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ABSTRACT

Yafes Abacioglu (Doctor of Philosophy in Petroleum Engineering)

The Use of Subspace Methods for EÆcient Conditioning of Reservoir Models to

Production Data

(116 pp.-Chapter V)

Co-Directed by Dr. Albert C. Reynolds and Dr. Dean S. Oliver

(357 words)

It has been shown previously that realizations of rock property �elds (simulator grid-

block log-permeabilities and porosities) conditional to production data can be ob-

tained by minimizing an objective function which includes a sum of production data

mismatch terms squared plus a regularization term obtained from a prior geostatisti-

cal model. It is also well known that minimization using the Gauss-Newton method

with restrictions on step length can be applied to generate such realizations. If one

wishes to simulate permeability and porosity values at thousands of gridblocks by

conditioning to large amounts of production data, then computation of sensitivity

coeÆcients, solution of the Gauss-Newton matrix problem and related matrix multi-

plications become computationally expensive. In order to reduce the computational

e�ort required for large-scale inversion with large amounts of data, it is necessary to

use a reparameterization technique. The purpose of this study is then to develop an

e�ective method of reparameterization for solving large-scale reservoir inverse prob-

lems with large amounts of production data using the subspace methodology.

Unlike other methods such as the pilot point method, the proposed param-

eterization in terms of gradients of sub-objective functions preserves the high rate of
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convergence of the conventional Gauss-Newton method (with the full parameteriza-

tion) while keeping the features of the resulting realizations. The product of the prior

model covariance matrix with gradients of the data sub-objective functions provides

a good set of subspace vectors for reservoir inverse problems. Partitioning the data

by well and then by time interval is an e�ective method of choosing subspace vectors.

Although computation of the optimal number of subspace vectors to main-

tain the fast convergence of the standard Gauss-Newton method may be expensive,

we show that it is desirable to start with a small number of subspace vectors and

gradually increase the number at each Gauss-Newton iteration until an acceptable

level of data mismatch is obtained.

An eÆcient implementation that uses an adjoint method to compute the

subspace vectors and the \gradient simulator" method to compute sensitivities to

coeÆcients of subspace vectors is described. These techniques eliminate the need of

forming the entire sensitivity matrix directly and more importantly make the pro-

posed subspace method applicable to multiphase problems.
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CHAPTER I

INTRODUCTION

Estimating heterogeneous rock property �elds is an important task in reser-

voir characterization and may have a dramatic e�ect on reservoir performance predic-

tions. Unfortunately, petroleum reservoirs are often inaccessible to direct sampling of

the spatial distributions of the reservoir parameters. However, pressure and/or pro-

duction data (dynamic data) from wells and static data (data from core analysis, well

logs, geology, seismic, etc.) are important sources of information for estimation. The

reservoir parameters can be inferred from static data and from matching the history

of pressure and production to those calculated by solving a mathematical model that

describes the physics of uid ow in porous media.

The mathematical model is usually too complex to be solved analytically.

Instead it is approximated by a \reservoir simulator", whose input is the physi-

cal description of the reservoir. The reservoir simulator used here is a single-phase

purely implicit seven-point �nite di�erence simulator, and the gridblock values of log-

permeabilities and porosities are referred to as the \model parameters." The process

of �nding a reservoir description by adjusting the model parameters in the reservoir

simulator, so that simulated pressure and production match the observed data is

referred to as \history matching" in petroleum engineering. This process is called

\calibration" in the groundwater hydrology �eld.

When considering the problem of the determination of gridblock values of

permeability and porosity from integration of static and dynamic data, it is necessary

to solve an \inverse problem," which is typically underdetermined, as the number of
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parameters to be estimated far exceeds the number of independent data. There-

fore, the reservoir description obtained as an inverse solution by history matching is

non-unique; i.e. there exist multiple descriptions of rock property �elds which will

reproduce the data with reasonable accuracy. As a result of non-uniqueness, we can

only expect to generate probabilistic answers to questions of reservoir performance.

