1
827§D2,mz = =
8—2 — buTDQ,ml -+ S M1 (u)TDz’ml(zD, u) + M4(ZD, U) = O, (4419)
) a“RAwp

or

92T . M. = 8M.
D2jinl ( " 1(u))TD2 - _M‘ (4.420)

023, a’Ky,p a*Kup
The system constituted of Eq. 4.420 and its associated boundary condition Eq. 4.383 is
similar to the first order system in € with the exception of the right hand side of Eq. 4.395,
i.e., M3(zp,wu) which is replaced by My(zp,u) in Eq. 4.420. Therefore, the O(§) system

has the same solution as the O(e) system which is given based on Eq. 4.418 by
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= M 4
TDQ’inl = 2A6 sinh [\/(bu - 82—1(U)> ZD:| + X
a KwD

aQKwD\/ (bu _ %)
(- [ ancom e[~ (- 2D 1 2]
AR () [

+ /; My(¥p,u) exp {— \/(bu - i‘%l(g) (¥p — zD)]de), (4.421)

where Ag is a constant. At this point, we have the general solution for the dimensionless

temperature evaluated in Laplace space at any point in the wellbore region for 0 < zp < 1.
However, this solution is not fully defined as the determination of the three constants of
integration A,, A4 and Ag is still required. We will show how to obtain them based on the
continuity conditions at the interface zp = 1, but first, we need to evaluate the solution
in the wellbore for 1 < zp < zp.
Wellbore Region Solution 1 < zp < zp

The dimensionless temperature in the region 1 < zp < z;p is also given by the

following perturbation expansion in powers of ¢ and

TD,inu(zDa U) = 7AﬁDO,inu + 6jﬂDl,inu + 5TD2,inu- (4422>

Substituting Eq. 4.422 into Eqgs. 4.269 and 4.270 gives

82 ~ ~ ~ ~ ~ ~
EPA <TD0,mu + €Tp1inu + 5TD2,mu) —bu (TDo,mu + €Ip1inu + 5TD2,mu) = —b, (4.423)
D

and

0 < = x
a. <TDO,mu + 6TDl,inu + 6TD2,inu)

e = 0. (4.424)

ZD=ZtD
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Rearranging the above equations leads to

827§D0 inu = 82222Dl inu S 827§D2 inu =
Dm0 ime € | e b T ima | 6 | 22 Ty i | = —b, (4.425
oz “{ oz % { o } (4429
and
af nu 8771 nu af nu
= e i =0. (4.426)
(9ZD _ 821) _ 8213 _
ZD=2%tD ZD=2tD Zp=2tD

If we compare both sides of the two equations, we obtain three systems of equations given
by
The O(1) system:

827T—‘DO inu =
D0 — b, 4.427
023 Ut po, ( )
6f mnu
DO,imu —0. (4.428)
aZD ZD=%tD
The O(e) system:
anDl inu S
2 buT 1 ine = 0, 4.429
0z, uion, ( )
—Plinu = 0. (4.430)
dzp 2p=2D
The O(6) system:
aszQ inu S
T = 0, 4.431
023 uips, ( )
af inu
D2inu —0. (4.432)
aZD ZD=%tD

We discuss first the solution of the leading system by introducing a new variable Vpg inu
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defined by

_ = 1
Vpo,inu = Tpo,inu — " (4.433)

If we express O(1) system in terms of Vpg inu, We obtain

62 VDO nu >
—— — buVpginu =0, 4.434
023 “¥ o, ( )
and
OVboinu =0, (4.435)
aZD ZD=ZtD
whose solution is given by
VDO,inu = D1 exp(—\/%zp) + D2 exp(—k\/@z[)). (4436)

D; and D, in the solution represent the constant of integration. Differentiating Eq. 4.436
with respect to zp and evaluating the resulting expression at zp = z;p according to

Eq. 4.435 yields

Viu| — Dy exp(—Vbuzp) + Do exp(+Vbuzp)| =0, (4.437)
or simply,
Dy = Dyexp(2vVbuzp). (4.438)

Finally, the dimensionless temperature f’DO,inu is obtained by substituting Eq. 4.438 into
Eq. 4.436 and using Eq. 4.433 as follows

= 1
TDo.inu = " + Dy eXp(\/EzD) [1 + exp (2\/@(2“3 — zD))} ) (4.439)

The first order systems in € and ¢ have the same solution also expressed as a linear

combination of exponential functions. Therefore, we can write
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fDl,inu — Dsexp(—Vbuzp) + Dyexp(+Vbuzp), (4.440)

and

TTDQ,ZM = Ds exp(—\/@zD) + Dg exp(+\/EzD), (4.441)

where D3 to Dy are also constants of integration. Using the same argument as for the

constant D1, it is easy to show that

Ds = Dy exp(2Vbuzp), (4.442)
and
D5 = Dgexp(2vVbuzp), (4.443)

such that the solutions become simply

Tprime = Dy exp(vVbuzp) {1 +exp (N@(zm - zD))l , (4.444)

and

fpunu = Dgexp(Vbuzp) [1 + exp (2\/@(2,5,3 - zD))} . (4.445)

Continuity Equations

These are the two conditions applied at the interface zp = 1 given by Eqs. 4.260
and 4.261 in real time domain or by similar expression in the s domain (see Eqs. 4.273
and 4.274) since they retain their form in this space. The first condition expresses the
continuity of the temperature which in our case, using Eqs. 4.374 and 4.422 in Eq. 4.273

translates to
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TDo,mz(L u) + ETDLmz(L u) + 5TD2,mz(1, u) = TDo,mu(L u) + €TDl,inu(1> u) + (STDZmu(L u).

(4.446)
Comparing both sides of Eq. 4.446 gives the following equations
TDo,inl(17 u) = TDO,inu(L u), (4.447)
TDl,inl(la u) = Tm,mu(l, u), (4.448)
and
TDQ,inl(la u) = TDQ,inu(la u). (4.449)

The second condition expresses the continuity of the fluxes at the interface zp = 1. Recall

that it is given by

D,inl _ Y1p, (4.450)
821) zp=1 aZD zp=1
Using Eqs. 4.374 and 4.422 for the temperatures in Eq. 4.450 gives
8TD07W 8TD1,z‘nl GTDZinl _
+0 =
0zp ip=1 0zp 2p=1 0zp 2p=1
92 DOimu 92 D1inu NI ki (4.451)
0zp 2p=1 0zp 2p=1 0zp zp=1
Comparing both sides of Eq. 4.451 yields
DO,inl _ Y1Do, : (4.452)
8ZD 2p=1 GzD zp=1
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GTDl,inl _ 8TD1,inu (4 453)
8zD 2p=1 8ZD zD:I’ '
and
8ijQ,inl _ ajﬁDQ,inu (4 454)
82D 2p=1 8zD zp=1 .

Evaluating Eqs. 4.393 and 4.439 at zp = 1 and equating the resulting expression according
to Eq. 4.447 gives

b4 Sl 8M (u) 8M (u)
a wD _ _ _ ] — —=
<—bu - %(u)) (1 exp [ <bu 2K, )}) + 24, sinh [ <bu 2K, )] =
a wD

% + Dy exp(Vbu) {1 + exp (2@(@ = 1))} , (4.455)

or

24, sinh [\/(bu - 8M1<“>>} — Dy exp(Vbu) [1 + exp (N@(Zw - 1))} _

CL2KwD

1/ b+ 8M, (u)
- [ —&=wb 1— — bu — . (4.456
u (bu—%“ﬁ)( |-y (-Saen )] ) 4

From Eq. 4.452, we have

8TDO,inl _ 8TDO,inu (4 457)
aZD 2p=1 @ZD 2p=1 '

It is clear that we need to obtain the first derivatives of the temperature with respect to
zp in both regions in order to apply the above condition. In the lower part of the wellbore

region, we have
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~ 8Ma(u
ITpoimt _ b+ aQKl(ULz by — 8 M, (u) ot | — | (bu — 8 M (u) ,
8ZD bu — %ﬂu) aszD P CLZKwD b
a wD

(= S0 o o~ S0) ]

or

T po.ini _ b+ or, oxp | — by — 8 M (u) s
82[) bu _ 8M1(u) p CL2KwD b
a’Kyp

2 (o S o [ (- B8, pa

In the upper part of the wellbore region, differentiating FEq. 4.439 with respect to zp gives

o
. aDomu = VbuD, exp(Vbuzp) — VbuD; exp(2vVbuzp) exp(—vbuzp), (4.460)
ZD

or

Monins _ [, exp(v/izn) 1o (20t — 20) ) | (1.461)

82D

Now, if we evaluate both Eqgs. 4.459 and 4.461 at zp = 1 and replace the resulting

expressions in Eq. 4.457, we obtain
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o M)
8M1 (u) P v a’K. D
bu - Zxun N

(o0 S o [ 2000

VouD, exp(vV/bu) ll — exp (N@(zw - 1))} . (4.462)

or simply after rearranging,

(IQKwD

b+ Sl 8M, (u)
@ BwD _ _
— (bu - 8%5“) exp { (bu 2K )} (4.463)
a wD

The determinant of the system given by Eqs. 4.456 and 4.463 is defined by

2A, cosh {\/(bu - iﬁﬁg)} - bub%l(“)l% exp(Vbu) {l—exp (2\/@(%—1))} =

. 2 sinh {\/(bu - %g‘gﬂ — exp(vVbu) [1 + exp (2@(@ - 1))] |
2 cosh {\/ (0= 38| = [t espVB |1~ exp (2Btean 1) )

a“K,,p

(4.464)
or

Q = 2exp(Vbu) x (cosh {\/(bu - i‘;\ﬁg)} {1 +exp (2\@(,@ — 1))}
lm_bﬁlg sinh [\/(bu - iﬁﬁiﬁ)} [1 — exp <2\/E(zw - 1))] ) (4.465)

It follows that the constant A, is obtained by evaluating a determinant which is similar

to €2, normalized to () with its elements in the first column replaced by the right hand
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side terms of Eqs. 4.456 and 4.463 respectively. The result is

8Mo>(u)

] [ CYTty | S e
(oo () )] oo (5
X {1 + exp (2\/@(2“3 - 1))} exp {— \/(bu - iﬁﬁiﬁ)} (4.466)
(bu %()) exp(Viu) ( {Hexp (wmzm_l))} exp {_\/ (bu - “QD))}

8Mi(u

“im |- ZZZQ) (e[ ()

X [1 — exp <2\/E(zw - 1))} ) (4.467)

In order to determine the constant Ds, a similar determinant to {2, normalized to 2 with
its elements in the second column replaced by the right hand side terms of Eqs. 4.456 and

4.463 respectively is evaluated. The result that we obtain is

8 Mo (u)

ap, ——2(2 M_) o[ - ¢ (1 2000 o, W (1 22000}
ofhe () (1o [ (o= S ) [ (- S5

(4.468)

or
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8M1 (U)

o= () (oo [ (o sy (- 5S)

2\ - 200

([ Bl 22

8 Mo (u)
U (b + o I?'wD
(4.469)
For the first order in €, if we evaluate Eqs. 4.418 and 4.444 at the interface zp = 1

and equate the resulting expressions according to Eq. 4.448, we obtain

a’K,p

(- [ Mstwn e |- \/ (0= 2w 1)

v My ) exp E \/ (0= S ) wo — 1] v ) =

Dy exp(Vbu) {1 + exp (N@(zw - 1))} (4.470)

2A, sinh bu — M + 4 X
CL2-[(wD
a’Ky,p (bu — —8M1(u))

Rearranging and simplifying Eq. 4.470 gives

2A, sinh [\/(bu — 8M1(“))} — Dyexp(Vbu) [1 + exp (2\/@(% - 1))} -

CL2KwD
8 SM
— eXp{— (bu— 5 1(u)>}
8Mi (u) @*Kuwp
GQKwD (bu — m)

X /01 M;5(p, u) sinh {\/(bu — iZMTlf:;)) ¢D} dip. (4.471)

On the other hand, from the continuity of the fluxes Eq. 4.453, we have
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o aT’Dl,inu
ZD:1 aZD

8TD1,inl
8zD

(4.472)

ZDZI

Differentiating Eqs. 4.418 and 4.444 with respect to zp gives respectively

SN o A o

+a2;’wD oXp [_\/(bu - i‘;\é )ZD} / M;3(¢p, u) exp \/(bu 8]2\210[) )qu] dyp
_CLQ;wD exp [—\/<bu ii\/f[;wz)> } / M;(p,u) exp [+\/(bu — 8]2\21@ )w[)} dp
o[ (= S2)e] [ o ren [y (- S )

and

aTDlvi”“:\/@D4exp(\/@zD) VbuDy exp(2Vbuzp) exp(—Vbuzp). (4.474)

8zD

Evaluating these equations at zp = 1 and equating the resulting expressions according to

Eq. 4.472 gives

(o= o oo S5
| - \/(bu ) [ Mo - \/ (0= S50 v
- [ (- Y] 1 s ), s -

VouDy exp(vVbu) (1 — exp {2\/@(@ - 1)} ) (4.475)
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or

My ( /
2A, cosh {\/(bu — 82[; SMI(U 4exp 1 exp |:2\/b_(ZtD—1)}> —
a wD — 2K s
o[- ( k)]
2KwD
a2KwD\/<bu ié\ié D)

X /O 1 M;(¢p, u) sinh {\/ (bu — 82‘%;)%} dipp. (4.476)

It is obvious that €2 is the determinant of the system given by Eqs. 4.471 and 4.476. Thus,

the constant A, is obtained by evaluating the determinant €2, with its elements in the

first column replaced by the right hand side terms of Eqs. 4.471 and 4.476 respectively.

The result is

M
QA — 8 exp{— (bu—82 1(@)}
8M7 (u) “ KwD
CLQKwD (bu - m)

X /0 1 M;(1pp, u) sinh {\/ (bu — ii\i;ilg ) wD} dip

y ( bub—“) exp(Vbu) (1 — exp [2\/@(zm - 1)D

_ 8Mi(u
a?Kyp

+ exp(Vbu) {1 + exp (2\/%(@ - 1))} ) (4.477)

or
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Ay = 8 exp(Vbu) exp [— \/<bu = 8‘;\/[[;(@)}
a wD
a2KwDQ\/<bu — —2%;52)

X /01 M3(¢p, u) sinh {\/(bu — ii\il(ilg>¢[)} dip
X ( bu_b% (1 — exp {2\/%(% - 1)D

o + {1 + exp <2\/E(zw — 1))} ) (4.478)

By replacing the elements of the second column of 2 by the right hand side terms of
Eqgs. 4.471 and 4.476 and evaluating the resulting determinant, normalized to (2 leads to

the constant D,. Thus, this results in

1 M
QD, = 6 eXp{—\/(bu—g2 1(u))]
a KwD
_ 8My(u)

aQKwD\/<bu a2KwD)
1
X /0 Ms3(3p, u) sinh [\/(bu - iéi;i?)Y?D} dyp

(s ) (o= 2) o[ (10 Y], paamy

or equivalently,

16 ! . 8-
D, = X / M3(¥p, u) sinh {\/(bu — aQé(U))?ﬁD} dyp.
GZKWDQ\/(bu_%I(U)> 0 wD

(4.480)

As for the O(9) problem, we showed that the corresponding solutions have the same

analytical formulation as the ones that are associated with the O(e) system. Therefore, it
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is obvious that the constants Ag and Dg are similar to A4 and D, respectively except for
the function M;5(zp,u) which needs to be replaced by My(zp,u). So based on Eqgs. 4.478

and 4.480, we obtain

Ag = s exp(Vbu) exp [— \/<bu — 8‘;\/[1@))}
a KwD
a2KwDQ\/<bu — %1(12)

o R N [V (AT o
x < zmb—gMW(l — exp [2\/%(2“3 - 1)D

T feen(avn—n)]),

CLZKwD

and

Dy = 16 x /O 1 M, (4p,u) sinh {\/ (bu - 8M1(“))¢D} dip.

GQKwD
aZKwDQ\/(bu — —3@‘2&)

(4.482)

Note that the solution for the temperature profiles during falloff is presented in
Laplace space. In order to generate a solution in terms of real time, a numerical Laplace

inversion algorithm is needed. The Stefhest algorithm will be used for this purpose.

4.8.83  Pressure Falloff Solution

In chapter 3, we showed we could construct approximate analytical solutions for
the pressure falloff response using two different approaches. The first one is based on the
Thompson-Reynolds steady-state theory combined with rate superposition extended in
an ad hoc way to the two-phase problem. The solution, in this method, is written as the

sum of the single-phase oil solution and a multiphase component. In the second approach,
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perturbation method is used and the solution for the pressure change is presented as a
perturbation expansion. Both methods, however, assumed isothermal conditions. In this
section, we generalize the steady-state concept to construct a pressure falloff solution
under nonisothermal conditions. We start our analysis by writing the equation for the
wellbore pressure change during falloff for the case of a homogeneous reservoir of constant

thickness. This equation is given by

a [ qs(r,At) dr
A ws — Pws — Vi — T 5 4.4
poo=puem=g [ SO (4.483)

where ¢, denotes the injection time prior to shut-in and p,,s is wellbore pressure. g,(r, At)
represents the total flow rate distribution in the reservoir during the shut-in time At¢. The

preceding equation can be rewritten as

a [T g (r AL dr a [ qs(r,At) dr
Aws:—/ AN +—/ A : 4.484
Po =0 ) Nty k) R ) N ty) TR (4.484)

where 7(t,) is the radius of the flood front at the instant of shut-in. Not only is the total
mobility A; a function of the water saturation S,, but also a function of the temperature
T through the fluid viscosities. By adding and subtracting an integral from r,, to 7¢(t,)

to this equation, we get

Ts(tp) 00
prszoz/ qs(r, At) dr a/ qs(r, At) dr

= = +
h Ae(r,ty,) rk(r)  h £(t) Ae(r,t,) TE(r)

oz/rf(tp) Qos(ry AL) dr oz/rf(t”) Qos(ry AL) dr

h w ;\oh Tk<r) N h w 5\oh 7’]{3(7”>'

w

(4.485)

In Eq. 4.486, q,s(r, At) denotes the oil flow rate distribution in the reservoir during the
shut-in time At that would be obtained under single-phase flow conditions, i.e., if we
injected oil at a rate g;,; RB/D at the same reservoir temperature T;;. As previously,
we assume that for r > r¢(t,), ¢s(r, At) = @os(r, At) and \(r, At) = Mon. In this case,

Eq. 4.485 becomes
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a [ dr a [T L AL qos(r, ALY\ dr
Aws:A—/ os (1, At +—/ ( ’ - = ) . (4.486
Pos =35 )1 (A0 e T . N ) S, ) k() (4.486)

Tw

or simply,

~

o r(tp) A L dr
Aws:AosT:Toi —I—A—/ <;ST,A2€ — OST,At)—, 4.487
p Pos( ) B o) (r, At) — qos(r, Al) ) ( )

Tw

where Ap,s(T = T,;) is the falloff single-phase flow pressure change based on oil properties
evaluated at irreducible water saturation assuming oil is injected into a hot oil reservoir
of constant temperature 7,, at an injection rate equal to gi,;.