Our approach to the inverse problem follows the philosophy of Tarantola

[53]; i.e., we use a Bayesian interpretation of probability and apply Bayes' theorem to

derive the a posteriori probability density function (pdf) for the model parameters.

This pdf is based on all information and data. Thus, samples of this pdf represent

realizations of the rock property �elds which honor all data in a statistical sense. All

such realizations represent solutions to the inverse problem. Once we have a suÆcient

number of realizations, we can draw conclusions about the statistics of the reservoir

description and, hence, the statistics of the reservoir performance. By simulating

from these realizations, instead of predicting only one future performance, one can

determine the variability in predictions and quantify the uncertainty in predicted

reservoir performance.

The maximum a posteriori estimate of the model parameters can be obtained

by minimizing a particular objective function, and a method proposed by Oliver et al.

[40] and Kitanidis [28] can be used to sample the a posteriori pdf. Here, the sampling

procedure given in Ref. [40] is referred to as the randomized maximum likelihood

(RML) method. RML method is technically correct only for the case where the data

are linearly related to the model; however, the results of Oliver et al. [40] suggest that

it generates approximately correct sampling of the a posteriori pdf in the nonlinear

case. In a recent study, Betancourt and Oliver [2] have shown that RML method

appears to do the best job of sampling among the approximate methods that they

compared.

If one wishes to generate realizations of permeability and porosity �elds

consisting of thousands of gridblocks by conditioning to large amounts of production
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data (e.g., permanent pressure gauge data), then computational eÆciency of the

inversion method becomes very important. In order to reduce the computational

e�ort required for large-scale inversion with large amounts of data, it is necessary

to use a reparameterization technique. The main objective of this study is then to

develop a practical procedure for reparameterization using the subspace methodology.

1.1 Automatic History Matching

History matching can be carried out either manually or automatically. The

method of classical history matching used most often in practice is manual trial and

error. The reservoir engineer, using experience and personal judgement, runs the

reservoir simulator several times with di�erent values of the parameters until a sat-

isfactory match is obtained. There are various reasons that make manual history

matching unattractive. Firstly, the method is recognized to be time-consuming. Sec-

ondly, it seldom honors all static data and usually results in a poor quality of the

history match. Thirdly, it leads to results of questionable quality when the resulting

reservoir description is used to predict future performance. Finally, it may not give

any characterization of uncertainty.

Automating the history matching process does not eliminate the need for

involvement of reservoir engineer's experience and skills. It is expected that partial

or fully automatic history matching will reduce cycle times to complete a simulation

study and enable history matching to be performed for large number of unknown pa-

rameters. Therefore, recently, the petroleum industry's interest in automatic history

matching has increased signi�cantly.

Automatic history matching is usually cast in the form of a minimization

problem. A so-called objective function which quanti�es the di�erence between the

observed data and the predictions of data computed from the model parameters is

minimized to compute the set of reservoir model parameters. Thus, it is impor-
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tant to choose an eÆcient optimization algorithm to minimize the objective function.

Non-gradient optimization algorithms such as simulated annealing (see, for example,

Ouenes et al. [41] and Vasco et al. [55]) have often been applied as minimization

methods because they are simple to implement. However, they require many thou-

sands of iterations to converge. Since at each iteration it is required to run the

reservoir simulator to evaluate the objective function, these methods are considered

as computationally ineÆcient. Nowadays, gradient based algorithms such as Gauss-

Newton method are becoming widely used for history matching because of their rapid

convergence properties.

Another consideration is that reservoir history matching problems are typ-

ically ill-posed; i.e. di�erent sets of reservoir parameter estimates may yield nearly

identical matches of data. Therefore, attempts to automate the history matching

process have been only partially successful. As discussed by Hadamard [17], a prob-

lem is ill-posed if the solution is not unique or if it is not a continuous function of the

data (i.e., a \small" perturbation of data causes an arbitrarily \large" perturbation of

the solution). Mathematically, the nonuniqueness in the history matching procedure

occurs because we do not have a suÆcient number of independent pressure data to

determine all reservoir parameters uniquely. Because the history matching problem

in a natural mathematical formulation is ill-posed, regularization is required in order

to obtain a meaningful solution [38]. However, depending on the regularization pro-

cedure, one can obtain di�erent solutions, i.e., di�erent history matches. Moreover,

in such a procedure, uncertainty in the resulting reservoir description cannot be easily

characterized.