Since qos(r, At) is a single-phase flow rate, we can use the rate superposition in

terms of rates following Eq. 3.37 to obtain

Qos (7, AL) = Qi [exp ( Ocror” ) — exp ( (bct—o?ﬂ) ) (4.488)

4Bk, + At)  ABkAAL

In oil field units with time in hours, 48 = 10.548 x 10~%. In order to evaluate the total rate
qs(r, At) in the two-phase flow region, the total compressibility and the total mobility at
irreducible water saturation in Eq. 4.488 are replaced by local values of these properties

as follows:

qs(r, At) = qinj [exp < gar, tp)TQ )> — exp ( dalr, tp)TQ ) . (4.489)

ABkN(r ty) (ty + At ABkN(r t,) At

At any position 7 in the reservoir and any shut-in time At, the total compressibility ¢;(r,t,)
is evaluated via the water saturation distribution S, (r,t,) at the instant of shut-in that
we obtain using the nonisothermal Buckley-leverett theory. As for the total mobility

Ae(r,t,), once we solve for the temperature in the reservoir using perturbation method,
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the fluid viscosities can be determined (from given tables or functional relationships with
the temperature) and the total mobility can be therefore evaluated using the updated
viscosities in Eq. 4.47. The falloff pressure change is obtained from Eq. 4.487 once the
rates ¢, and ¢, are generated using Eqs. 4.488 and 4.489 respectively.

In the following, we will present the falloff solution in terms of Ap, defined by

Aps = Pwf,s — pws(At); (4490)

where py, f.s = puwr(ty) is the wellbore pressure at the instant of shut-in. Here, this equation
is obtained by subtracting p,s(At) — p; given by Eq. 4.487 to py(t,) — pi.

At very late shut-in times, the rates gs(r, At) and g,s(r, At) predicted by rate
superposition are for all practical purposes equal to zero for r,, < r < rs(t,). It follows
that the multiphase pressure drop in Eq. 4.487 is equal to zero and Eq. 4.487 reduces to

Qdin;

wsAt_ i:AosT:Toi = ~—In
Pus(At) = pi = Apos( )2khth<

M)_ (4.491)

Atp

Assuming that the temperature front is beyond the skin zone when the well is shut-in,

the injection solution at the instant of shut-in is then given according to Eq. 4.86 by

~

rs 1 re(tp)

B Ainj k )/ ( Aok )dr /f P ( Aok )dr}
B i e L f | b 1) Zy )&
s = dnt e (o) [* () T [ () 5

N (o) S (bt
kh kg v \ (1, tp)  Awm(ryty)) o), Ae(rytp)  Aan(r,ty,) ) |

(4.492)

that we rewrite as

~

T re(tp) 1
_ Aing | (K )/ ( Aoh )dT’ /f P ( Aoh )dT’
wis—Di = Apy(t,)+ = ——1 — 1| —+ —_——1) —
b 5 P b ( p) ]{Jh)\oh |:<ks Tw /\tc<T, tp) r Tw /\th<r’ tp) r

rr(tp) 5\ h 5\ h dr
+ 2 — ° — 1. (4.493
/rw <)\tc(7”, tp)  Awl(r, tp)) 7”} ( )
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The single-phase oil solution at t, is given by

QAinj 4tpD )
Apy(t,) = —ding_y,, , 4.494
Poltn) = (exm) (4.494)

where 7 = 0.57722 is Euler’s constant. By subtracting Eq. 4.491 from Eq. 4.493 and using

Eq. 4.494, it is easy to show that

o 1 4t.p > < k ) /TS ( ;\oh ) dr
wf,s T wsAt:—A—ln 4+ ——=1 T 1) =
Pute ~ P80 = {2 <exp(7) ks et )
T (tp) A . dr 7 (tp) A\ ., A . dr
+ e — 1 —+/ ( T )—} 4.495
[ G )T L Ga wie) T v

where t.p represents the dimensionless equivalent time defined by t.p = %. B
P
introducing a total skin factor given by
St = 5+ Sy, (4.496)
we can rewrite Eq. 4.495 as
« 1 4teD
DPwfs — Pws(Al) = — {—ln( )—1—5], 4.497
f ( ) k’h)\oh 9 eXp(’y) t ( )

such that the multiphase component of the total skin factor is

k " Aon dr [T X, dr
Y _Coh ) o )
S)\ (ks )/Tw ()\tC<T7 tp) ) r +\/7‘w )\th(r7 tp) r
77 (tp) 5\ h 5\ h dr
+ ° — o —. (4.498
/m (w, W o m) ;o (44%8)

In the skin zone, it is reasonable to assume that oil saturation will be reduced to residual

oil saturation. In this case, \i.(r,t,) = ;\wc. Using this assumption, Eq. 4.498 becomes
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k Ao Ty s (tp) Aok dr
= — 1) =-1)In(-=2 1) =
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Using Hawkins’ formula in Eq. 4.499, substituting the resulting equation into Eq. 4.496

and simplifying gives

5\oh /Tf(tp) < j\oh ) d?“ /TT(tp) < 5\oh j\oh > dT’
St = S— + — =1 —+ — —. (4.500
' Awe Tw Ath (T’ tp) r Tw )‘tC(ra tp) Ath (T’ tp) r ( )

Solving for the mechanical skin factor s, we obtain

~ ~ ~

A Hw (Toi) " (t) /\oh dr rr(tp) /\oh )\oh dr
= M, 5t — ek )4 - .
fo (T ru A (1 tp) r ru Mie(rytp)  Am(rity) ) v
(4.501)

Recall that M, is the end-point mobility ratio evaluated at the initial temperature of the
reservoir. So, by performing a semi-log analysis at late shut-in times, we can estimate
the mechanical skin factor from Eq. 4.501 assuming the relative permeability curves and

therefore the total mobility profiles known.

4.4 Numerical Results and Validation
In the following, we proceed to construct analytical solutions for the pressure
response as well as the temperature and water saturation distributions during an injec-
tion/falloff test on water injection wells under nonisothermal conditions. The validation
of these solutions is done using the CMG’s STARS simulator by Computer Modeling
Group Ltd. ([2]). The basic data used for the computations are summarized in Table
4.1 and heat properties for the fluids and the solid matrix are given in Table 4.2. Since

the relative permeability curves are assumed to be functions of the water saturation only
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(not the temperature), the same ones used in previous chapters (see Fig. 2.6) were also
used here. In all the examples considered here, water was injected at the temperature
Twi = 60.7°F in an oil reservoir of initial temperature of T,; = 180 °F. Water and oil
viscosities at the injected temperature are respectively i, (Twi) = 0.4 cp and po(Twi) = 8
cp. The end-point mobility ratio evaluated at T, is MC = ’/\\—1(: = 6.4. At the initial reser-
voir temperature, the viscosities are p,,(7,;) = 0.25 c¢p and p,(T,;) = 2 cp which gives an

end-point mobility ratio of M, = ;}\wh = 2.56. It is clearly an unfavorable mobility case.
oh

4.4.1 Injection Solutions for Radial Flow

For the runs considered in this subsection, the initial reservoir pressure is p; = 3922
psi, the thickness of the reservoir h = 50 ft and the reservoir is considered isotropic of
permeability & = 270 mD. Cold water was injected at a constant rate of ¢;,; = 3000
STB/day into a complete penetrating vertical well for ¢, = 1 day and then the well was
shut-in for a falloff test. Here, we focus on the injection period only. In all runs, the
mesh consisted of a 400(r) by 1(f) by 1(z) cylindrical coordinate system with a variable
gridblock size used in the r-direction.

The single-phase case based on oil properties at irreducible water saturation was
run using STARS under the isothermal mode (injection of oil at the temperature of the
reservoir T,; into oil) and compared to the analytical solution obtained under the same
conditions. Not only does this step help ensure of the adequacy of the grid in STARS, but
also constitutes an important point in constructing the approximate analytical solution
under two-phase flow. In Fig. 4.5, the numerical injection pressure change and its deriva-
tive with respect to In(¢) are shown by solid circles whereas, the analytical solutions for
the wellbore pressure change and its derivative are represented by a solid line. As we can
see, the two solutions are in excellent agreement.

Next, we proceed to construct graphically the profiles for the water saturation and
the temperature during the injection period. On the fractional flow diagram shown by
Fig. 4.6, the fractional flow curve represented by the solid triangles corresponds to the

cold fractional flow evaluated at the temperature of injected water. The curve plotted in
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Property value
Porosity, ¢ 0.32
Rock compressibility, c,, psi~* 5.63 x 10796
Residual oil saturation, S,, 0.28
Irreducible water saturation, S;,, 0.25
Oil FVF, B, 1.000
Oil compressibility, c,, psi~* 8.0 x 10796
Water FVF, B, 1.000
Water compressibility, ¢, psi~* 2.84 x 10796
Initial pressure, p;, psi 3922
Formation thickness, h, ft 50.
Wellbore radius, r,,, ft 0.35
Injection rate, g;,;, STB/day 3,000
Injection temperature, T,,;, °F 60.7
Initial reservoir temperature, T,;, °F 180

Table 4.1: Reservoir and well data for cold waterflooding problem.
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Property value

Rock specific heat capacity, p,C,., BTU /ft3/F 42.45
Rock thermal conductivity, K,, BTU/ft/day/F 33
Overburden thermal conductivity, K,,, BTU/ft/day/F 33

Underburden thermal conductivity, K,,, BTU/ft/day/F 33

Oil specific heat capacity, p,C,, BTU /ft3/F 23
Oil thermal conductivity, K,, BTU/ft/day/F 1.8
Water specific heat capacity, p,C,,, BTU /ft3/F 62.40
Water thermal conductivity, K,,, BTU/ft/day/F 8.6

Table 4.2: Rock and fluids thermal properties.
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Figure 4.5: Comparison of numerical results to analytical solution for injectivity, single-phase
flow under isothermal conditions.
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solid circles corresponds to the hot fractional curve evaluated at the initial reservoir tem-
perature. The dashed line and the dotted line, tangent to the hot fractional flow curve,
represent the characteristic curves of slope (%—“: and % respectively. Recall that the two
tangent points for these characteristic curves and the hot fractional flow curve are the
discontinuity points in the profiles to ensure uniqueness of the solution. Our computa-
tions indicate that the first discontinuity which represents the flood front saturation is at
Swf = 0.42, whereas, the second discontinuity which represents the temperature front is
at Syr = 0.652. In Fig. 4.7, the derivatives (or the slopes) of both fractional flow curves
are displayed. These slopes are traced in order to generate the solution for the water
saturation profile. Basically, if we start from the boundary condition at r = r,, where
the water saturation is 1 — S,,, the derivative of the cold fractional flow curve is followed
up to the value of S, such that %“:(Sw) = %, which occurs at S,, = 0.684. This
represents the transition point from the cold to the hot curve. Then, the characteristic

Jw+A

= constant is followed until we reach the hot fractional flow curve at

curve given by
the water saturation S, 7. We continue along this curve up to the second discontinuity at
Swg- Finally, once we pass that point, all the saturations are moving at the same velocity
as the water front leading to the standard Buckley-Leverett type of profile.

Fig. 4.8 illustrates a comparison between water saturation distributions obtained
analytically according to the above procedure and numerical profiles simulated using CMG
STARS at three different injection times. The numerical solution was generated using the
same simulation with convection as the main mechanism to heat transfer; conduction
being negligible during the injection test. As we see from this figure, a good agreement
is obtained between the two sets of data except for the expected smear around the flood
and temperature fronts exhibited by the simulator. We need to keep in mind that this
is an unfavorable mobility ratio case. In Fig. 4.9, the temperature profiles obtained from
the simulator at the three same injection times when considering only convection are
represented by the solid stars. The solid line curves represent the analytical temperature

distributions obtained at the same times which indicate a reasonable agreement with the

simulator.
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Figure 4.7: Derivative of fractional flow diagram.
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Figure 4.8: Comparison of numerical results to analytical solution for water saturation profiles.
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Figure 4.9: Comparison of numerical results to analytical solution for temperature profiles.
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Water Saturation Distribution
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Figure 4.10: Impact of thermal conduction on water saturation profiles during injection.
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Figure 4.11: Impact of thermal conduction on temperature profiles during injection.
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In order to examine the impact of thermal conduction which had to be neglected
during the injection process to solve for the problem analytically, the simulator STARS
was run where in addition to convection, horizontal and vertical conduction were included
through fluids, rock and overburden and underburden thermal conductivities (their val-
ues are given in Table 4.2). In Figs. 4.10 and 4.11, the profiles for water saturation and
temperature generated from this run at the instant of shut-in (¢, = 1 day) are represented
by solid stars. In the same figures, numerical profiles obtained without the effects of
conduction are also displayed for comparison purposes. Clearly, horizontal and vertical
conduction do not have any effect on the distribution of water in the reservoir during in-
jection as the two profiles are identical. However, the case is different for the temperature
distributions. Although the location of the temperature front did not change when includ-
ing conduction, the profile obtained seems to exhibit higher temperature in the cold region
confirming therefore the numerical study conducted by Platenkamp [30]. For instance,
at the location » = 10.4 ft, the simulator predicts a temperature of 7' = 87.6°F when
thermal conduction is included compared to 7' = 78.4°F obtained with only convection
(see Fig. 4.11).

Fig. 4.12 illustrates a log-log plot of the injectivity solution for the wellbore pres-
sure change, Ap = p,¢(t) — p;, and its derivative with respect to In¢ obtained under
nonisothermal conditions (without conduction) and represented by the solid star dots.
Also shown in this figure is the injectivity solution for the wellbore pressure drop and its
derivative obtained numerically under isothermal conditions, meaning that the tempera-
ture of the injected fluid is the same as the temperature of the formation. This solution is
represented by the solid circle dots. At very early times, both numerical solutions reflect
oil properties at the initial formation temperature through the semi-log slope exhibited

by the pressure derivative given by

/. Qfing

= ~— = 58.08. 4.502
P 2khAon ( )

However, as time goes on, the two solutions diverge and eventually reach different semi-log
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Figure 4.12: Comparison between the results for the injection test from the simulator and the
analytical solution from the model.

lines at late times. While the isothermal solution reflects water properties at the initial

temperature of the formation according to the following semi-log line

/ Ol%nj

= M — 2268, (4.503)
2kh A

Ap

the nonisothermal solution shows water properties but at the injected fluid temperature
according to Eq. 4.90 with a much lower mobility and therefore a much higher semi-log

slope given by

/ CGing
p = m = 36.27. (4.504)
The analytical solution for the pressure change and its derivative is also shown
in Fig. 4.12 as a solid line. This solution was generated by computing the two integrals
in Eqgs. 4.56 and 4.57 for different values of time upon the determination of the total
mobility profile from the nonisothermal Buckley-Leverett equation and adding the result

to the single-phase solution based on oil-properties at the initial reservoir temperature.

Fig. 4.12 shows a good agreement between the model and the simulator. The wellbore
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Figure 4.13: Impact of thermal conduction on wellbore pressure change during injection.

pressure change and its derivative with respect to the natural logarithm of time were
also obtained numerically from the simulator when both convection and conduction were
included. This solution is represented by open stars in Fig. 4.13. In the same figure,
the solution obtained numerically with only convection is superposed. This comparison
indicates that thermal conduction (vertical and horizontal) has no effect on the pressure
response during injection.

The results above pertain to a case with no skin. Next, the same problem was
considered but with a positive skin factor s = 2.45. To do so, the permeability of a
cylindrical region around the wellbore of radius r, = 1.48 ft was set to k, = 100 mD.
All other parameters were kept the same. Fig. 4.14 compares the pressure change and
its derivative obtained analytically (solid line) to the corresponding data generated from
STARS (solid stars). Although the pressure data match very well, the derivative data
from the simulator are slightly shifted from the ones obtain from the model for injection
times 0.3 < t < 2 hours. According to computations based on the model, the flood
and the temperature fronts reach the location ry at ¢ = 0.048 hours and ¢t = 0.3 hours

respectively. Thus, the disagreement between the derivative data occur when both the
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water front and the temperature front are outside the damaged zone. We also show in
this figure analytical and numerical solutions for the wellbore pressure change and their
derivative obtained when considering an isothermal injection of water (initial temperature
of the reservoir). An interesting point is that unlike the isothermal injection solution, the
nonisothermal solution in terms of the pressure derivative does not take negative values
at any time during the injection test. Our derivations based on the steady-state theory
predict negative values of the derivative when the flood front is still in the damaged zone
(t < 0.048 hours) if the condition given by Eq. 4.73 rewritten here as
~ ks. _ Aon  Hoc

— = . 4.505
)\oc Hoh ( )

is satisfied. While the term Mc(l — %) is numerically equal to 4.0, the ratio 5_2;; is also equal
to 4 such that the above condition does not hold. That is why the pressure derivative
starts decreasing during this flow period but never reaches a negative value unlike the
isothermal case where a combination of an unfavorable mobility ratio and a positive skin
factor guarantees negative values of the pressure derivative during the time period when
the flood front is in the damaged zone. Recall that the condition for the isothermal case
is My (1 — ) =1.6> 1.

According to Eq. 4.83, the nonisothermal pressure derivative may take negative
values during the flow period corresponding to when the water front is propagating beyond
the skin zone while the temperature front is still in the damaged zone (0.048 < ¢t < 0.3

hours). Recall this equation is given by

~ kg
)\th<7"3,t) < )\wc<1 — ?) . (4506)

Since the term ;\wc (1 — %) is numerically equal to 0.27, the derivative data become

negative only if for some water saturation values, the total mobility evaluated at rs at the
initial temperature of the reservoir is less than the numerical value of 0.27. In Fig. 4.15, we
show the total mobility as function of water saturation evaluated at the initial temperature

of the reservoir and represented by solid circle dots whereas the total mobility computed
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Figure 4.14: Comparison between the results for the injection test from the simulator and the
analytical solution from the model, s = 2.45.
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Figure 4.15: Total mobility curves.
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at the temperature of injected water is illustrated by solid triangle dots. As you see from
this graph, the condition Ay, < 0.27 is satisfied for values of water saturation that are less
than the water front saturation S,y. Since these saturations propagate ahead of the flood
front, they are hence located at » > r,. This clearly suggests that the condition given
by Eq. 4.83 or equivalently Eq. 4.506 cannot be satisfied and that the pressure derivative
data are not negative during this time period as illustrated in Fig. 4.14. As time goes on
(t > 0.3 hours), the total mobility increases first and reaches the value Awh during a very
short period of time (1.5 < ¢t < 1.9 hours) and then decreases (derivative increases) to

eventually reach the end-point water mobility Awe for times greater than 6 hours.

4.4.2  Falloff Solutions for Radial Flow

In this section, we analyze the numerical falloff data obtained from the injec-
tion/falloff test simulated in the previous section. Recall that the test assumed an in-
jection at a constant rate of ¢;,; = 3000 STB/day for ¢, = 1 day through a complete
penetration vertical well. The reservoir, initially at p; = 3922 psi, is isotropic with per-
meability £ = 270 mD and has a thickness h = 50 ft. At the instant of shut-in, the water
front is located at r¢(t,) = 32.03 ft whereas the temperature front is at rr(t,) = 12.13 ft
according to the nonisothermal Buckley-Leverett theory. In order to examine the effect
of the instant of shut-in, ¢,, a shorter test was considered where the injection was carried
on for only 5 hours. For this case, r¢(t,) = 14.62 ft and rr(¢,) = 5.55 ft.

To illustrate the fact that the water saturation distribution in the reservoir remains
stationary upon shut-in the well and throughout the entire falloff test, we compare in
Fig. 4.16 the numerical profiles simulated using STARS at the shut-in times At = 51.9
hours and At = 168 hours. We also superpose the water saturation distribution obtained
analytically according to the nonisothermal Buckley-Leverett theory evaluated at the
instant of shut-in ¢, = 24 hours. Clearly, the two numerical profiles are identical which
indicates that the change in temperature in the reservoir due to cold waterflloding does
not have any effect on how the water saturation is distributed in the reservoir during the

shut-in period as long as the system is incompressible. Fig. 4.16 also suggests that it is
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Figure 4.16: Comparison of water saturation distributions obtained during falloff.

a good approximation to consider the analytical profile of water saturation evaluated at
the instant of shut-in when carrying on temperature and pressure computations during
the falloff period.

In Fig. 4.17, the temperature profiles obtained from the simulator at the shut-in
times At = 51.9 hours and At = 168 hours are represented by open stars and solid stars
respectively. The solid circles represent the temperature distribution generated from the
simulator at the instant of shut-in ¢, = 24 hours and the solid line curve is the analytical
profile also obtained at ¢,. As we can see from this figure, the temperature distributions
spread out as a consequence of an increase of temperature with At behind the temperature
front due to conduction heat transfer. Although Fig. 4.17 shows a stationary temperature
front for the shut-in times considered in this example which seems to be in accordance
with the work of Bratvold and Horne [12], this is not always true as the temperature front
will eventually disappear when the system recovers its original reservoir temperature.
This will be illustrated by the short injection example.

Fig. 4.18 presents a comparison between predictions from our model and the sim-

ulator for the bottom hole temperature as a function of the shut-in time, At, for the two
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Figure 4.17: Comparison of temperature distributions obtained during falloff.
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Figure 4.18: Comparison of numerical results to analytical solution for bottom hole temperature
during falloff.
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values of ¢,. Our analytical solution referred to as T D,int Was evaluated in Laplace space

at zp = % or equivalently z = % using Eq. 4.374 with the leading order term fDO’inl and
the two first order terms in € and 0 denoted by %Dl,inl and sz,mz defined by Eqs. 4.393,
4.418 and 4.421 respectively. Stethest algorithm was used for the numerical inversion.
Generally speaking, a good match between the two sets of results is observed for both
values of ¢,. Another remark is that the wellbore temperatures obtained during the falloff
subsequent to a shorter injection period are much higher than the wellbore temperature
obtained after a longer injection period. This is an expected result since the volume of
water being injected in the first case (short injection case) is smaller leading therefore to
a faster recovery to the original temperature of the reservoir once the well is shut-in.

Next, we compare the temperature distribution in the reservoir generated using
our model to the one obtained from STARS at three different shut-in times subsequent
to an injection during ¢, = 5 hours. The general equation used for the generation of the
temperature pr(r D, s) based on perturbation method is provided by Eq. 4.291 with the
terms TDO,OU, TDLOU and TDQ’OU evaluated from Eqs. 4.314, 4.345 and 4.368 respectively.
This comparison is illustrated in Fig. 4.19. A good match between the model and the
simulator is observed. Moreover, this figure shows how the temperature front dissipates
for long shut-in times so that the system recovers its original temperature.

In order to study the effect of the thickness of the reservoir on the temperature,
two tests were run where cold water was injected at the same rate as previously for a
total time of 5 hours. The injection test in each case is followed by a falloff. In the first
run, the thickness of the reservoir is reduced to h = 25 ft. the second run pertains to
a thickness equal to 75 ft. All the other data were kept the same. In each case, the
wellbore temperature function of shut-in time At curves are generated from the simulator
and compared against the ones obtained from the model. Numerical results are shown in
Fig. 4.20. In the same plot, both numerical and analytical solutions evaluated for the case
h = 50 ft are also included for comparison purposes. As seen from this figure, a good match

between the simulator and the model is observed for each case. This figure also shows

the impact of the thickness of the reservoir on the behavior of the wellbore temperature.
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Figure 4.19: Comparison of numerical results to analytical solution for temperature distribu-
tions during falloff.
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Figure 4.20: Comparison of numerical results to analytical solution for the wellbore temperature
during falloff for different values of the reservoir thickness.
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Figure 4.21: Comparison between the results for the falloff test from the simulator and the
analytical solution, s = 0.

More specifically, both the simulator and our model predict a higher temperature at the
same shut-in time if the thickness is increased. As the same volume of water is injected
in all cases, this is explained by the fact that an increase in h leads to an increase in
the surface area across which heat flows and therefore to a decrease in the temperature
change in the system. That is why the temperatures are much higher for large values of
h.

Fig. 4.21 compares the multiphase flow results obtained from our proposed model

for the pressure change Ap, and its derivative with respect to the equivalent time ¢, =

tpAt

o a; against the corresponding data obtained from the simulator. This example pertains
P

to the case where h = 50 ft and the mechanical skin factor s = 0. Fig. 4.21 shows a
good agreement for the falloff pressure change solution. Except for the small oscillations
exhibited by the pressure derivative data generated from our analytical solution, the
agreement with the simulator is also good. We also observe a semi-log slope exhibited
by the pressure derivative for times At bigger than 10 hours reflecting, as expected, oil
properties at the initial temperature of the reservoir. This semi-log slope, represented by

a dashed line, is given by
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Figure 4.22: Comparison between the results for the falloff test from the simulator and the
analytical solution, s = 2.45.

/ Q4%'71]'

Ap, = —" — 581, 4.507
= " ( )

The dotted line represents the semi-log line based on water properties at the temperature

of the injected fluid defined by the following equation

Qdin;
Ap, = 2ini _ 363, 4.508
b 2kh A, ( )

and expected to be observed at early times. However, both the simulator and the an-
alytical solution for the derivative reflect a slightly higher value (Ap. ~ 39.2) for times
0.001 < At < 0.01 hours.

The case with s = 2.45 is shown in Fig. 4.22 where our analytical falloff solution
for the pressure drop and its derivative is also compared to the results extracted from the

simulator. A good match between the two sets of data is observed.

4.4.8 Horizontal Well Case

Here, we simulate injection of cold water at a constant rate of g;,; = 31,450

346



STB/day through a horizontal well of length L = 1312.4 ft that penetrates a hot reservoir
of constant formation thickness h = 78.74 ft and absolute permeability £ = 5600 mD.
All the other basic data used for the computations are the same as the ones used in the
vertical well case (see Tables 4.1 and 4.2). This example pertains to a case where the
horizontal well is located in the center of the formation. The simulation grid consisted of
a 149 (x) by 194 (y) by 1 (z) Cartesian grid plus a local hybrid grid refinement of 50 (r) by
1 (0) by 1 (2') used in all the well blocks where z’-direction coincides with the y-direction.
Other relevant data are the parameters used to generate the saturation profiles. They are:
x1 = 30.9 ft and 3 = 515.4 ft. According to the nonisothermal Buckley-Leverett equation,
the water front at the instant of shut-in ¢, = 10 days is located at x¢(¢,) = 81.5 ft whereas,
the temperature front is still propagating radially in the (z, z) plane (7., 7(t,) = 24.6 ft).
Here, we show only results for the injection period as at the date of this writing, we have
been unable to provide a theoretical derivation for the falloff pressure solution which takes
into account the temperature changes.

The two-phase flow problem was run using STARS and compared to the numerical
solution obtained under isothermal conditions (injection of water at the temperature of
the reservoir). This comparison is illustrated in Fig. 4.23 where the results are presented
in terms of the wellbore pressure change Ap and its derivative with respect to In(t)
and represented by solid circle dots for the isothermal solution and solid star dots for
the nonisothermal solution. Unlike the vertical well case (see Fig. 4.12) where the two
solutions diverge at late times to reflect the properties of water at the two temperature of
the system, the two solutions obtained for the horizontal well case are essentially identical.
In order to observe such divergence when comparing the isothermal and nonisothermal
solutions for a horizontal well, we will need to inject water for a very long period of time.

The analytical solution for the the pressure change was generated by computing
Eq. 4.191 for different values of time upon the determination of the total mobility profile
from the nonisothermal radial and linear advance Buckley-Leverett equations. Fig. 4.24
illustrates a log-log plot of the injectivity solution for the wellbore pressure change and

its derivative obtained analytically using the model and represented by solid lines. Also
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Figure 4.23: Comparison of numerical solution under nonisothermal conditions to numerical
isothermal solution during injection, z,, = 39.37 ft.
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Figure 4.24: Comparison between the results for the injection test from the simulator and the
analytical solution from the model, z,, = 39.37 ft.
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shown in this figure is the injectivity solution for the wellbore pressure change and its
derivative obtained numerically under nonisothermal conditions and represented by the

solid star dots. This figure shows a good agreement between the model and the simulator.
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CHAPTER 5
PRACTICAL ANALYSIS OF INJECTION/FALLOFF DATA

In this chapter, our focus is on the analysis of synthetic injection/falloff pressure
data at horizontal wells. A gradient based optimization algorithm is implemented and
coupled with our analytical solutions for the injection and falloff pressures as the forward
model, for nonlinear parameter estimation. The implementation of such an algorithm
requires the computation of the sensitivity of the theoretical model to all model parameters
to be considered for the formulation of the Hessian matrix. Because the analysis of
well test data usually involves few model parameters, the computation of all sensitivity

coefficients is feasible for such problems.

5.1 Generation of Estimates

5.1.1 Model parameters

Throughout, m denotes the N,,-dimensional column vector of model parameters
considered for estimation. For the synthetic cases presented in this study, these parameters
are reservoir absolute permeability, the length of the horizontal well, the mechanical skin
factor and the relative permeabilities. All other reservoir and well properties are assumed
to be known input variables. In the nonlinear regression, anisotropy is considered. Thus,
the permeabilities in the three directions, that is k,, k, and &, are set to be parameters.
When estimating the mechanical skin factor, s, the radius of the skin zone is assumed to
be known.

Relative permeabilities are given by power law models normalized so that the
relative permeability to oil at irreducible water saturation 5;, is equal to unity. With this

assumption, the relative permeability curves are defined by
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krw(SwD> = angjj’), (51)

and

kro(SwD) = (1 - SwD)noa (52)

where S,,p is the dimensionless saturation defined by

Sw - Siw

SwD:l—SOT—SZ‘ )

(5.3)

and a,, = k(1 — S,,) is the end-point of the water relative permeability curve. In this
work, residual oil saturation, S,,., and irreducible water saturation, S;,, are assumed to
be known. Therefore, only three parameters are needed for the estimation of the relative
permeabilities. These are the two exponents n,, and n, and the water end-point a,,.

In summary, for an injection/falloff test on a horizontal well in an anisotropic

reservoir, NV,,, = 8 and the vector of model parameters is

m = [kmvkyakvaasaaw)n’wano]Ta (54>

where L denotes the length of the well.

5.1.2  Optimization Algorithm - Levenberg-Marquardt Method
In our inverse problem, we are interested in finding a probability density function
among all probability distributions the model describes, that most likely reproduces the

observed data. In order to do so, we usually define a likelihood function expressed by

1 1 T -1
f(m|dops) = o) aet Oy exp (— §<dpred(m) — dops)” Cp (dprea(m) — dobs)). (5.5)

In this equation, ds is an Ngz-dimensional vector of observed data and Cp is an Ny x

N, covariance matrix that describes the correlation between measurement errors in the
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observed data. The vector dp..q is an Ng-dimensional vector representing the predicted
model that depends on the vector of model parameters m. In this work, it is assumed
that the bottom hole pressures recorded during injection/falloff tests are the only observed
data. In addition, the measurement errors of these data are assumed to be independent
random variables with mean zero and a constant variances, Ufw with ¢ = 1, Ny, so that
the data covariance matrix, C'p, is diagonal. These variances are assumed to be identical,
ie., 07, =o0; foralli=1 N,

The maximum likelihood estimate is the model that maximizes the likelihood func-
tion f(m|d.ps) defined by Eq. 5.5 or equivalently the vector of the model parameters that
minimizes the objective function

O1m) = 3 (dorea(11) = ) €5 dorea(17) — o). (5:6)

Since a gradient-based algorithm (Levenberg-Marquardt method) is used to minimize the
objective function, it is necessary to evaluate the gradient VO(m) and the Hessian H(m)
of the objective function. Taking the first derivative of Eq. 5.6 with respect to the model
parameter vector m gives the gradient vector defined by:

90(m)

omq

00(m)
Ooma

VO(m) = ('9@‘(m) = Vdgredcgl(dpred(m) — dobs)- (5.7)
omy,

90 (m)

omp,,

Here, (Vd],.;)", also denoted by G, is an Ng x N,, matrix which measures the sensitivity

of the predicted data, d,.eq, to the model parameters. The coefficients of this matrix are
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8dpred,l adpred,l ad;m“ed,l 8dp'red,l

omq Omo T omy, e omn,,
8dpred,2 6dpred,2 8dpred,2 adp'red,Q
G(m) — mi msa mi mNm ) (5.8)
adp'red,Nd adpred,Nd 8dpred,Nd adp'red,Nd
8m1 8WL2 e 6mk e 8mNm

The second derivative of the objective function is the N,, x N,, Hessian matrix H(m)

given by

H(m) =V (V@(m))T. (5.9)

Using Eq. 5.7 in the preceding equation yields

H(m) =V (GTc;(dmd(m - dobs>> )
=V ((dpred(m - dobs>T051G)

= GTCI;G + (VGT)Cgl(dpred(m) - dobs>‘
(5.10)

For nonlinear problems, the second term in Eq. 5.10 that involves the gradient of G should
be small in the neighborhood of the minimum of the objective function. In the Gauss-

Newton method, this term is dropped and the approximation to the Hessian is given

by

H(m) ~G'Cp'G. (5.11)

The Levenberg-Marquardt (LM) method was applied to perform the nonlinear
regression upon the construction of the gradient and the Hessian of the objective function
from FEqgs. 5.7 and 5.11 respectively. One iteration of the algorithm is represented by the

following equation:
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(M + H(m™))om"t = —vO(m™), (5.12)

where A is a positive scalar called the Levenberg-Marquardt parameter and [ is the N,, x
N,, identity matrix. Once the vector dm™*! is determined by solving the system of

Eq. 5.12, the model parameter m is then updated by the following equation:

m" = m™ + ém" T (5.13)

The parameter A\ needs to have a positive value to ensure that the Hessian of the objective
function is positive definite. At the beginning of the optimization, it is desirable to
consider a large value of this parameter to make the Hessian more well-conditioned. In

our implementation of the LM method, the starting value of A is set to

1

Ao —
7 10N,

O(m°), (5.14)

according to Abacioglu et al. [3]. In Eq. 5.14, m® represents the initial guess. If Egs. 5.12
and 5.13 give a vector of model parameters, m"*! such that ©(m"*!) > ©(m"), then
m™*! is not accepted as the new estimate and X is increased by a factor of 10 and the
iteration is redone. On other hand, if ©(m"™!) < ©(m™), then X is divided by a factor of
10 and Eq. 5.12 is repeated with m™*! as a vector of model parameters at the previous
time step until convergence is reached.

In this study, two criteria to determine convergence of the nonlinear regression

were applied. The first one is on the change in the objective function and is expressed by

O(m"*) — e(m")|
max (\(a(mnﬂ)\, 1)

<1077, (5.15)

and the other one is based on the change in the vector of model parameters and given by

<1072 (5.16)

max J J

[t
1<j<N
== Lmax (|m?+1], 1)
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Note that both criteria must be satisfied for the optimization problem to converge.