Our approach for solving the inverse problem of history matching is based on

inverse problem theory [53] which provides a methodology to determine realizations

of rock property �elds that honor prior information when history matching pressure

and/or production data. The incorporation of prior information is important, because

additional independent data reduces the ill-posedness of the inverse problem and the
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uncertainty in the reservoir decriptions obtained. In our work, prior information is

incorporated in the form of a prior geostatistical model. We assume that this prior

geostatistical model is generated from all available data except production data. The

use of a prior geostatistical model acts as a regularization term.

1.2 Reparameterization Techniques

Field application of inverse problem techniques to capture the true com-

plexity of reservoir heterogeneity will require an increase in the size of the inverse

problem. A limit to the increase in the size of inverse problems is dictated by com-

puting power. The main computational diÆculties are forward modeling, calculation

of the sensitivity coeÆcients (gradients of the computed data with respect to the

model parameters) and performing the numerical linear algebra. Thus, an ideal in-

version methodology requires a minimum number of forward modeling computations,

a minimum amount of sensitivity information and an eÆcient procedure to perform

the numerical linear algebra. In this regard, reparameterization methods may have

some bene�ts in reducing the computational burden.

The basic idea of reparameterization techniques is that perturbations to the

model parameters (the permeability and porosity �elds), Æm, are expanded as a linear

combination of a relatively small number (NB) of basis vectors ai, i.e. Æm =
PNB

i=1 �iai

or Æm = A� where A is the matrix with ith column equal to the vector ai and � is a

vector of coeÆcients to be determined by the minimization of the objective function.

In this section, we present the methods that have been published in the literature to

reparameterize the reservoir model to improve the computational eÆciency.

The simplest reparameterization technique is known as the method of zona-

tion, in which the reservoir is divided into a relatively small number of zones over

which the parameter is assumed to have uniform values. Thus, a basis vector ai

corresponding a speci�c zone has entries equal to one for the gridblocks in that zone
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and zero for the other gridblocks. To the best of our knowledge Jacquard and Jain

[22] and Jahns [23] used the zonation approach �rst for history matching purposes.

A decade later, Gavalas et al. [13] and Shah et al. [52] showed that Bayesian history

matching approach gave better estimates of the true permeability and porosity �elds

than were obtained by zonation in a simulated case of a one-dimensional reservoir. In

a recent study, Bissell et al. [5] proposed a type of zonation in which gridblocks are

grouped together into sets what they call gradzones. They provided a procedure to

select gradzones based on the high sensitivity of various data with respect to param-

eters in each of the selected gridblocks. Although it is simple to apply zonation for

reservoir inverse problems, it is diÆcult to obtain a good data match because of the

small number of degrees of freedom. More importantly, any coarse zonation method

yields discontinuous reservoir properties at zonation boundaries.

Gavalas et al. [13], Oliver [39] and Reynolds et al. [48] have investigated

the use of eigenvectors associated with the largest eigenvalues of the covariance ma-

trix as basis vectors for reparameterization. In cases for which the eigenvalues decay

rapidly (such as the Gaussian covariance) this method was found to be highly e�ec-

tive in reducing the number of parameters. However, the bene�ts of this approach

seem limited since the most common variogram models (spherical and exponential)

for permeability and porosity have slowly decaying eigenvalues. Application of this

approach is also limited if the variogram includes a nugget. Reynolds et al. [48] gave

detailed discussion of this issue.