5.1.3  Logarithm Transformation of Model parameters

Due to the ill-conditioning nature of the inverse problem, It is possible for the
optimization algorithm to converge to a vector of model parameters which contains non
physical values. For such cases, imposing constraints in the history matching process
is recommended if one wishes to avoid unreasonable results. Gao and Reynolds [19]
introduced a logarithmic transformation which allows each ith entry of the vector m to

be constrained between a lower bound m;; and an upper bound m,,; as follows:

si(mi) = In (M) (5.17)

My — My
Note that when m; — my;, s; — —oo and when m; — m,,;, s; — +o0o. This is an
important feature of the transformation because by mapping the lower bound to —oo and
the upper bound to +o0o, the boundaries are removed and the constrained optimization
problem is transformed to an unconstrained optimization problem. Another feature of the
logarithmic transformation is that it has an inverse obtained by expressing the original
variable m; function of s;, i.e., m; = m;(s;). Using Eq. 5.17, it is easy to show that this

relationship is given by

my; + My, ;€%

[T o ,for s; <0, (5.18)

mz(sl) =
and

My i + My e °

e for ;> 0. (5.19)

mz(sz) =

In the minimization process, we replaced the vector of model parameters, m, by

the new vector of model parameters based on the logarithmic transform, s, as follows:

(M + H(s"))ds"! = —VO(s"), (5.20)
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" = g" 4 gt (5.21)

The Hessian H is given by Eq. 5.11 with the sensitivity matrix G in this case obtained

using the following chain rule:

G- (vsumd(s))T)T - (vmupred(m))T)TDs, (5.22)

where Dy is an NV, X Ny, diagonal matrix with its entry ds; equal to

d,, = om; _ (muz - mz)(mz - ml,i). (5.23)

’ 0s; My s — My

5.2 Analysis of Sensitivity of Pressure Data to Model Parameters

As mentioned earlier, the predicted pressure data during injection/falloff tests
through horizontal wells are constructed analytically using approximate solutions derived
in chapters 2 and 3. Based on our computational results, the analytical injection solution
is only accurate for times such that water is moving radially in the (z, z) plane or linearly
in the z-direction, assuming the axis of the horizontal well is along the y-axis. Having said
that, depending on the location of the well with respect to the top and bottom boundaries
of the reservoir and the length of the well, these flow regimes may last hundreds of hours
for problems of interests (see Figs. 2.33 and 2.34 for example). Therefore, this limitation
does not obviate the utility of our analytical solution.

For the synthetic cases considered in this chapter, water is injected at a constant
rate for a total time which does not exceed the time where our model predicts a radial
propagation of water in the (z,y) plane. For these cases, the general solutions for the well-
bore pressure change during the injection and falloff periods under isothermal conditions

are given respectively by

Ap = pus(t) — pi = Ap, + Apa, (5.24)
where Ap, is defined by
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T
kLn)\o Twe At(r7ht) k(rn> Tn
TAin;

:I;?Ln):o Tnl <)\t ($n, t)

bn

):O dx,,
-1 2
)hn@;n)’ (5:25)

and
prs - pws(At) —Pi = A_pos + Ap)\57 (526)
with
min(zwna"'zx,fn(tp)) 5\ d
Q T
Aprs = — / {—Osrn,At —Aosrn,At} _"
P Lo Jroe )‘t(rnatp)q ( )~ fosl ) k(1)
b R
TQ n A dz
— — 2 qs(xn, AL) — Gos (T, AL " (5.27
LA / {Mxn,tp)q (& &) = ol )] () O

Recall that these equations, expressed in the new coordinate system (x,,yn, z,), were

obtained by applying a spatial transformation to convert an anisotropic reservoir to an

equivalent isotropic reservoir of permeability k given by

ks =2 krskyskzs  for rye < 1y < 1Tgp,
(5.28)

k=g kykyk, for r,, > rg,.

Recall also that the effective wellbore radius of the well, 7., is

oo = <\/kz + \/kz) (529)

and that the thickness of the reservoir, h,,, the distance from the centerline of the well to

k(rn) =

the top boundary of the reservoir, z,,, and the length of the horizontal well, L,,, in this

system are given respectively by
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k
h. =4+ —h .
=\ (5:30)
k
Zwn = k?_zzw7 (531)
and
k
L= 4| —L. (5.32)
ky

In Egs. 5.24 and 5.26, the positions x,,; and x,3 are the parameters of the two models for

the movement of water in the new system obtained from Deppe’s constructions as follows:

Tn1 = Zzwna (533)
and
Cys = ~ L, (5.34)
8
and the constant b, is defined by
by, = min(max (2,1, 2 (1)), Tnz). (5.35)

Based on the fact that for the horizontal well case, model 2 performed better than model 1
(see the numerical section of chapter 2 and 3), it was used to construct the total mobility
profiles necessary for the computation of Eqs. 5.24 and 5.26. In this model, recall that
water moves over a variable thickness when propagating linearly in the x-direction. This

variable thickness is given by

;

Qan for 0 S Tn S Tni,
ho(zn) = b, — %(LE“Q —xy,) for zp, < xy < Xpo, o (5.36)
hn for Tn2 S T S Tn3,

\

where the parameter z,9, as seen previously, is computed by applying the steady-state
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single-phase theory for convergence pseudo-skin factor computations which yield

w2 hn hn
8(hn/22yn—1) In (2zwn) +In (27rzwn sin(Trzwn/hn)>
Tp2 =
s hn/Qan hn
on [(hn/2zwn1) In (2zwn) - 1]

In Eq. 5.26, rate superposition was applied to compute Gos(7y, At) and gs(ry,, At) (see

(5.37)

Egs. 3.102 and 3.103) as well as the flow rate distributions Gos(x,, At) and gs(x,,, At) (see
Egs. 3.107 and 3.108).

A perturbation method based on finite-difference approximation was applied to
compute the sensitivity of predicted data (Eqgs. 5.24 and 5.26) to model parameters that
we wish to estimate. Again, these are the permeabilities in the three directions, the
length of the horizontal well, the mechanical skin factor and the relative permeability
parameters. The appropriate size of the perturbation were chosen based on previous
experiments (Chen and Reynolds [17], Chen et al. [15] and Chen et al. [16]). They were
found to be equal to 0.5 per cent for the permeabilities, 1 per cent for the well length, 0.5
and 5 per cent for the water and oil exponents, respectively, and as much as 10 per cent
for the mechanical skin factor and the end-point water relative permeablity.

Since our analytical solutions for both injection and falloff are written as the sum of
the single-phase solution based on oil properties at initial water saturation and a two-phase
component term which reflects the deviation of the total mobility in the region invaded
by injected water from end-point oil mobility, the sensitivity coefficients of each term was
determined in order to measure the effect of a small change in the model parameters on
the single-phase pressure data and the multiphase component separately. The purpose of
this is to give us an insight on the information that can be brought by the multiphase

component with respect to the model parameters that we wish to resolve.

5.2.1 Sensitivity of the Single-Phase Pressure Data to Model Parameters
Before showing results for calculated sensitivity coefficients of the single-phase
solution to the model parameters k,, k,, k., s and L, we present a summary of the

equations for the flow regimes that a horizontal well may exhibit during the test period.
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For detailed derivations of these equations, see references 23], [20] and [25].
First Radial and Semi-Radial Flow Regimes

The first radial flow regime manifests itself at very early times when the pressure
at the wellbore is not affected by the boundaries of the reservoir. The corresponding

equation for the wellbore pressure is given by

aqBofto {1 In <L "kxkzt) + s] . (5.38)

PPl = kL |27\ @gpei?
A semi-radial flow regime may occur if the well is not drilled near the center of
the formation due to the effect of the nearest boundary on the wellbore pressure. During

this flow regime, the pressure behavior is given by

aqBofto [m (L ”Mt) +s+ s/], (5.39)

b= Pus = Vkzk,L eYpucr?,
where s’ is the pseudo-skin factor due to anisotropy and defined according to Kuchuk et

al. [23] by

s =—In {(1 + \/::) i—:] . (5.40)

First Linear Flow Regime

A linear flow regime may occur when the wellbore pressure is dominated by the
top and bottom boundaries and the well length is significantly longer than the formation
thickness. During this period, the wellbore pressure response reflects pressure diffusion in

the z-direction which is given by the following equation:

aqB,t, A Bkt ky h
Pi ™ Pus kyh [ oucL? -\ kzL(S ) (5-41)

In this equation, s, is a pseudo-skin factor representing an additional dimensionless pres-
sure drop due to the convergence of flow lines from linear to radial near the wellbore. It

is defined according to Kuchuk et al. [23] by

360



h
5 =1n (27?'7“1’1] sin(7rzw/h))7 (542)

with 7/, given by

, Tw k.
=—1 — . A4
T 5 ( + - ) (5.43)

Second Radial Flow Regime
This flow regime may develop at later times when both the top and bottom bound-
aries of the reservoir and the flow beyond the well tips affect the wellbore pressure re-

sponse. In this case, the solution is governed by

aqBo, |1 483k, t ky h ,
Ap=pi—puy = ———|-In| —L= ) +4/-Z—=(s. C|, 5.44
P = Pi — Puy \/Kkyh[Q n(eme2 + kZL<S + s, +8) + (5.44)

where we previously defined s, (see Eq. 5.42). The expression for s, is given by

k,h|1l =z 20\ 2
’ 9 y + w w ' 4
%2 k‘ZlLL’) h+<h)] (5.45)

In Eq. 5.44, C'is a constant which value depends on how the wellbore boundary condition
is represented mathematically. For an infinite conductivity wellbore model, C' = 1.791,
whereas, for a uniform flux wellbore model, C' = 2.094.

If the lateral boundaries of the reservoir (in the y- and z-directions) affect the
pressure behavior at the wellbore, a second linear flow regime in the z-direction occurs.
This flow period usually happens at very late times and is, therefore, not of interest for
the cases we considered in this work.

Next, we show results for calculated sensitivity of the single-phase pressures to
model parameters. The sequence of the test considered here consisted of an injection of
oil at a constant rate of 31450 STB/day for a total time of ¢, = 20 days followed by a
shut-in period of equal duration. The reservoir is initially at a pressure p; = 3922 psi. The

injectivity and falloff single-phase flow pressures are based on oil properties at irreducible
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Property Value
Porosity, ¢ 0.32
Permeability in the z-direction, k., mD 4500
Permeability in the y-direction, k,, mD 2700
Permeability in the z-direction, k., mD 300
Thickness of the formation, h, ft 78.74
Rock compressibility, c,, psi~* 5.63 x 1076
Residual oil saturation, S,, 0.28
Irreducible water saturation, S;, 0.25
End-point water relative permeability, a,, 0.5
Water exponent, n,, 2.
Oil exponent, n, 2.5
Oil FVF, B,, RB/STB 1.318
Oil compressibility, c,, psi~* 8.0x 1076
Water viscosity, i, cp 5.1
Water FVF, B,,, RB/STB 1.008
Water compressibility, ¢, psi~! 2.84 x 1076
Water viscosity, fi,, ¢p 0.516
Wellbore radius, r,,, ft 0.35
Skin zone radius, 7, ft 1.5
Mechanical skin factor, s, D.
Length of the well, L, ft 1312.4

Table 5.1: Reservoir and well data.
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Figure 5.1: Analytical solution for injectivity single-phase flow, u, = 5.1 cp, s = 5.

water saturation. Only the term ¢; in Egs. 5.38, 5.39, 5.41 and 5.44 was replaced by
Cto = Co(1 — Siw) + cwSiw + ¢, since the oil relative permeability curve was normalized to
1, i.e., ap = kpo(Siw) = 1. The properties of the reservoir and the well are shown in Table
5.1.

Fig. 5.1 is a log-log plot of the analytical injectivity single-phase solution for the
wellbore pressure change p,,; — p; and its derivative with respect to logarithm of time.
This plot was generated for the purpose of flow regimes identification.

As can be seen from this figure, the semi-log slope that the pressure derivative

exhibits at very early times (up to 0.0016 hours) and represented by a dashed line, is

due to the first radial flow regime which is equal to Ap' = 2%2 = 7.5. For times
0.05 < t < 0.4 hours, the pressure derivative reflects a semi-log slope equal to twice the
value observed during the first radial flow regime. This doubling of slope, represented by
a dotted line in Fig. 5.1, is the signature of a semi-radial flow period due to the fact that
in this case, the well is very close to the top boundary of the reservoir (the distance to

the top reservoir boundary is z, = 5 ft). For intermediate times, the pressure derivative

shows a half-slope line indicating the occurrence of a linear flow regime. This flow period
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is, however, very short as it lasts only few hours (0.4 < ¢ < 2 hours). Finally, for times
bigger than 20 hours, the pressure derivative exhibits a semi-log slope represented by a
dashed-dotted line and equal to Ap’ = % = 41.3. This flow period corresponds to
the second radial flow regime.

Fig. 5.2 illustrates the sensitivity of the injectivity single-phase oil solution to the
logarithm of the model parameters k,, k,, k., L and s as a function of time. Note that
the sensitivity of the pressure change to the permeability in the y-direction, that is &,
is zero for times up to 2 hours which is the time corresponding to the end of the first
linear flow regime. This result is consistent with Eqs. 5.38, 5.39 and 5.41 as the wellbore
pressure response does not depend on k,. During the last flow regime, however, Eq. 5.44
indicates that a small increase of k, decreases the value of the wellbore pressure. This is
exactly what we observe in Fig. 5.2 except for the negative sign of the sensitivity. Eq. 5.44
is based on a standard drawdown, for which the pressure change considered is given by
Pi — Pwf, Whereas, in our computations of the sensitivities, we considered p,,; — p; as the
pressure change (injection of oil).

In Fig. 5.2, the sensitivities to k, and k, decrease with time for times up to the
time corresponding to the end of the first radial flow regime. Moreover, these sensitivities
take negative values during the same flow periods. Again, this behavior is consistent
with Eqgs. 5.38 and 5.39 as an increase in either k, or k., causes the wellbore pressure
to decrease. While the sensitivity to k, continues to decrease with time during the first
linear and the second radial flow regime according to Eqs. 5.41 and 5.44, the sensitivity
of the single-phase wellbore pressure to k, remains constant during these flow periods.
This is due to the fact that k, appears only in the second term of both Egs. 5.41 and
5.44, a term which does not depend on time. So, the derivatives of these equations with
respect to In(k,) are also independent of time.

As shown in Fig. 5.2, the sensitivity to the mechanical skin factor is positive and
constant throughout the entire test. Taking the derivative of Eqs. 5.38, 5.39, 5.41 and

5.44 with respect to In(s) gives the same expression defined by
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Figure 5.2: Sensitivity of the injectivity single-phase oil solution to model parameters.

Opi —pwy) _ O = Pus) _  Winjtto
= = = 74.85 5.46
om(s) T s VEoL | (5:46)
or equivalently,
a(pwf)
= —T74.85. A
BIn(s) 74.85 (5.47)

This is the value observed in Fig. 5.2 but with a positive sign due to the same argument

discussed above.
Finally, Fig. 5.2 indicates a

respect to time for times up to the

decreasing sensitivity to the length of the well with

time corresponding to the end of the first linear flow

regime. This is again consistent with the equations for the first radial and first linear flow

regimes which show a decrease in the value of p, if the length L is increased. However,

differentiating Eq. 5.44 with respect to In(L) leads to a result which is independent of

time. That is why the sensitivity to the length of the well during the second radial flow

regime is constant as can be seen in Fig. 5.2.

The falloff results are shown in Fig. 5.3. These results are presented as the sensi-
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Figure 5.3: Sensitivity of the falloff single-phase oil solution to model parameters.

tivities of the single-phase wellbore pressure change p,,s — p; to the logarithm of the model
parameters k;, ky, k., L and s function of the shut-in time At = ¢ — t,,, where ¢, denotes
the instant of shut-in. As expected, the sensitivity of p,s —p; to the mechanical skin factor
is zero. Another expected result is that the sensitivities to all the model parameters go to
zero towards the end of the falloff test. This is due to the fact that as times At increases,
the wellbore pressure p,,s approaches the initial pressure of the reservoir p;, so that no

information on the model parameters can be obtained from the wellbore pressure.

5.2.2  Sensitivity of the Multiphase Component Data to Model Parameters

Figs. 5.4 and 5.5 show the sensitivities of the multiphase components Ap, and
Apys to the logarithm of the entries of the vector of model parameters m given by Eq. 5.4
during injection and falloff period, respectively. Recall that the term Ap, is obtained by
subtracting Ap, from the injection pressure change at the wellbore Ap given by Eq. 5.24,
whereas, subtracting the single-phase oil solution during shut-in, Ap,,, from the falloff
wellbore pressure change Ap,,s provided by Eq. 5.26 gives the component Ap,s.

Note that at early times corresponding to ¢ < 0.0016 hours, the sensitivities of Ap,
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Figure 5.4: Sensitivity of the injectivity multiphase component to model parameters.

to all model parameters are zero. This is due to the fact that during this flow period, the
multiphase component does not have any contribution to the injection solution as can be
seen in Fig. 5.1.

It is not an obvious task to understand the behavior of the sensitivity coefficients of
the multiphase components to the model parameters through their analytical formulations
as their dependence to these parameters is via the reservoir and well properties in the
transformed coordinate system, namely k(r,), Twe, hn, Zwn and L, given by Eqgs. 5.28 to
5.32. However, some of them are consistent with what would be expected. For instance,
we expect that an increase of the mechanical skin factor will increase the wellbore pressure
change during injection. Since the multiphase component takes negative values for the
unfavorable mobility ratio (which is our case as M = 4.942), for the injection pressure
change to increase, the multiphase component has to decrease with an increase of s,
behavior that we observe in Figs. 5.4. We would also expect no effect of the skin factor
on the wellbore pressure change during falloff. Since the sensitivity of the single-phase
solution to this parameter is zero (see Fig. 5.3), the multiphase component has to be also

insensitive to s. That is exactly what we observe in Fig. 5.5.
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Figure 5.5: Sensitivity of the falloff multiphase component to model parameters.

An interesting remark about Fig. 5.4 is the presence of two fairly sharp changes,
one at ¢t ~ 0.13 hours exhibited by the sensitivities to L, a,,, n.,, n, and k, and the other
one at t ~ 4.4 hours showed in the sensitivities to all the model parameters except for s.
Our computations based on Buckley-Leverett theory indicate that the water front reaches
the radius of the damaged zone at the time corresponding to when the first discontinuity
occurs, whereas, the time at which the second discontinuity occurs, corresponds to the
time when the water front hits the top reservoir boundary and water starts to propagate
linearly in the z-direction.

In Fig. 5.5, the sensitivities of Ap,, to the logarithm of the model parameters go to
zero as times increases. This is explained by the fact that at long times, the falloff solution
reflects oil properties at irreducible water saturation which means that the contribution of

the multiphase component to the two-phase solution is negligible during this flow period.

5.2.8  Sensitivity of Pressure Data to Model Parameters
For the same injection/falloff test sequence and using the same reservoir and well

data, the sensitivities of the wellbore pressure change to the logarithm of the entries of
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Figure 5.6: Sensitivity of the injectivity solution to model parameters.
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the vector of model parameters m were generated. They are displayed in Fig. 5.6 for the
injectivity pressure change at the wellbore, Ap = p,,; — p; and in Fig. 5.7 for the falloff
pressure change at the wellbore, Ap,s = pws — p;- Intuitively, these sensitivities suggest
that at least for this test, the use of injection and falloff data may resolve the model
parameters considered in this study. A very simplistic way to look at this problem is
to determine qualitatively how each term in the general solution contributes in resolving
the model parameters. By considering only the single-phase solution as observed data,
Egs. 5.38 and 5.39 suggest that kL, = v/k,k.L can be determined through the semi-
log slope. During the linear flow regime, the parameter VkLyh, = VkshL can also
be determined (see Eq. 5.41). Therefore, combining these two parameters enables us to
resolve not only for the permeability k, but also for the mechanical skin factor s through
Eqgs. 5.38 and 5.41. Once the second radial flow regime is established, the only information
obtained from the pressure data according to Eq. 5.44 is kh, = Mh, or equivalently
\/Kk'y assuming the thickness of the reservoir, h, known. Although the single-phase
solution, if allowed to reach the second radial flow regime, can resolve the parameters k,
L, and h, in the new coordinate system, the parameters in the real coordinate system,
that is the permeabilities k, and k, and the length of the well L, will not be resolved.
Later, we will illustrate this fact in a numerical example.

Adding the contribution of the multiphase component by considering injection
and falloff solutions as observed data in the nonlinear regression will give at least some
information on the permeability k, when the water moves radially in the (z,z) plane
at the beginning of the test. This is illustrated by Eq. 2.174 obtained during the first

linear /first radial flow regime. We rewrite this equation for an anisotropic case as

7 r2, /4t 3 z 3
Qfinj k )\o dz f )\0 dz
A = A o+ﬁ|:(__1>/ ( —1> —+ —1 — | . 548
b= 2% Lo, L \ ks 2 \Ai(Z) Z Sz \M(Z) Z (548)

If we assume that the skin zone is completely swept by water, A\(Z) ~ Ao and Eq. 5.48

becomes

370



QAGinj ];Z 5\0 Tsn 25 5\0 dz
A :Ao+ﬁ{2(——1)(A —1)1n( )+/ —1) =1, (5.49
b= 2kLo\o L \ ks A Twe 2 a \A(Z) Z (5.49)

or simply,

. Z R
Adinj /\0 f )\o dz

Ap = Ap, + —2md {2( —1)5+/ (——1)—, 5.50

p=ap kLo, L \\y r2 4t \Ae(Z) Z (5:50)

if Hawkin’s formula for mechanical skin factor is used. Taking the derivative of Eq. 5.50

with respect to the natural logarithm of time using Leibnitz’s rule gives

ot A At r2
Ay = Ay + Sdingt | o ) (22 ) = Duwe 51
p=0p+ mﬂ (Mrae/zlt) )()( 4152)} (5:51)

which reduces to

aqm% 5\o
Ap = Ap' — —1). 5.52
P Pot 2k L, )\, (At(me,t) ) (5:52)

The derivative of the single-phase solution with respect to logarithm of time based on oil

properties at irreducible water saturation is given by

Apl, = —2imi \/MBM. (5.53)
ko Lh), \  ®Cio

Then, using Eq. 5.53 in Eq. 5.52 and rearranging gives

QGini 47Tﬁ5\0t h 5\0
Ap' = I b/ — + —-1]]. 5.54
b 2\/ kah)\o ¢Cto V kz )\t(rwea t) ( )

This equation clearly indicates that r,. through A;(rye,t) is the only unknown

since \/k,L and k., are resolved by the single-phase flow solution. Recall that the effective

wellbore radius, 7., is defined by

Fe = %“’ <\/kzx+ \/kz) (5.55)
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ky (mD) | k, (mD) | k., (mD) | s | L (ft) | aw | nw | 7o

Maximum 6000 6000 6000 15. | 10000. | 0.8 | 4. | 4.

Minimum 1. 1. 1. —1. 50. 011 |1

Table 5.2: Maximum and minimum values of model parameters.

Therefore, we believe that k, is resolved through the effective wellbore radius r,.. With
k. determined, the permeability k, may be resolved from ,/k;k,. Finally, given k and
L,, the length of the well in the real coordinate system, that is L, can be resolved from

Eq. 5.32.

5.3 Synthetic Examples

In all the examples considered in this section, The test consisted of a 24 hour
period of injection followed by a 24 hour period of falloff. Both injection and falloff
pressure data were used in the nonlinear regression. Random Gaussian noise with a mean
of zero and a variance of 02 = 0.252 psi? was generated and added to synthetic pressure
data (referred to as true data) obtained with the input of Table 5.1. The resulting noisy
data represent the observed data. The maximum and minimum of model parameters
used for the computations are shown in Table 5.2. The prior model parameters, using as
starting values (guess) in the optimization algorithm, are given in Table 5.3 along with

the true model parameters and the model estimates for each testing scenario considered.

5.3.1 Single-Phase Solution Case

The purpose of this example is to demonstrate the fact that the permeability £,
and the skin factor s are the only parameters that can be resolved using the single-phase
flow pressures as observed data in the nonlinear regression.

Fig. 5.8 displays the normalized objective function during the Levenberg-Marquardt

iterative process. The normalized objective function is defined as the objective function
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k; (mD) | k, (mD) | k., (mD) s L (ft) Ay o Mo
True value 4500 2700 300 D. 1312.4 0.5 2.0 2.5
Prior model 2000 2000 100 2. 1000 0.6 1.5 2.0
single-phase flow
Zw =5 1t 3664.3 3315.8 299.1 5.01 | 1455.03 — — —
1 day injection/
1 day falloff
Zw = D 1t 4544.1 2678.2 303.41 | 5.0213 | 1303.3 | 0.4999 | 2.0051 | 2.5184
1 day injection/
1 day falloff
Zw = 39.34 ft 4341.1 2800.8 298.75 | 4.9845 | 1335.3 | 0.4959 | 1.9561 | 2.4758
9 days injection/
9 days falloft
Zw = 39.34 ft 4530.6 2682.4 300.1 5.0003 | 1308.1 | 0.4981 | 2.0228 | 2.4786

Table 5.3: Estimations of model parameter based on single and two-phase flow solution.

Figure 5.8: Normalized objective function for the single-phase flow case.

2 Q(m)/N,
=

¢  Normalized Objective Function

# iterations
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Figure 5.9: Estimates of permeabilities k;, and k, for the single-phase flow case.
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Figure 5.10: Estimates of permeability k, for the single-phase flow case.
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Figure 5.11: Estimates of the well length L for the single-phase flow case.
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Figure 5.12: Estimates of the mechanical skin factor s for the single-phase flow case.
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Figure 5.13: Normalized objective function for the two-phase flow case, z, = 5 ft.

given by Eq. 5.6 divided by N4/2, where Ny, represents the number of observed data used
in the history matching. In general, when convergence is reached, the normalized objec-
tive function should reach a value close to 1 assuming there is no modeling error in the
system. Fig. 5.8 indicates that the convergence for this case is reached after 6 iterations.
The estimates of the model parameters k,, k,, k., L and s at each iteration are shown
in Figs. 5.9- 5.12 where they are represented by curves through data points. In the same
figures, the horizontal dashed or dotted lines are the true values and the iteration 0 cor-
responds to the initial guess. The model parameters obtained at convergence are given in
Table 5.2. From Figs. 5.9- 5.12, we see that except for the vertical permeability, k., and
the skin factor, s, we do not obtain a good estimate of the other parameters. Based on

an earlier discussion, this result was expected.

5.3.2  Two-Phase Solution Cases

A case of injection of water through a horizontal well was considered where water
was also injected for a period of one day followed by a shut-in of one day. This case
pertains to a well located at z,, = 5 ft from the top reservoir boundary. Based on

our Buckley-Leverett computations, the water front begins to move in the z-direction
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Figure 5.14: Estimates of permeabilities k, and k, for the two-phase flow case, z,, = 5 ft.
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Figure 5.15: Estimates of permeability k, for the two-phase flow case, z,, = 5 ft.
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Figure 5.16: Estimates of the well length L and the equivalent isotropic permeability k for the
two-phase flow case, z,, = 5 ft.
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Figure 5.17: Estimates of the mechanical skin factor s and the water and oil exponents n,, and
n, for the two-phase flow case, z,, = 5 ft.
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Figure 5.18: Estimates of the end-point water relative permeability a,, for the two-phase flow
case, z, = b ft.
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Figure 5.19: Estimate of relative permeability curves from the two-phase flow case, z, = 5 ft.
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right before the instant of shut-in. That means that the multiphase component during
injection, Ap,, or during falloff, Ap,,, has two contributions: a pressure drop due to
the radial movement of water in the (x, z) plane and a second pressure drop due to the
linear propagation of water in the z-direction (see Eqs. 5.26 and 5.29). In Fig. 5.13,
we show the behavior of the optimization algorithm through the normalized objective
function. The convergence was achieved after 7 iterations. We give the values of all the
eight model parameters obtained at the last iteration in Table 5.3, whereas, Figs. 5.14
to 5.18 show their estimations, iteration by iteration. Note that the values of k, the
equivalent isotropic permeability, displayed in Fig. 5.16, were not obtained by considering
k as a model parameter in the nonlinear regression but rather from the estimates of k,,
k, and k. through Eq. 5.28. Fig. 5.19 shows the estimated relative permeability curves in
open stars compared to the true curves in solid lines and to the initial guess represented
by solid triangles. All these figures indicate that unlike the single-phase case, excellent
estimates of all model parameters are obtained.

The injectivity solution for the pressure change and its derivative with respect to
In(¢) obtained with the estimated model parameters is represented in Fig. 5.20 by open
star dots. Also shown in this figure are the solutions generated with the true model and
the initial guess in solid line and solid triangle dots respectively. The solid circle dots are
the observed data, i.e., the true data with random noise added to them. Note that in the
matching process, we matched only the pressure data, not the pressure derivatives. These
were obtained by performing a numerical differentiation on the corresponding pressure
change data generated. The results for the falloff period are shown in Fig. 5.21 where the
same legend is used. Note that the pressure change considered in this plot are with respect
to the wellbore injection pressure at the instant of shut-in, that is Aps = pu s — Pws, and
that the pressure derivatives are obtained with respect to the logarithm of Agarwal’s
equivalent time. For both periods, the predicted pressure-pressure derivative data match
very well the synthetic data used in the regression.

We believe that the accuracy of the estimation of the model parameters for this

particular case resulted from the fact that the duration of the test was long enough for the
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Figure 5.20: Match of injectivity solution for the pressure change and its derivative, z, = 5 ft.
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Figure 5.21: Match of falloff solution for the pressure change and its derivative, z, = 5 ft.
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Figure 5.22: Normalized objective function for the two-phase flow case, z,, = 39.34 ft.

diffusion to reach the second radial flow regime during which the semi-log slope reflects
\/%. With the accurate estimate of k, obtained from the single-phase part of the
solution and &, obtained from the multiphase component, we can resolve k, and L.

The next case consisted of a similar test sequence (24 hour injection/24 hour falloff)
with a horizontal well located in the center of the formation, i.e., z,, = 39.34 ft. Note
that at the instant of shut-in, the water front is still moving radially in the (z, z) plane
according to Buckley-Leverett equations.

Fig. 5.22 displays the normalized objective function during the iterative process.
This figure indicates that unlike the preceding case, the normalized objective function
is not as close to 1 when convergence is reached. The estimates of all the eight model
parameters during each iteration are shown in Figs. 5.23 to 5.27. The estimates at the
last iteration are summarized in Table.5.3. While an accurate estimate of k., s and the
parameters a,,, n,, and n, involved in the construction of the relative permeability curves
shown in Fig. 5.28 was achieved, we did not obtain good estimates of k,, k, and L when
considering this test even though the permeability in the new coordinate system, that is

k, was resolved during the nonlinear regression (see Fig. 5.25). The missing information
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Figure 5.23: Estimates of permeabilities k, and k, for the two-phase flow case, z,, = 39.34 ft.
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Figure 5.24: Estimates

of permeability k, for the two-phase flow case, z,, = 39.34 ft.

383



1500 T D;Zﬂ T
1400 | /
.\I » »
a 1300 iy Attty
IS
< 1200
€ 1100
f —m— |, estimate
“ 1000 —o—k, estimate
- ---L, true
900 - —-—--k, true
800 |-
[ 1 1 ' SRR SRR

0 1 2 3 4 5 6 7

# iterations

Figure 5.25: Estimates of the well length L and the equivalent isotropic permeability k for the
two-phase flow case, z,, = 39.34 ft.
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Figure 5.26: Estimates of the mechanical skin factor s and the water and oil exponents n,, and
n, for the two-phase flow case, z,, = 39.34 ft.
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Figure 5.27: Estimates of the end-point water relative permeability a,, for the two-phase flow
case, z, = 39.34 ft.
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Figure 5.28: Estimate of relative permeability curves from the two-phase flow case, z,, = 39.34
ft.
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Figure 5.29: Match of injectivity solution for the pressure change and its derivative, z,, = 39.34
ft.

for this case, compared to the first case, is the term \/Fky’ usually obtained from the
single-phase solution during the second radial flow regime (late times). In Figs. 5.29 and
5.30, the open circle dots represent the single-phase solution obtained with the true model
during injection and falloff periods. As can be seen on these diagnostic plots, the second
radial flow regime does not occur. This is the reason that estimates of the parameters
k., k, and L are not as good as the parameters obtained when the well was close to the
top boundary of the reservoir. Having said that, it is clear that this does not affect the
injection and falloff solutions generated with the estimated model parameters since the
flow is governed by kL, = v/kzk.L , a parameter which is resolved during the regression.
Figs. 5.29 and 5.30 show the two-phase injectivity and falloff solutions generated with
the estimated model compared to the true and observed data. As expected, the synthetic
data are matched very well.

For the same case, we extended the injection period to 9 days to allow the single-
phase solution to reach the second radial flow regime. Then, the well was put to shut-in for
9 days. At the instant of shut-in, the water front did not hit the top and bottom reservoir

boundaries. According to the radial advance Buckley-Leverett equation, this situation
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Figure 5.30: Match of falloff solution for the pressure change and its derivative, z,, = 39.34 ft.

occurs after 11 days of continuous injection. The last row of Table 5.3 gives the values
of all eight model parameters obtained when convergence of the optimization algorithm
was reached. As expected, these estimates are excellent. Again, the resolution of all three
permeabilities is due to the fact that the late time data which contain information on the
semi-log slope that reflects the product \/Kk:y were added into the nonlinear regression.
This also means that the location of the flood front at the instant of shut-in does not play
a major role in resolving the model parameters as long as the duration of the test is long

enough to permit the diffusion to reach the second radial flow regime.
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CHAPTER 6
DISCUSSION AND CONCLUSIONS

In this work, we have addressed the issue of the effect of the two-phase flow on well-
test data by examining the pressure response at vertical and horizontal water-injection
wells. Although the approximate analytical solutions for the pressure response that we
constructed are based on simplifying assumptions such as no wellbore storage effects, no
gravity and capillary pressure effects, infinite acting reservoir, operating above the bubble
point pressure and uniform initial water saturation distribution, these solutions enhanced
our understanding of the behavior of injectivity and falloff tests on vertical and horizontal
wells. Based on this study, the following comments are made:

Approximate analytical solutions for the injection pressure at vertical and horizon-
tal water injection wells have been developed based on the steady-state theory of Thomp-
son and Reynolds [34]. These solutions are in terms of the single-phase solution based
on oil properties at irreducible water saturation plus an additional multiphase component
due to the contrast, in the region invaded by injected water, between total mobility and
oil mobility at irreducible water saturation. Since single-phase flow analytical solutions
for the problems of our interest are readily available, determining the two-phase flow so-
lution is reduced to determining the additional multiphase component. Generation of the
multiphase component is done by combining different one-dimensional Buckley-Leverett
frontal advance equations. This requires models for the movement of water in order to
map the water saturation distributions in the reservoir.

For restricted-entry vertical wells, we have proposed two different models for the
movement of water. When used to generate the saturation and mobility profiles necessary
for the evaluation of the approximate analytical solution, both models give reasonable re-

sults when compared to results generated from the black oil simulator IMEX [1], although
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the model where water is allowed to move along a variable thickness in the inner region
gives more accurate results.

Our analytical solution provides insight into the behavior of injectivity tests for the
restricted-entry vertical well case. We demonstrated that during the flow period which
corresponds to when both the single-phase solution and the flood front propagate radially
in the region r < r., the injection data can highly be affected if the well is damaged as a
drastic decrease of the pressure change is observed (negative pressure derivative). During

this flow period the pressure derivative is given by Eq. 2.90 that we rewrite here as

QAQinj
Ap' = < 6.1
b 2khy Ay (6.1)

assuming the skin zone is completely swept with water such that A\ (rs,t) = M. Even
though Eq. 2.90 indicates it is possible to see a semi-log straight line slope inversely
proportional to /{:hpj\w at early times, the data from the synthetic examples considered in
this study did not reflect such a line. For this semi-log slope to be apparent, the vertical
permeability k. has to be very small assuming negligible wellbore storage effects which, in
practice, is unlikely to occur. Once the diffusion propagates in the region r > r. while the
water front is still moving in the region r < r., our analytical solution predicts a pressure
derivative (see Eq. 2.114) which can take negative values if the following condition holds:

~

M(1—b)>1. (6.2)

This was verified numerically when considering an unfavorable mobility ratio example
which shows that the pressure derivatives remained negative throughout most of the
injectivity test and never reached the late time semi-log slope inversely proportional to
kh\y predicted by our analytical solution.

For horizontal wells, the solution of Peres and Reynolds [28] was generalized to
an unequal offset configuration and anisotropic permeability. Similar to the restricted-
entry vertical well case, two models for the movement of water have been developed

in which water saturation distributions were mapped using a combination of a radial
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frontal advance Buckley-Leverett equation in the (z, z) plane at early time, a linear frontal
advance equation in the z-direction with a variable thickness during intermediate times
and a second radial frontal equation in the (x,y) plane at late times. Our proposed models
seem to deliver results that match accurately data obtained synthetically by the mean of
the simulator except for the time period corresponding to when the water front starts to
move radially in the (z,y) plane. As the first radial and first linear flow regimes may last
a few hundreds of hours for problems of interest, this limitation does not obviate the use
of the analytical solution in practice.

Similar to the vertical well case, the early time data may be affected if a thick
skin region exists. Our analytical solution, confirmed by simulator results, show that
the pressure derivative becomes negative for some combinations of the end-point mobility
ratio, M , and the ratio ks;/k. Once the skin zone is swept by water, analytical results,
confirmed by numerical results show that, unlike in the vertical well case, there is a
correlation between the injectivity solution and the single-phase flow solution based on
oil properties at irreducible water saturation throughout most of the injectivity test.