Shah et al. [52] proposed the use of the eigenvectors associated with the

largest eigenvalues of GTG as basis vectors. Here and in the rest of this dissertation,

G denotes the sensitivity coeÆcient matrix. Because the dimension of GTG is NM �

NM, where NM is the number of model parameters, computation of eigenvalues and

eigenvectors can clearly be expensive for large models.

The pilot point method of parameterization which perturbs reservoir proper-

ties only at selected pilot point locations to match the production data was originally
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proposed by de Marsily et al. [10] in the groundwater hydrology �eld. This is a

reduced parameterization whose basis vectors are simply the columns of the prior

covariance matrix corresponding to the pilot point locations. The pilot point method

has been applied to synthetic and �eld cases by several researchers [29, 47, 30, 16] in

the groundwater hydrology �eld. In recent years, some researchers [59, 56, 4, 50] have

adapted the same idea to history matching. The drawback of this method is that,

however, it can result in overshoot at the pilot point locations (see, for example, Xue

and Datta-Gupta [59]).

In the geophysical literature, Kennett and Williamson [26], Oldenburg and

others [36, 37] suggested parameterizations based on subdividing the objective func-

tion. Reynolds et al. [48] applied this technique to history matching.

1.3 Scope

To quantify uncertainty in future reservoir performance and optimize reser-

voir management, it is required to have computationally eÆcient automatic history-

matching techniques that can accommodate both static and dynamic data for gen-

erating plausible reservoir models. In this study, we describe an eÆcient method of

history-matching in which changes to the reservoir model are constructed from a lim-

ited set of basis vectors. The purpose of this reparameterization is to reduce the cost

of a Gauss-Newton iteration, without altering the �nal estimate of model parameters

and without substantially slowing the rate of convergence. The utility of a subspace

method depends on several factors, including the choice and number of the subspace

vectors to be used. Computational gains in eÆciency result partly from a reduction

in the size of the matrix system that must be solved in a Gauss-Newton iteration.

More important contributions, however, result from a reduction in the number of

sensitivity coeÆcients that must be computed, reduction in the dimensions of the

matrices that must be multiplied, and elimination of matrix products involving the
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inverse of the prior model covariance matrix. These factors a�ect the eÆciency of

each Gauss-Newton iteration. Although computation of the optimal set of subspace

vectors may be expensive, we show that the rate of convergence and the �nal results

strongly depend on the number of subspace vectors but they are somewhat insensitive

to the choice of subspace vectors. We also show that it is desirable to start with a

small number of subspace vectors and gradually increase the number at each Gauss-

Newton iteration until an acceptable level of data mismatch is obtained. However, the

process of increasing the number of subspace vectors at each Gauss-Newton iteration

makes the minimization process more unstable. We use the Levenberg-Marquardt

method with optimal selection of damping factor to resolve this problem.

In this study, we consider the problem of generating the maximum a pos-

teriori (MAP) estimates and realizations of log-permeability and porosity �elds con-

ditioned to pressure data for only single-phase ow for both two-dimensional and

three-dimensional cases. However, the subspace methodology developed in this study

should be applicable to multiphase ow problems.

The dissertation is structured as follows. In Chapter II, we present Bayes'

theorem to derive the objective function and discuss the methods to minimize the

objective function. In Chapter III, we present the equations for the computational

implementation of the subspace method and discuss several aspects related with the

methodology. In Chapter IV, we present the computational examples. Finally, Chap-

ter V presents the conclusions of this study.



CHAPTER II

BAYESIAN INVERSION

Our objective is to derive the a posteriori probability density function (pdf)

which represents the solution of the inverse problem, and to generate a set of real-

izations of the model parameters which represents a sampling of this pdf. We use

a Bayesian interpretation of probability and apply Bayes' theorem to derive the a

posteriori pdf for the model parameters.

M denotes the random vector of model parameters, with speci�c realiza-

tions denoted by m. We assume that the prior model for the rock property �elds is

multivariate Gaussian, characterized by means and covariances (arising from a speci-

�ed variogram) with permeability assumed to be log-normal, porosity assumed to be

normal with correlation between log-permeability and porosity determined by speci-

fying a correlation coeÆcient. Cross covariances are modeled by using the \screening

hypothesis" of Xu et al. [58] which implies that the variograms for porosity and

log-permeability are of the same type, and have identical ranges, but di�erent sills

(variances).