A second objective was to construct solutions for the falloff response subsequent to
water injection at a vertical or horizontal well. Two methods were presented in this work.
The first one is based on the steady-state theory of Thompson and Reynolds combined
with rate superposition. In this method, approximate analytical solutions for wellbore
pressure change are also presented as the sum of the single-phase flow solution based
on oil properties at irreducible water saturation and a multiphase component due to the
contrast between initial total mobility A, and the total mobility in the invaded zone.
The evaluation of the multiphase component requires not only the knowledge of the total
mobility profiles but also the knowledge of the flow rate distributions in the reservoir
during the shut-in period. Using the assumption that the total mobility distribution in
the reservoir during falloff is equal to the total mobility profile that exists at the instant
of shut-in and extending rate superposition equations for 1D single-phase flow problems
in an ad hoc way to generate rate profiles during the shut-in period, we have constructed

approximate solutions for the wellbore pressure change for both restricted-entry vertical

390



wells and horizontal wells which are in reasonable agreement with those generated with
the simulator IMEX.

In the second approach, we have applied a first order perturbation in both total
mobility and total compressibility in the invaded zone of the reservoir to solve the com-
plete initial-boundary value problem for a radial flow case. Our analytical solutions for
the falloff pressure are presented in a power-series expansion with a leading term which
contains the important features of the solution while further terms describe the deviation
in the solution due to the variation of the water saturation in the system. Although the
comparison of our solutions for wellbore pressure change and total rate profiles to corre-
sponding results obtained from the numerical simulator showed quite good agreements, we
believe that better results can be achieved using the perturbation method if the numerical
inversion is improved.

We need to point out that mechanical skin effect was not included into the analysis
when solving for the falloff pressure using perturbation method. In order to include
skin, the IBVP which describes the system, needs to be solved with an additional zone,
ro < 1 < 15, Where the absolute permeability £ is replaced by the skin permeability k;.
However, this does not constitute a limitation to the use of our analytical solutions for
practical purposes. The reason is that during shut-in, the zero rate propagates from the
wellbore into the reservoir. This zero rate will pass through the damaged zone in a very
short period of time such that there will be no effect of the presence of a skin zone on the
wellbore pressure change during shut-in, except at extremely early times.

In deriving approximate injection and falloff solutions, we have assumed that the
effect of capillary pressure and gravity on the pressure solutions were not significant.
Although incorporating capillary pressure would yield a smearing of the flood front, it
has been shown (see [4]), based on a numerical study, that it has a negligible effect on the
injection /falloff response. This is reasonable if we consider the multiphase component of
the injection or falloff solution (see Eqs . 2.8 and 3.11 for example). In these integrals,
the term 1/r appears so that the contrast between the single-phase oil terms and the

multiphase terms has the greatest effect on the integrals near the wellbore region. Thus,
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it is expected that the dispersive effects of capillary pressure on the pressure response
would be small.

Gravity could have a significant effect on the pressure response if oil and water
phases segregate. The segregation of the phases is expected to occur during the falloff
period. Based on a sensitivity analysis that we conducted, we found that the effect of the
segregation is not significant and takes a long time to affect the falloff wellbore pressures
if injection rates are high, which are typically the rates considered in this work, and the
injection time is sufficiently long so that the injected water results in a reasonably uniform
saturation distribution with oil saturation close to residual.

We extended the approximate analytical solutions for the injection /falloff pressures
at vertical and horizontal water injection wells in an isotropic reservoir to an anisotropic
system. The trick here was to apply a spatial transformation to the anisotropic system, as
suggested for instance in [9], to obtain an equivalent isotropic system with new properties
for which analytical solutions developed for an isotropic permeability field can still be
used to obtain the injection/falloff wellbore pressures in an anisotropic reservoir. This
transformation was validated by the mean of single-phase flow solutions and our solutions
for injection and falloff obtained analytically were checked against the simulator.

We also extended the approximate solutions to include the nonisothermal effects
which occur when cold waterflooding a hot reservoir. We showed numerically that con-
vection is the dominant process for heat transfer during an injection test, and similar to
the injection solutions under isothermal conditions, the nonisothermal solutions are in
terms of the single-phase solution based on oil properties at the initial temperature of the
reservoir plus an additional multiphase pressure change term due to the contrast, in the
region invaded by water, between total mobility and oil mobility at different temperatures
of the system. Evaluation of the multiphase component is done by generating appropri-
ate saturation distributions using nonisothermal Buckley-Leverett theory. Our analytical
results, confirmed by numerical results generated using the simulator STARS, show that
the pressure derivative data reflect a semi-log straight line slope inversely proportional to

khj\wc at late times for vertical wells. The situation is somewhat different for horizon-
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tal wells, where the nonisothermal injection solution for the wellbore pressure change is
virtually identical to the isothermal solution.

To solve the falloff problem, we made the assumption that conduction is the only
dominant cause of temperature changes in the system. We also assumed that the flood
front remains stationary during shut-in, an assumption that we verified numerically us-
ing the simulator. Under these conditions, we were able, based on the conservation of
energy equation, to mathematically model the temperature changes in the reservoir and
in the wellbore in particular. The temperature equation was solved using a perturbation
method and temperature profiles were generated at different shut-in times. These pro-
files, which match fairly well the profiles obtained from STARS, clearly indicate that the
temperature front will eventually dissipate as a consequence of the system recovering its
original temperature. Solutions for the falloff pressure response were also constructed us-
ing rate superposition extended to the two-phase problem. As predicted by our analytical
solution, the pressure derivative data reflect water properties at the temperature of the
injected fluid at early times and oil properties at the initial temperature of the formation
at late times, results that are in accordance with the simulator. These results pertain to
a radial flow case. The falloff solution for the horizontal well case is not shown. As at
the date of this writing, we have been unable to provide a theoretical derivation for the
falloff pressure solution which takes into account the temperature changes for this case.

Our final objective was to provide a practical analysis procedure for injection /falloff
testing of water injection wells. Using non-linear regression based on the Levenberg-
Marquardt optimization algorithm, we analyzed injection/falloff data with our analytical
solutions used to construct the predicted pressure response. By applying this approach to
synthetic data obtained for the case of horizontal wells, we showed we were able to find
good estimates of the absolute permeabilities of the reservoir, the mechanical skin factor,
the length of the well and the relative permeability curves assuming a power law model as
long as the duration of the injection test is long enough to permit the diffusion to reach
the second radial flow regime, regardless of the position of the water front at the instant

of shut-in.
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APPENDIX A
RADIUS OF CONVERGENCE

To obtain an expression for the radius of convergence, r., we approximate the con-
vergence of flow lines using two concentric radial regions under single-phase flow regions.
In the inner region r < r. the thickness h(r) is variable and in the outer region r > .
the thickness is equal to the total reservoir thickness, h. At the interface, r., we require
continuity of the pressure. We also assume long time behavior meaning that the constant
total rate steady-state radius is beyond the radius of convergence.

For single-phase flow, we can compute the pressure drop between two points based
on Darcy’s law

aqBu  dr

dp = ko rh() (A.1)

Specifically, the pressure drop between a radius r, such that » < r. and the wellbore

radius r,, is obtained by integrating Eq. A.1 as follows

p(7) agBp [T 1
/ dp = p(r) — puy = 2 / R (r) dr, (A.2)

Pwf

w

where p, s represents the bottom hole flowing pressure and « is a constant which de-
pends on the units system used. In field units, a = 141.2. Dimensionless radius and

dimensionless pressure for a single-phase flow are defined by

'p = —, (A3)

and
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kh
aqBu

pp(rp,tp) = (p; — p(r,t)). (A.4)

Adding and subtracting to Eq. A.2 the initial reservoir pressure, p; , and multiplying the

resulting equation by kh/(aqBp), it follows that

h

pwp — Pp(TD,tD) :/ Wdﬁ (A.5)

where, here, p,p is the dimensionless wellbore pressure obtained by replacing p(r) in
Eq. A4 by pys.
At late times, we have pseudo-radial flow and the dimensionless wellbore pressure

is given by

1 4t

where 7 represents the Euler’s constant (y = 0.57722...) and s, is the pseudo-skin factor
due to the restricted-entry. The dimensionless time tp is defined by
Bkt

tp = ——— A7
P buer?’ (A7)

where 3 is a constant which depends on the system of units used. If oil field units with
time in hours are used, then 8 = 2.637 x 10~%. Using Eq. A.6 in Eq. A.5 and then solving

for pp(rp,tp) gives

1 4t p " h
tp)==-In|{ — — dr. A8
potrotn) =5 () 4= [ s e
For radial distances greater than the convergence radius, that is for r > r., the

solution for the dimensionless pressure is given by the line source solution which at late

times can be approximated by

pmmﬁwzgm(%D) (A.9)

N2
ey,
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At the interface r = r., the pressure must be continuous, i.e., Eqgs. A.8 and A.9 must

give the same value of pp. Equating these two equations with r» = r. gives

1 4dtp e h 1 4tp
“In | =2 — =1 Al
() o [ - am (5) A0
or
In(r.p) = /TC h dr —s (A.11)
cD) — . Th(’]") by °

where r.p is the dimensionless radius of convergence obtained by replacing r in Eq. A.3

by r.. For model 1, Eq. A.11 reduces to

"o h h
In(r.p) = / P dr — s, = > In <E> — Sp. (A.12)

pT p Tw

Introducing the penetration ratio b defined by Eq. 2.38 in Eq. A.12 and simplifying gives

b
Tep = €XP (1 ibb), (A.13)

or in terms of r,

Te = T €XP <1bibb). (A.14)

The derivation for the radius of the convergence for model 2 is similar, but the algebra is

slightly more complicated. For model 2, h(r) is given by Eq. 2.35, repeated here as

Pyr —re). (A.15)

In this case, integrating Eq. A.11 yields

In( )_/Tc h dr o )/“ 1 dr
e (- T At ) 7
(A.16)
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or after rearranging,

e 1 dr
In(rep) = (re — 7w — — Sp. A7
H(T D) (T r )/;w (1 - b) + (b?"c B T’w)% r2 Sb ( )
By making the following change of variable:
1
u=(1-=0)4+ (bre —rw)-—, (A.18)
r
it is easy to show that Eq. A.17 becomes
(re — 1) /175 du
In(r.p) = —= — — S, A.19
H(T’ D) (Tw ch) bze 1) U Sb ( )
which yields
(re = Tw) 1 - rr_w
In(r.p) = 1 : — Sp. A.20
n(?" D) (/rw _ bTC) n b(:—; _ 1) Sh ( )
If we express Eq. A.20 in terms of r.p, we obtain
In(rep) = =2~ L 1 (brep) — (A.21)
TeD) = 1— bTCD TeD Sb, .
or equivalently,
(b — 1)TCD TeD — 1
— 1 = —— ) In(b). A.22
1—"bre.p n(rep) = s+ (1 — brcD> n(b) ( )

Unlike the formula that we have for the convergence radius in model 1 (Eq. A.14), Eq. A.22
is nonlinear and needs to be solved numerically in order to get the dimensionless conver-
gence radius.

Many formulas have been proposed for the pseudo-skin factor due to restricted-
entry. We will use the one presented by [37]. For the case of a homogeneous reservoir,
this formula is equivalent to

Sp = #(m (C"(1 = b)hyp) — CI>, (A.23)
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where

C; = 0.481 + 1.01b — 0.838V7, (A.24)
and
h, [k
hwp = 24/ —. A.25
p= VL (A.25)

(" in Eq. A.23 is given by the graph shown in Fig. 6 of [37]. C’ = 2 when the top of the
perforated interval of the wellbore coincides with the top of the formation, or the bottom
of the perforated interval coincides with the bottom of the formation. When the center of
the open interval coincides with the midpoint (vertically) of the formation, C' = 1. For

the configuration of model 1 and 2, C' = 2.

402



APPENDIX B
PERTURBATION METHOD

In this appendix, we present the complete derivation of the solution of the ini-
tial value boundary problem described by Eqgs. 3.131 to 3.136 in Laplace space using a
procedure based on perturbation method. In this framework, the approximate analyt-
ical solution for the falloff pressure is represented in a power-series expansion given by
Eq. 3.182. A pressure solution will be derived in the inner region of the reservoir (invaded
zone) as well as in the outer region (unevaded zone). These two solutions will be matched
at the interface 7;p which represents the dimensionless location of the flood front at the
instant of shut-in. In the following, we assume that the first three terms in the series
of Eq. 3.182 are enough to adequately describe the falloff solution for the pressure. For
simplicity, we do not consider skin effect (@ =1for 1 <rp <rsp). If mechanical skin
is considered, we will have to solve the IVBP in the following three regions: the skin zone
1 < rp < ryp for which the permeability is equal to ks and the ratio @ = %S, the water
bank r,p < rp < rpp with k(rp) = k and the oil zone rp > rgp where the permeability
is also equal to k.

Inner Region Solution

The dimensionless falloff pressure in the region rp < r¢p is given by

PD,in(TDs ¥) = Dpo,in + €PD1,in + ODD2,in- (B.1)

Substituting Eqgs. 3.180 3.181 and B.1 into Eqs. 3.131 and 3.132 gives

403



1 0 0
. (1— Gf(TD))TD%(ﬁDo,m + €Ppi,in + 5]3D2,m)] =
(1 —=10g(rp)) [U(PDo,in + €pp1,in + 5]5D2,m) — filrp)|, (B.2)
and
TDa_(ﬁDo,m + €Dp1,in + 0PD2,in) |rp=1=0. (B.3)
D

Expanding Eqs. B.2 and B.3 and dropping higher orders of € and § gives respectively

19 . ODpo,in L. 19 . Opprin) 1 0 F(rp)r ODpo,in
’I“DaTD p (’97“,3 T’Da’l“p b 8’/‘D ’l“Da’I“D b/tp 8’/‘D

1 _ .
+5_ a (rDapDZ,m> _

TD 8rD 87“,3

uppoin — f1(rp) + €uppiim + 6 (Upm,m —ug(rp)Ppo,in + 9(rp) f1 (TD)> , (B.4)
and

ODDp2,in
8rD

ODD1,in
87“,3

0D po,in

4}
87‘,3 +0rp

rp=1

= 0. (B.5)

rp=1

D +erp

rp=1
A comparison of both sides of the two preceding equations yields the following three
system of equations

The O(1) system:

1 0 ( ODpo,in
r

T’DaTD GTD

R —— oo

ODpo,in
or D

D

= 0. (B.7)

rp=1

The O(€) system:
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1 8 87 n =~ 1 8 87 o
<7”D PD1, ) — UPp1in = — = (f(r,;))rppl:)—o’)7 (B.8)

D 87"D 87"[) D 87"D 87"D

ODD1,in

D
8T’D

’I"Dzl

The O(6) system:

1 0 ( ODp2,in
D

D 8rD 8rD

) ——uppznlZI—Q(TD)(UqunL—‘fﬂTD))> (B.10)

OPp2,in

= 0. B.11
o 0 (B.11)

D

rp=1
First, we discuss the solution of the O(1) system. It is a non-homogeneous second order
differential equation whose solution is the sum of any particular solution ﬁ%mm and a
corresponding homogeneous solution ply, ;,, obtained by setting fi(rp) = 0. Thus, we

have

PDo,in = ﬁ%o,m + ﬁ}ﬁo,m- <B~12)

It is easy to show that the homogeneous solution to the O(1) system is a combination of

modified Bessel functions of zero order as follows:

ﬁ%o,m = c1Io(v/urp) + c2Ko(\/urp), (B.13)

where ¢; and ¢y are functions of the variable u to be determined later. In order to find
a particular solution, we apply the variation of parameters technique which assumes for

our case, a particular solution of the form

Pho.in = W1(TD, u)Io(v/urp) + us(rp, u) Ko(v/urp). (B.14)

The functions u; and us are underdetermined so we have the freedom to impose a con-

straint which simplifies subsequent equations. This constraint is chosen to be
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uy (rp, u) lo(v/urp) + uy(rp, u) Ko(v/urp) = 0, (B.15)

where u} and u} are the derivatives of u; and uy with respect to rp. The general solution

to the O(1) system is then given by the following expression

PDo,in = leo(\/aTD) + CZKO(\/ETD) +u1(rp, U)[o(\/aTD) + Uz(TDau)KO(\/ETD)- (B.16)

Next, we differentiate Eq. B.16 with respect to rp to obtain

OPo.in = civuli(Vurp) — cov/ulKy (v urp) + i (rp, u)lo(v/urp)+

aT’D

uy(rp, u)Ko(vurp) + Vuuy (rp, u) 1 (vurp) — Vuus(rp, w) Ky (vVurp). (B.17)

Using the constraint defined by Eq. B.15, Eq. B.17 simplifies to

IPpo.in _ civuly(Vurp) — cov/uK (vVurp) + vuu (rp, u) 1 (vVurp)—

(91"D

Vuuy(rp, u) Ky (vurp). (B.18)

Multiplying Eq. B.18 by rp and differentiating the resulting expression yields

406



0 ( apDo,m) _ ﬂ(qﬁmh(\/am)—CQ\/arDm(ﬁmH

87“D D 8rD 67“D

Vo, 0} (iirn) ~ Virpu(rp, 0K (Vir)
eI (i) — es/aE (i) + Vi (ro, w) (Viirp) -
Vi, w) K (Viirp) + exurp o(/iir) — eoy/ilh (Virp) +

courpKo(vurp) + cov/uKi(vurp) + vurpu) (rp, u) [ (vurp)+

wrpits (1, ) o(Virp) — Vi (ro, W (Varp) — varpi(rp, u) K (v/iirp)+

urpus(rp, u) Ko(vurp) + Vurpus(rp, u) Ky (vurp) =

crurplo(Vurp) + courpKo(Vurp) + Vurpu' (rp, w) I (vVurp) + urpus (rp, w)Io(v/urp)—
Vurpuy(rp, u)Ki(vVurp) + urpus(rp, u) Ko(v/urp). (B.19)

Replacing the result of Eq. B.19 and Eq. B.16 into Eq. B.6 gives

crulo(vurp) + couKo(vurp) + vuu (rp, u) I (vVurp) + vuy (rp, u)Io(v/urp)—

Vuuy(rp, w) Ky (vVurp) + uug(rp, w) Ko(vVurp) — uei Io(vurp) — uca Ko(vurp)—
uuy (rp, u)Io(v/urp) — uus(rp, u) Ko(v/urp) = —fi(rp), (B.20)

which simplifies to

Vuuy (rp,u) I (Vurp) — Vuuy(rp, u) Ky (vVurp) = — fi(rp). (B.21)

The solution of the simultaneous equations given by Eqgs. B.15 and B.21 for ) and u} is

1 [ —filrp) —VuK:i(y/urp) 1
Ull 'p,U) = —— = __fl D K() \/ET’D s B.22
=g | T Ch(p)Ko(Varp),  (B22)
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1 [ Vuli(/urp) —fi(rp) 1
uy(rp,u) = — = — filrp)Ih(v/urp),
=g | R | = i)

where W is the Wronskian defined by

W — Vuli(yurp)  —v/uk(\/urp) _

Io(V/urp) Ko(v/urp)

\/E(II(\/ETD)KO(\/ETD) + ]O(ﬂTD)Kl(\/aTD)) =
1 1

Vu

Integrating Eq. B.22 from rp to ryp gives

/TfD uy(rp,u)drp = — /TfD Epf1(€p) Ko(Vuép)dép,

or

wr(rpyu) = ur(ryo, ) + / 7 e i (60 Kolvitep)dép,

Similarly, if we integrate Eq. B.23 from 1 to rp, we get

/ "y wdrp = / " o (Ep) (vt de.
1 1

or

us(rp, u) = us(1,u) + / Y e (€0 IV deo.

Vurp - rp

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

Now, if we replace Egs. B.26 and B.28 into the general solution given by Eq. B.16, we

obtain
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DPDo,in = 01]0(\/57”D)+62K0(\/57”D)+ [U1(TfD, U)+/TfD éph (§D)K0(\/E§D)de} Io(\/ETD)
+ {Ua(lau) + /jD fol(fD)Io(\/afD)de] Ko(v/urp), (B.29)

or after rearranging

Ppo,in = A1lo(vurp) + Ay Ko(v/urp) + Io(v/urp) / Epf1(Ep) Ko(vVuép)dép
+ Ko(v/urp) / Epfi(ép)lo(Vuép)dép, (B.30)

where for simplicity, the new constants A; and A, are introduced and defined respectively

by

Ay =c1 +w(rep,u), (B.31)

and

AQ = Cy + Ug(]_, U) (B32)

Recall that the O(1) system has an inner boundary condition given by Eq. B.7. If we
substitute first Egs. B.26 and B.28 into the expression for the derivative pressure given

by Eq. B.18, we obtain

8];1)0 n civuly(Vurp) — cov/uKy (vVurp) + vuly (vurp) |:U1<TfD7 u)+
D§Df1(5D)Ko(\/_§D)d§D — VuKi(y/urp) [Uz (1,u) / Epf1(Ep) To(Vuép)dép | -

D

(B.33)

Using the definitions given by Eqgs. B.31 and B.32, Eq. B.33 becomes
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IPpo,in = Al (Varp)—AsVuK: (Varp)+val (Varp) / Epf1(€p) Ko(Vuép)dép

(91"D

ik (Virp) / En 1 (Ep) Io(Viitp)dep. (B.34)

At the wellbore,i.e., rp = 1, we have

=0, (B.35)

which translates into

Auly(Vu) = ApvVuKy (V) + Vauli (V) /lrfD Epfi(€p) Ko(Vuép)dép =0, (B.36)
or simply,
W) L) [P u
A= A8+ LR [ (6 (Vi) i, (B.37)

Finally, substituting Eq. B.37 into Eq. B.30 and rearranging yields

DDo,in = Kljgl\l/a) {Kl(\/ﬂ)lo(\/a'fb) + 1.1(\/5)[(0(\/57’13)] +
[1(11((\/\/__)) Ko(v/urp) / Epf1(Ep) Ko(Vuép)dép+

Ko(\/ETD)/ITD &pf1(€p)Io(Vuép)dép + Io(v/urp) /”” &pf1(€p) Ko(vVuép)dép. (B.38)

Next, we move to the O(e) system. Recall from Eqgs. B.8 and B.9 that the ODE
and the associated boundary condition that describe this system are given respectively

by the following equations
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1 8 87 n _ 1 8 87 mn
<7”D DD1, ) — UPD1,in = ——(f(TD)TD 500, )7 (B.39)

D 87"D 87"[) D 87"D 87"D

ODp1,in
8T’D

= 0. (B.40)

’I"Dzl

D

The right hand side of the above ODE is function of only the dimensionless radial distance

rp. Thus, we set

1 0 ODPpo,in
U(TD) = E% (f(TD)T’D a’r‘D ), (B4]_)
and Eq. B.39 becomes
1 0 OPp1,in _ a
537”1) (7" e ) — upp1in = —U(rp), (B.42)

Note that Eq. B.42 is similar to Eq. B.6. Therefore, they have the same solution with
fi(rp) replaced by the function that we defined as U(rp). So, by analogy to Eq. B.30,

we have

Porin = Aslo(vVurp) + AsKo(Vurp) + In(v/urp) /TfD EpU(Ep) Ko(vVuép)dép+
Ko(\/ET‘D)/;D EpU(Ep)Io(Vuép)dép, (B.43)

where Az and A4 are the new constants of integration. If we use the expression of U(rp)

given by Eq. B.41, we have

e B 0 ODpo,in
[ sovteontvagniden = - [ 52 (fieoren " i igo)iep. (B

Integrating Eq. B.44 by parts, we obtain
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D

/1 ’ EpU(Ep)Lo(vuép)dép = —fpf(ﬁD)agzszo(\/ﬁfD)} +
1

Vit [ o leo) B2 R (iigo) i, (B45)

or simplifying using Eq. B.7,

/1TD EpU(Ep) To(Vulp)dép = —TDf(TD)apDO’m Io(v/urp)+

37‘,3

Vi / TD @f(@)aggjj"mmf))d&p. (B.46)

Similarly, we have

[ v, = = [ 5 (e e ) ki vagoco. (87

9ép 9ép

Integrating the above equation by parts yields

T+D — . TfD
/ f fDU@D)Ko(ﬁgD)de:—5Df<§D>apD0”“Ko<ﬂ§D>] -

T
Ja / " epf(ep) 2P0 ke ((Jugp)dep, (B.AS)
D afD

or

/ M epu (&p)Ko(vuép)dép = er(rD)agﬁzm Ko(v/urp)—

95
repf(reD) I;io

9Ep

in
D

Ko(vurgp) — vu / " o flep) ZBRO pe ((Ju ) dep. (B.49)

Ty
Substituting Eqgs. B.46 and B.49 into Eq. B.43, then rearranging and simplifying the
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resulting equation gives

a_ in
Pp1,in = Aslo(Vurp) + AyKo(vurp) —rep f(rip) PDo,

Ko(vursp)Io(v/urp)

aTD vy
+ VuEo(Vurp) /1 Dng@D)agzzmh(ﬁ&D)ng
~Vto(irn) [ o f(60) P K (Vago o, (B:50)

which constitutes the general solution to the O(e) system. The expression above contains
two constants. In order to eliminate one constant, A4 for instance, we need to apply the
inner boundary condition given by Eq. B.40. We start by differentiating Eq. B.50 with

respect to rp as follows:

POLin — A fal, (i)~ A/ (Viro) Vo f(reo) P2 RV o) (Vi)
~uk(Wrs) [ €nf(€0) TR L(Vio)des
—un (Vi) [ 6o o) B Ko ) s
) TP K o) (i) + i () P2 (i) Ko (Vi)

(B.51)

Using the fact that

Ko(y/arn) L (vars) + Io(y/arp) Ky (varn) = \/aer’ (B.52)

Eq. B.51 becomes
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a];D;m = Azv/uly(Vurp)—As/uK, (Vurp)— \/_Tfo(TfD)agDom Ko(v/urp) i (vurp)

Ky (Vi) /1 D@f(@ﬁ%@‘]’;mh(\/afp)d@
—uly(Varp) / " et (en) 2

2 K (VR + f o) B (B.53)

At the wellbore, we have

o] A u (V) - AR (V) Vo f 7o) PR Kol go) ()

arD rp=1 8TD TfD

~utii) [ o f(€0) B0 K (Vi) = 0. (B50)

which yields

o, h(Ve) L(Vu) ODpo,in
A4_A3K1(\/ﬁ) - K1<\/a)7“fo<7”fD> o TfDKO(\/ﬂrfD)
Il(\/a) i apDO zn
K (va) J, Epf(Ep)—F—— 96 Ki(vVuép)dép. (B.55)

Finally, if we replace A, in Eq. B.50 by its expression provided above and rearrange, we

obtain
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Porm = —23_ [K1(\/ﬂ)fo(\/ﬂ7‘n) i Il(\/ﬁ)Ko(\/ﬂTD)}

Ki(Vu)
_ Oppoin|  Ko(v/ursp)
rtpf(rep) orp )

I (u) e IPpoin
~ Vi LK) [ €00 2 K (i)t

+ VuKo(v/urp) /1 ; §Df(§D)agzzm Li(Vuép)dép

~ Val(varp) / TfD ng@D)agggn K\(Vaiép)dép. (B.56)

{Kw&)lﬂ(ﬁw) L (va) Ko(Varp)

Finally, we solve the O(¢) system. From Eqs. B.10 and B.11, we recall that ODE

and the associated boundary condition that describe the system are given respectively by

1 0 < ODp2,in
D

TD8’I"D 8’/“D

) — P = —g(rp) (upm - f1<rD>)7 (B.57)

ai n
rp 2 = 0. (B.58)
87"D rp=1
we set
V(rp) =g(rp) (upDo,m ~h (rp)). (B.59)
Then, Eq. B.57 becomes
1 9 IPD2,in _
o : - n — s B.
rp Orp (TD orp pp2. Viro) (B.60)

which is again similar to Eq. B.6. Based on the previous results for the leading problem,

we can write our general solution for the O(¢) system as
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Pp2,in = Aslo(vurp) + AsKo(vurp) + In(v/urp) /TfD EpV (€p) Ko(Vuép)dép+
Ko(\/ﬂTD)/lTD &V (€p)Io(vuép)dép, (B.61)

where A; and Ag are the new constants of integration. Using the expression for V(rp)

given by Eq. B.59, we have

Pp2in = Aslo(v/urp) + AsKo(vV/urp)+

Iy(v/urp) /Tl:fD ¢p9(ép) <UpDo,m - fl(fD))Ko(\/ﬁfD)de
+ Ko(Vurp) /1TD &p9(€p) (UﬁDO,m —h (fD)) Io(v/uép)dép. (B.62)

Here, we also take the derivative of Eq. B.62 with respect to rp and then apply the

condition at the wellbore given by Eq. B.58. The first operation yields

2 g/l (viirp) — Aok (/i)
— VuKi(v/urp) /jD ¢pg(ép) (uﬁDo,m - h (§D)> Io(v/uép)dép

+ Val (varp) / " egen) (UpDo,m s (@)) Ko(v/up)dep. (B.63)

The second operation on the other hand gives

OPp2,in _ Asﬁjl(\/ﬂ) — AG\/EKl(\/E)‘F

arD rp=1

Vil (va) /1 " gen) (UpDo,m s (gp))Ko(ﬁfD)de —0, (B.64)

which yields
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L) L)
Ao =7 (v T Ky

/ ¢pg(ép) (upDo,m - fi <5D>) Ko(Vuép)dép.  (B.65)

Using Eq. B.65 in Eq. B.62 gives

A

PD2in Kl(\/ﬂ)
L(Vu)
Ki(v/u)

Iy(v/urp) /TfD ¢p9(€p) <UpDo,m - fi (fD)) Ko(vuép)dép+

D

pm@Mﬁm+Mﬁmw%ﬂ+

Ko(v/urp) /;fD £p9(ép) (UpDo,m — N (fD)) Ko(Vuép)dép+

Ko(\/ﬂTD) /1TD £p9(ép) (UﬁDo,m —h (fD)) IO(\/EfD)dea (B.66)

which represents the dimensionless pressure solution for the O(J) system. At this point,
we have the general solution for the dimensionless pressure evaluated in Laplace space at
any point in the invaded zone of the reservoir. However, this solution is not fully defined
as the determination of the three constants of integration A;, As and Aj is still required.
Later, we will show how to obtain them based on the continuity conditions.
Outer Region Solution

The pressure distribution in the univaded zone is described by the dimensionless
differential equation and its associated boundary condition equation given respectively by
Eqgs. 3.133 and 3.134. Based on the perturbation method, we write our falloff solution in

this region as

pD,ou(rDa U) = pDO,ou + 6le,ou + 5pD2,oua <B67)

where the terms pp1 o, and pps o, are supposed to have small contribution compared to the
leading term ppgo,. As we did before, we substitute the above expression into Egs. 3.133

and 3.134 to obtain
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1 0 OPpo.ou(TD, ODpp1,0u(TD,
[TD PDo, (7D, ) i PD1, (7D, )

op ou ;
— €rp +6TDM
TD8’I“D 07“D

87"D aTD

H(UPDo,ou(TD, u) — fo(rp) + €uppiou(rp, u) + 0upp2.ou(rp, U))7 (B.68)

and

rp—00

hm (ﬁDO,ou + 6]3D1,ou + 5]5D2,ou> == 0 <B69)

If we compare both sides of Eqs. B.68 and B.69, we obtain the three systems for the
perturbation solution,

The O(1) system:

1 0 a13D0 ou _
1 oul o , B.70
oo | — . = ~nalr) (B.70)
lim (ﬁDO,ou) = 0. (B?l)
rp—00

The O(€) system:

%@fD [ Da];i;w] — Nuppi,ou = 0, (B.72)
T (o) = 0 (B3
The O(9) system:
% afD [ 3}2?2[;0u} — NUPp2,ou = 0, (B.74)
lin () = 0. (B.75)

rp—00

Since the leading system is described by a non-homogeneous second order differ-

ential equation, it is easy to show that based on the treatment of the O(1) system in the
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invaded zone, i.e., the water bank, we can write the general solution of Eq. B.70 as

Ppo.ou = dilo(v/nurp) + do Ko(y/murp) + v1(rp, w)lo(\/nurp) + ve(rp, w) Ko(/nurp),

(B.76)

with d; and dy constants. By analogy to the functions u; and wuy given respectively by

Egs. B.22 and B.23, we define the functions v; and vy in Eq. B.76 by

U/1 (rp,u) = —777“Df2(7’D)K0(\/77_WD),

and

vy (1D, u) = nrp f2(rp) lo(y/Nurp).

Integrating Eq. B.77 from rp to oo gives

/ " i (rp, udrp = —1 / " ep fullp) Kol/TiEn) o,

or

01 (rp, 1) = 02(00) + 7 / " e fal€0) Kol /iTTED ) dé.

Similarly, if we integrate Eq. B.78 from r;p to rp, we get

/ " y(rpy u)drp = 1 / " e ) o (VTEED ) d,
T¢D T¢D

or

0s (s tt) — va(r s, ) + 1 / Y e fal€0) oD ).
TFD

Thus, substituting Eqs. B.80 and B.82 into Eq. B.76 yields

419

(B.77)

(B.78)

(B.79)

(B.80)

(B.81)

(B.82)



B0.0n — duJo(y/Trn)-+da Ko y/7iirp) + [m(oo)m / N @ﬁ(@)m(ﬁ@)d@] Io(irD)

; {w(rw, W)+ / v @ﬁ(@)h(ﬁu@)dfa} Ko(y/irp), (B.83)

or after rearranging

Povon = Bilo(y/Tiirn) + BaKo(y/irp) + lo(y/iirp) / " e fal€0) Kol iTTED) dép

T nEo(/rp) / " e alp) Io(VTiED)d D, (B.84)

where for simplicity, the new constants By and B, are introduced and defined respectively

by

Bl = dl + 1 (OO), (B85)

and

B2 = dg + UQ(rfD7u>. (B86)

Using the outer boundary condition Eq. B.71 in Eq. B.84 gives

By = 0. (B.87)

Thus, Eq. B.84 becomes

Ppo,ou = BaKo(y/nurp) + 77]0(\/77_UTD)/ Epfa(§p) Ko(yv/nuép)dEp+
DKo (i) / " e Fal€0) o/ T D) d . (B.58)
TfD

The first order systems in € and ¢ have the same solution expressed as a linear
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combination of modified Bessel functions of order zero. Therefore, we can write

Pp1,ou = Bslo(\/nurp) + BaKo(y/nurp), (B.89)
and
ﬁD2,0u = B5]0(\/ 77UTD) + BﬁKO(\/ UUTD)» (BQO)

where Bs to Bg are constants of integration. By applying the outer boundary conditions

given for both systems by Eqgs. B.73 and B.75, it is easy to show that

By = B; =0, (B.91)

and Eqgs. B.89 and B.90 become respectively

Pp1.ou = BaKo(y/nurp), (B.92)
and
Pp2.0u = BsKo(y/1urp). (B.93)

Note that in order to compute the falloff dimensionless pressure at any point in the
unevaded zone, the constants By, By and Bg need to be determined. In the following, not
only will we show how to evaluate these constants but also the parameters A;, A3 and Aj
that appear in the falloff dimensionless pressure in the inner zone by writing and solving
a system of six decoupled equations.
Continuity Equations

The two continuity conditions applied at the interface, r¢p, are given by Eqgs. 3.128
and 3.129 in the time domain or by similar expression in the Laplace domain (see
Eqgs. 3.135 and 3.136) since they retain their form in this space. The first condition
expresses the continuity of the pressure which in our case, using Eqs. B.1 and B.67 in

Eq. 3.135 translates to
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P00,in(TfD, 4) + €PD1,in (7D, 1) + PD2,in (7D, U) = Pp0.0u(T D, 1)

+ GﬁDl,ou(TfD, u) + 5ﬁDQ,ou(TfDu u) (B94)

Comparing both sides of Eq. B.94 gives the following equations

PD0,in (7D, W) = Ppo,ou(rfp, 1), (B.95)
Dp1,in(TfDs ) = Dp1,0u(T D, 1), (B.96)
DPp2,in(TD, ¥) = Dp2,ou(TFD, 0). (B.97)

The second condition expresses the continuity of the fluxes at the interface. Recall that

it is given by

apD,in _ apD,ou
87’[)

M)\tD(TD)TD (B98)

TD=T§{D TD=T§D

Using Eqs. B.1 and B.67 for the pressures and Eq. 3.180 for the dimensionless total

mobility in Eq. B.98 gives

a_ wm p wm a_ wm
M@ —ef(rp))|{ o PDo, +erp b1, +orp PD2 =
aTD _ 8rD _ 87"[) _
TD=TfD TD=TfD TD=TfD