2.1 Bayes Estimation Theory

Bayes' theorem is applied to update prior uncertain knowledge on parameters

by conditioning the parameters to new data that have become available. For our

purpose, Bayes' theorem can be expressed as

pM jD (mjd) =
pDjM (djm) pM(m)

pD(d)
: (2.1)

9
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Thus, the prior pdf pM(m) of the model parameters is updated according to Eq. 2.1

to obtain the a posteriori pdf pM jD (mjd) of the model parameters, given the data,

d. The two ingredients needed for the update are pDjM (djm), called the likelihood

function, and pD(d) which is a scaling constant in our estimation problem since it

does not depend on the model parameters.

Based on our assumption of a multinormal distribution, the prior distribution

has a probability relation

pM(m) / exp

�
�
1

2
(m�mp)

T C�1
M (m�mp)

�
; (2.2)

where mp is the vector containing the estimates of the prior means of the model

parameters and CM is the prior covariance matrix. We let d be a data vector where

the relationship between the data and the model m is given by

d = g(m); (2.3)

and let D denote the random data vector (D is a random vector because M is ran-

dom). In our application, d contains calculated wellbore pressures obtained from the

model using the reservoir simulator. The functional relationship of Eq. 2.3 represents

the e�ect of generating d from our reservoir simulator.

For a given set of data, dobs, the likelihood function for the model is given

by the following equation

pDjM (dobsjm) / exp

�
�
1

2
(g(m)� dobs)

T C�1
D (g(m)� dobs)

�
: (2.4)

In Eq. 2.4, dobs refers to the vector of observed or measured wellbore pressures. We

model measurement errors as independent identically distributed Gaussian random

variables with zero mean and variance �2d. Thus, the covariance matrix for the mea-

surement errors is a diagonal matrix CD with all diagonal entries equal to �2d.

Using Eqs. 2.2 and 2.4 in Eq. 2.1, the a posteriori probability density function
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is obtained as

pM jD (mjdobs) = a exp
h
�

1

2
(m�mp)

T C�1
M (m�mp)

�
1

2
(g(m)� dobs)

T C�1
D (g(m)� dobs)

i
; (2.5)

where a simply denotes a generic normalizing constant which ensures that pdf inte-

grates to one.

The most probable model, referred to as the maximum a posteriori estimate

(MAP), is the one that maximizes Eq. 2.5, or equivalently, minimizes the objective

function

O(m) =
1

2
(m�mp)

T C�1
M (m�mp) +

1

2
(g(m)� dobs)

T C�1
D (g(m)� dobs) : (2.6)

Realizations of rock property �elds conditioned to pressure data can be gen-

erated by sampling the a posteriori pdf using the procedure suggested by Oliver et

al. [40] and Kitanidis [28]. In this procedure, mp is replaced by an unconditional

simulation, muc, of m from the prior model and dobs is replaced by an unconditional

simulation of the pressure data, duc, in Eq. 2.6. Thus, Eq. 2.6 is replaced by

O(m) =
1

2

�
m�muc

�T
C�1
M

�
m�muc

�
+
1

2

�
g(m)� duc

�T
C�1
D

�
g(m)� duc

�
: (2.7)

This procedure is referred to as Randomized Maximum Likelihood (RML) method. In

the remainder of the dissertation, the equations are presented in terms of generating

realizations using the RML method.

2.2 Minimization of the Objective Function

In the previous section, we have shown that history-matching realizations of

a stochastic model to nonlinear data can be formulated as an optimization problem;

i.e. we de�ned automatic history matching as the process of minimizing the objective

function of Eq. 2.7 by means of an optimization algorithm. Then, the objective
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becomes to �nd a solution using the most eÆcient algorithm. In other words, we

wish to use an algorithm which converges to a solution as quickly as possible.