87 ou 87 ou 87 ou

rp %DO’ +erp ng’ + drp pam, (B.99)
2 TD=T§D 2 TD=T§D "D TD=T{D
Expanding the terms and comparing both sides of Eq. B.99 yields
- a_ in 8_ ou
N p 22RO = pp L0 , (B.100)
aT'D _ 8rD —
TD=T{D TD=T§{D
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9 a_ mn a_ m a_ ou
M<7°D Z;Dl’ —rpf(rp) Z(;DO’ )—T’D I;m ; (B.101)
TD TD=TfD T'D TD=TfD TD TD=TfD
and
~ 87 in ai ou
Ny p 2PP2 = rp D% (B.102)
8TD TD=TfD aTD TD=TfD

Evaluating Eqs. B.38 and B.88 at r¢p and using the resulting expressions in Eq. B.95

gives

A
Ki(v/u)

K1 (vVu)Io(v/urgp) + Il(\/E)KO(\/ﬂTfD)]

1(v/a)
K ()

+ Ko(\/ursp) /lrfD Epf1(ép)lo(VuEp)dép =

Kolv/ars) / 7 o fi () Ko(vatn)dép

By Ko(y/nuryp) + nlo(/nursp) / ) Epfo(€p) Ko(y/nuép)dép. (B.103)

If we rearrange Eq. B.103, we obtain

By (/i 1) — ﬁ {Klwwowaw " fl<ﬁ>f<o<mfp>]

Ko(Vurgp) [™" u u u u
* K, (y/u) /1 ngl(gD)[[l(\/_)KO(\/_fD)+Kl(\/_)[0(\/_§D)}de

~nlo(irso) [ €nfal€p) Kol i€ )b (B101)
rfD
From Eq. B.100, we have

~ ODpo,in

aﬁDO ou
M = =20
or D

8rD

(B.105)

TD=TfD TD=TfD

It is clear that we need to obtain the first derivatives of the pressure with respect to rp
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in both regions in order to apply the above condition. In the inner zone, substituting

Eq. B.37 for A, into Eq. B.34 and rearranging gives

Pooin _ 4 u urp) — U ur
orp  Ki(vu) [Kl(\/_)fl(\/_ p) — Li(Vu) K1 (vu D)]

T VaL(varp) / 7 e ) KoVt p)dép

— VuK,(vurp) / Ep f1(€p)o(Vulp)dép

_ h(Vw)
Ki(Vu)

\/EKE(\/ET‘D)/; Epf1(€p)Ko(vuép)dép. (B.106)

In the outer zone, differentiating Eq. B.88 with respect to rp gives

apDO ou

P00 — B (D) + T (D) [ € fal€o) ol D)o

D

K (D) | o fa€n)lo(yiTiEn)dEp.  (B.10T)

TfD

Now, if we evaluate both Egs. B.106 and B.107 at ryp and use the resulting expressions

in Eq. B.105, we obtain

N KV (Vi) = 1V Ko

— M\uK,(vurp) /TfD Epfi(Ep)o(Vuép)dép

L)
o)

- \/TI_UB2K1(\/77_WfD) + 77\/77_U[1(\/77_WfD) /O" fo2(fD)Ko(\/77_UfD)de7 (B-108)

Vi (Vi) / " e fu(€n) Ko(viiEp)dep =

or after rearranging,
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By K, (y/nuryp) = —%ﬁ [Kl(\/ﬂ)fl(\/arw) - Il(\/a)Kﬂ\/a?“fD)]
K—Kl Vuryp u u u u
+ N / ¢nfi(ép) [Kl(\/_)fo(\/_fD) +11(\/_)K0(\/_§D)} dép

+ ki (/i) / " o halE) Kol /M) dép.  (B.109)

For simplification purposes, we introduce new functions defined by the following

expressions

and

H,(ox, ay)

= K,(ay) (o) + 1,41 (ay) K, (ax), (B.110)

G, (az,ay) = K, (ay)l,(ax) — I, (ay) K, (az). (B.111)

Based on these definitions, we can write

Ho(\/ursp,/u)

and

G1(Vurgp,vu) =

= Ki(vVu)Io(v/uryp) + Li(vu) Ko(Vursp), (B.112)

Ky (Vu)l,(Vurgp) — Li(Vu) Ky (vVursp), (B.113)

so that Eqs. B.104 and B.109 simplify respectively to

ByKo(\/nursp) =

Ay

Ky (Vu)

Hy(v/urgp, \/E)er /ITfD &pf1(€p) Ho(Vuép, vVu)dép

K, (V)
— nlo(/Air ) / £ 12(En) Ko (VD) dEp,  (B.114)
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and

By K (y/nursp) = —%%G (Vursp, vu)
+ \]\//‘[—K}(l\/_rw / Ep f1(€p)Ho(Vuép, Vu)dép

+ 0l (/i) / £ falEn) Ko (ViTaED)dEp.  (B.115)
T¢D

Multiplying Eq. B.114 by K;(\/nursp) and Eq. B.115 by Ky(,/nur;p) and equating the

resulting expressions yields

Ko(v/uryp) Ki(y/nuryp) y
Ki(v/u)

/1 T e 1 (€0) Ho(Vitp, ) déo

Ky (y/mursp)Ho(v/urgp, vV/u) +

A
Kyi(Vu)

— 0l T ) (T [ €l Kol D e

TfD

M A
_ ?WK o(v/nurp)Gr(Vurp, vVu)
Ky (Vuryp)Ko(y/mursp)
+\/ﬁ K / Epfi(€p)Ho(Vuép, vVu)dép

0l (/i) Ko/t ) / €0 ha(€0) Ko(ViTiln)den. (B.116)
T$D

Rearranging the preceding equation gives

Ay o
(V) {Kl(”_“%)ﬂowrwa Vi) & ool i )GV, m] _

1 M
_ m [KO(ﬁrfD)Kl(\/n_quD) - %Kl(\/anD)KO(\/U_UTfD)} X
/1f Ep f1(€p) Ho(Vuép, Vu)dép+n {Io(\/n_urfD)Kl(\/n_urfD)jL]l(\/n—WfD)Ko(\/n—WfD)}

x / " o halen) Kol /M) dép.  (B.117)
T¢D
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Using the fact that

o/ ) K (Vi ) + T (i ) Ko (/i 1) = W_;w, (B.118)

Eq. B.117 becomes

K11(4\1/ﬂ) {Kl(\/n_wa)Ho(\/arfD’ V) + %KO(?/U_UWD)GK\/EWD, \/ﬂ)] =
1 M
_ m lK0<ﬁrfD)Kl<mTfD) - %Kl(\/arfD)Ko(\/’r]_urfD)} X

/ 7 o (E0) Holn i, Va)den + i\/E / " o fale) Kol dép, (B.119)
1 D u T¢D

or

1
A1: X

) Halo i /) + 25 K )61 (. )

(~ [otvmmod i i) - 2 ko sty

\/ﬁ
/lrfD £pf1(Ep) Ho(Vuép, Vu)dép + %\[{m\/g/;: En.f2(Ep) Ko(v/nu D)ng).

(B.120)

Now that the constant A; is determined, By can be evaluated by substituting Eq. B.120
into either Eq. B.114 or Eq. B.115. The result, after manipulation, simplification and

rearrangement is given by the following equation
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1
BQZ X

R ) (i, )+ Rl )G o )

Mo [P 1 [n Hy(Vursp, u)
<\/77_U7“fD/1 &p f1(€p)Ho(Vuép, Vu)dép + oV u Ko(viarso) X

[ somorvmenyico) - RIS [ o o salymeoio. (5121

For the first order in €, let us evaluate Egs. B.56 and B.92 at the interface r¢p

and equating the resulting expressions according to Eq. B.96. We have

As
e [Klwa)fowrfz)) n h(ﬁ)KowrfD)]
IPpo.in

— 1 f(rp) B

Ko(Vuryp) [Kl(ﬁ)lo(ﬁrfD) + L(Vu) Ko(Vursp)

e K1(V)
1(y/u) P ODpo,in
—\/aKl(\/a)Ko(\/aT‘fD)/l_ Enf(€p) 9 Ki(Vuép)dép
4-\/5K0(\/a7°fD)/1 fo(fD)ag?;mfl(\/afD)de = ByKo(y/nursp). (B.122)

Using the new functions given by Eqs. B.112 and B.113, Eq. B.122 simplifies to

ByKo(y/nursp) = ﬁf{o(\/ﬂw& Vu) — Tfo(TfD)agizm K;((ffaf)l))
Hol o V) + VIS T [ e 60) 200G (i, Vi, (B.123)

On the other hand, from the continuity of the fluxes Eq. B.101, we have

a_ in
o f(rD) pl)()7

8rD

y <ap Diin (B.124)

M
87“D

) - a]3D1,ou
ro=rip 8rD

TD=TfD TD=TfD

If we use Eq. B.55 into Eq. B.53, we obtain
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Potan _ A (i () — (V) s (Vi)

orp  Ki(yVu) _
= Vo f(roo) 2500 | - EOEI (R (r) ~ (V)R (Vi)

67“[)
Ii(Vu) i 9Ppoin
“Kl(\/a)mﬂ”) Epf(€p) s

—uf(arp) [ Dng<§D>8g§°’mh(ﬁ£D>ng

—ul(Varp) / o ng@D)apa?mm(f en)den + f(rp) pi;m. (B.125)

Ky (Vu&p)dép

After evaluating the preceding equation at rp = r;p and rearranging, we get

ODpo,in
(97’ D

OPp1.in
8rD

B AB\/E ur u
TD=TfD B Kl(\/_> Gl(\/_ v \/_)

—Vurgpf(r fD)agiZm K;él\{_\/g)jj ) Gi1(Vursp, Vu)

Li(Vu) e IPpoin
wt kg [ e ste0) B K (Voo

— Ky (D) / " §Df(§D)aggzmh(\/ﬂ§D)d§D. (B.126)

—f(TD)

TD=TfD

Using Eq. B.113, we can combine the two integral terms in Eq. B.126 and thus, rewrite

Eq. B.126 as
ODp1,in 9P po,in Asv/u
Irp TD=TfD _f(TD) Irp TD=TfD Kl(\/_)Gl(\/aTﬂ%\/a)
- \/anDf(TfD)agizm K;é;{?/g)[)) Gl(\/anDa \/E)
T¢D
K "fD OPpo.in
- ;é\g_ff) /1 " eof(én) G (Vi Vu)dep. - (B.127)

If we differentiate Eq. B.92 with respect to rp, we obtain
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ale ou

G = —\IUBE (i) (B.128)

At the interface r;p, we have

aﬁDl,ou
87’D

— — /TuBK (\/Tursp). (B.129)

TD=TfD

using Eqgs. B.127 and B.129 in Eq. B.124 gives

W2V G (i, ) — N g () 2200 | KA D) 6

R orp |, KV
- 3 ) [ 6 ) B0 G (i, gD =~ TRBA T g0),
(B.130)
By (i) = —%ﬁ&(ﬁrm Vi)
e S stem | LG v
a1 [HEREID) [ e o) 200G (i, Vi, (B.131)

Multiplying Eq. B.123 by K;(y/nursp) and Eq. B.131 by Ky(\/nursp) and equating the

resulting expressions yields
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As
K1 (Vu)

ODpo,in

Kl(\/n_quD)Ho(\/anDa \/E> - rfo(TfD) orp

Ko(\/uryp)
K1 (V)

VS i) [ nr(e0) G (i, Ve =

Ko(y/murpp)Gi(vursp, V/u)

TfD

- Ko (Vi pp) Ho(Vur g, v/u)

M A
VI K (V)
%AT , ODpo,in Ko(\/ursp)
+\/ﬁfo( D) orp ., K0

uKi(Vuryp) e 9Ppo,in
M 1 Ki(Ju) Ko(\/n_UTfD)/l {nf(Ep) %, G (Vuép, Vu)dép, (B.132)

Ko(v/mursp)Gi(vursp, vVu)

or rearranging and solving for Ag,

ODpo.in
or D

Ko(\/ursp)

TfD

As=r¢pf(rsp)

Vu {KO(ﬁTfD)Kl(\/n_WfD) - %Kl(\/ﬂrfD)KO(\/n_UTfD)}
{Kl(\/n_wa)Ho(\/arfDﬂ V) + MAKO(\/U_UT‘fD)Gl(\/anD7 \/ﬂﬂ

/1 v £Df<£D)ag§°mGl(f Ep,Vu)dép. (B.133)

Since the constant Aj is now determined, By is evaluated by substituting Eq. B.133
into either Eq. B.123 or Eq. B.131. Using Eq. B.123, the result for B,, after manipulation,

simplification and rearrangement is given by the following equation

~

M 1
B4: X

PPN B (i ) Hol( i /) + 2 Koy 1) G (v, /1)

/1 fpf@D)agg‘“"Gl(f e i)Ep. (B.134)
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As for the O(9) problem, we need to equate the dimensionless pressure obtained
for the inner zone (Eq. B.66) with the dimensionless falloff pressure valid in the outer

region (Eq. B.93) at the interface, that is for rp = 7;p. The result is

[mm)fowrﬂ)) n A(ﬁ)&(ﬁrm]

I,(y/3)
K

+ Ko(v/ursp) /lrfD ¢p9(€p) (UpDo,m — f1(€D)> Io(v/uép)dép = BsKo(/murp),

Ki(vu)

Ko(v/ursp) /ITfD {p9(€p) (UPDo,m — fl(fD)) Ko(vuép)dép

(B.135)

or by simplifying the above expression using the definition of the H, function,

BaKol o) = 7

Ko(Vursp) (™" U D0 — uép, Vu
+ K, ng(fD)( DD0,in f1(§D))H0(\/_fD,\/—)d§D~ (B.136)

HO(ﬁrva \/ﬂ)

We need another equation in order to solve for the constants As and Bg. This condition

is provided by the continuity of fluxes Eq. B.102 which is expressed again by

~ (9_ in a_ ou
Mrp=g2 = rp= , (B.137)
"D TD=TfD D TD=T§{D
or simply,
~ 0D in op ou
N PD2, _ 9Pp2, (B.138)
87’[) _ 87“[) _
TD=TfD TD=TfD

From Egs. B.65 and B.63, we have
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OPain = Ay (2 urp) — U ur
orp K1 (V) {Kl(\/_)h(\/_ D) ]1(\/_)K1(\/_ D)}

L(Vu)
Ki(vu)

— VaKu(var) / Y epglen) (upm,m 4 <5D>) Io(Viiep)dén
+ Vuly(v/urp) o £p9(€p) (UﬁDo,m - f1(§D)> Ko(vuép)dép. (B.139)

D

o) [ eooteo) (sponn — i(en) ) Kol o eo

At the interface,

Obpan _ Asvu u urgp) — u ur
a70D TD=T{D a Kl(\/a) |:K1(\/_)]1(\/_ fD) Il(\/_)Kl(\/_ fD):|

_ ujl(\/a) . b B
\/_Kl(\/ﬂ)Kl(\/_ fD)/1 ng(gD)( PD0,in — f1( ))Ko(\/_fp)de

— VuK; (\ursp) lrfD ¢p9(€p) (UpDo,m - fi (fD))fo(\/afD)de, (B.140)

or

OPp2,in As\/u
) G ,
Op |y K1(\/_) 1(Vuryp, Vu)

_ uK1 \/_TfD e UD DA - — U U
VattD) [ ¢ogo) (uposn — f(€0) ) Holiep. VgD (B.141)

Differentiating Eq. B.93 with respect to rp yields for any rp

apDQ ou

o —/nuBs Ky (\/nurp), (B.142)
and for r¢p
a]g;zou = —\/nuBs K, (\/nursp). (B.143)
TD=TfD
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Finally, using Eqgs. B.143 and B.141 in Eq. B.138 gives

M As r w) — M u—Kl(ﬁTﬂﬁx
Kl(\/_)Gl(\/_ 70 Vu) = My/u (V)

/1 £p9(ép) (UpDo,m - f1(fD)) Ho(vuép, Vu)dép = —/muBsK1(\/mursp), (B.144)

or after rearranging,

Bs K (y/nuryp) :_%ﬁﬁ(\/ﬂrw,\/—) \];/[_K;:{_‘/U)D)X

¢p9(€p) (UpDo,m — f1(§D)> Ho(vuép, Vu)dép. (B.145)

1

One way to find the constant A is to multiply respectively Eq. B.136 by Ki(\/nursp)
and Eq. B.145 by Ko(y/nurp) and equate the results to get rid of the constant Bg. If we

do so, we obtain the following

K?\;)Kl<\/"_“rfD>H0(\/_’”fD,f)
+ %Kl \/n_UTfD)/l £p9(€p) (UpDO,in - f1(£D))HO(\/ﬂ§D, Vu)dép =
_ﬂ 4s ur ur MM ur %
\/ﬁKl(\/ﬂ)KO(\/n_ 0)G1(Vursp, vu) + i K (Vi) Ko(y/nursp)

[ €osteo) (upoman ~ Fleo) ) Haliep. Vo, (B.116)

If we rearrange the above equation, we can write
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As N
s [Klmz—wwmo(ﬁrw, )+ KT 0)G Vi, ﬁ)} _

{KO(\/anD)Kl(\/U_UTfD) - %Kﬂ\/a?“fD)Ko(\/ﬁ_WfD)} X

/;fD ép9(ép) (upDo,m —h (5D)> Ho(Vuép, v/a)dép, (B.147)

B
Ky(vu)

or simply,

[Ko(\/af’fD)Kl(\/ﬁ_WfD) - %Kl(\/arfD)Ko(\/U_WfD)]
As = — X

{Kﬂ\/??_urfD)Ho(\/arfD’ V) + %KO(WTfD)Gl(ﬁTfD’ \/6)1

/1rfD $pg(ép) (uﬁDo,m - f1(§D)> Ho(Vubp, Va)dép. (B.148)

Finally, the constant Bg is obtained by substituting Eq. B.148 into Eq. B.136 to obtain
M 1

Bg = : "
riDy/1U [K1(\/77_U7’fD)Ho(\/ﬂ7°fD7\/ﬂ)+%K0(\/77_“TfD>G1<\/arfD’\/a)

/1rfD &p9(€p) (uﬁDo,m - fl(fp)) Ho(Vuép, Vu)dép. (B.149)
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