The optimization algorithms can be classi�ed depending on whether they

use gradient information or not. The most commonly used non-gradient algorithms

for reservoir description problems are simulated annealing [41, 55], genetic algorithms

[51], Monte Carlo methods [54, 21] and neural networks [42]. These methods seem to

be attractive because they are simple to implement and do not require the computa-

tion of gradients of the objective function or data. However, they are very expensive in

terms of computation since they require the value of the objective function at a large

number of points in the parameter space. This issue becomes very important when

objective function evaluations involve the use of a reservoir simulator. On the other

hand, gradient methods require the gradient of the objective function or sensitivity

coeÆcients. This additional gradient information reduces the number of objective

function evaluations and makes gradient methods converge much more rapidly, espe-

cially in the neighborhood of a minimum. The well-known gradient algorithms are

steepest descent, conjugate gradients, Newton's method, the Gauss-Newton method

and the quasi-Newton method (variable-metric method).

Gradient methods that do not require computation of data sensitivities or

the Hessian matrix are standard for solving large unconstrained minimization prob-

lems. Jahns [23], Chen et al. [8] and others have used conjugate gradient or steepest

decent for history matching. While the computational requirement for each itera-

tion is relatively low, the number of iterations required can be large, especially for

multiphase ow problems [34]. In a recent study done at the University of Tulsa,

Kalita [25] investigated the use of the conjugate gradient method as an alternative

to commonly used Gauss-Newton method with restricted-step. He considered the

problem of generating the maximum a posteriori estimates and realizations of log-

permeability and porosity �elds conditioned to pressure data for single-phase ow

of gas for both two-dimensional and three-dimensional cases. In most cases he con-
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sidered, the Gauss-Newton method required far fewer iterations than the conjugate

gradient algorithm to obtain convergence. He concluded that even though one iter-

ation in Gauss-Newton is much more time consuming than one conjugate gradient

iteration, the high number of iterations required in conjugate gradient pose a threat

to its implementation in the current form for a large scale problem. Quasi-Newton

or variable-metric mehods have some of the convergence properties of Gauss-Newton

without the need to compute the Hessian. In this method, the algorithm computes

an approximate Hessian which is updated after each iteration based on the change

in the gradient of the objective function. Yang et al. [60] investigated the use of two

variable-metric methods { the Broyden/Fletcher/Goldfarb/Shanno (BFGS) method

and a self-scaling variable-metric (SSVM) method { for hypothetical two-phase reser-

voir history-matching problems. Both methods yielded accurate results with less

computer e�ort than the steepest decent method. Deschamps et al. [11] performed

a similar study in which various combinations of Gauss-Newton, quasi-Newton and

steepest descent were compared. They concluded that the hybrid methods combining

steepest descent with Gauss-Newton were most eÆcient for the relatively small prob-

lems and that quasi-Newton methods would be required for large practical problems.

In this work we use Gauss-Newton and Levenberg-Marquardt algorithms for

minimization of the objective function. The Levenberg-Marquardt algorithm can be

thought of as a modi�cation of the Gauss-Newton algorithm. These algorithms will

be respectively explained in detail in the following two sub-sections.

2.2.1 Gauss-Newton Method

Newton's method can be derived for minimizing the objective function of

Eq. 2.7 using the second-order approximation to the objective function using the

Taylor-series expansion about ml, i.e.,

O(ml + Æm) � ql(Æm) = O(ml) +rO(ml)T Æm +
1

2
ÆmTHlÆm; (2.8)
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where Æm = m � ml; Hl is the Hessian matrix (second derivative of the objective

function) and ql(Æm) is the resulting quadratic approximation for iteration l. Then

the lth iteration of Newton's method can be written

H(ml)Æml = �rO(ml); (2.9)

and the iterate ml+1 is obtained by

ml+1 = ml + Æml; (2.10)

where the correction Æml minimizes ql(Æm), i.e. Æml is de�ned by the condition that

rql(Æml) = 0.

In Eq. 2.9, it is necessary to compute the gradient and the Hessian of the

objective function. Using the basic vector calculus, the gradient of the objective

function (Eq. 2.7) is obtained as

rO(ml) = C�1
M (ml �muc) +GT

l C
�1
D

�
g(ml)� duc

�
; (2.11)

and the Hessian matrix of O(ml) is obtained as

H(ml) = r[(rO(ml))T ] = C�1
M +GT

l C
�1
D Gl + (rGT

l )C
�1
D

�
g(ml)� duc

�
: (2.12)

However, in the Gauss-Newton algorithm, the Hessian matrix of Eq. 2.12 is approxi-

mated by

H(ml) �= C�1
M +GT

l C
�1
D Gl; (2.13)

where G, is the gradient of the computed data with respect to the model parameters;

i.e. Gl = (rgT)T evaluated at ml. Substituting Eqs. 2.11 and 2.13 into Eq. 2.9 gives

the Gauss-Newton equation, i.e.

�
C�1
M +GT

l C
�1
D Gl

�
Æml = �C�1

M (ml �muc)�GT
l C

�1
D

�
g(ml)� duc

�
: (2.14)



15

Determination of Æml using Eq. 2.14 requires the solution of a system of NM equations

where NM is the number of model parameters. An alternative formulation of the

Gauss-Newton equation,

Æml = (muc �ml)� CMG
T
l

�
CD +GlCMG

T
l

��1�
g(m)� duc �Gl(m

l �muc)
�
; (2.15)

can be obtained from the Sherman-Morrison-Woodbury matrix inversion formula [14,

18]. A historical survey of the Sherman-Morrison-Woodbury formulas is given by

Hager [18] in the literature. This alternative formulation of Eq. 2.15 has an inverse

matrix on the right side which has a dimension of ND�ND where ND is the number

of conditioning data. We generally have ND < NM , thus Eq. 2.15 will normally be

more eÆcient. If there are relatively few data (ND is small), an expansion of this

form can be an eÆcient form of solution. The problem is considerably more diÆcult

when both ND and NM are large. In this case, the standard Gauss-Newton approach

is generally too expensive to use for minimization.

2.2.2 Levenberg-Marquardt Method

Reynolds and Oliver and their coworkers (see, for example, [20, 48]) have used

the restricted-step procedure [12] in the Gauss-Newton method to control the step

size at each iteration of minimization. In some of their applications of conventional

Bayesian inversion, they found that using the Gauss-Newton method with restricted-

step gives a rough model at the �rst iteration and the roughness does not go away at

the later iterations [57]. In such cases, the Gauss-Newton method converges to a local

minimum which yields a rough model. Similarly, in our applications of the subspace

method where we start with a small number of subspace vectors in the early iterations

and gradually increase the number of subspace vectors as needed, the addition of new

subspace vectors usually resulted in abrupt increase in the model roughness at the

next iteration. Again, the Gauss-Newton method may converge to a local minimum

with a rough model. This problem can be avoided using the ideas due to Levenberg
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[32] and Marquardt [35]. We implement the Levenberg-Marquardt algorithm in a

slightly non-standard way. Instead of adding a diagonal matrix, �I (I is an identity

matrix) to the Hessian, we multiplied the inverse of the model covariance by a factor

of 1 + � in the Hessian. Thus, the Levenberg-Marquardt equation is obtained by

modifying the Gauss-Newton iteration (Eq. 2.14) to

�
(1 + �)C�1

M +GT
l C

�1
D Gl

�
Æml = �C�1

M (ml �muc)�GT
l C

�1
D

�
g(ml)� duc

�
; (2.16)

where � is a positive number. Similar to the Gauss-Newton equation (Eq. 2.15), an

alternative formulation can be obtained as

Æml = �
ml �muc

1 + �
+ CMG

T
l

�
(1 + �)CD +GlCMG

T
l

��1
nGl(m

l �muc)

1 + �
�
�
g(ml)� duc

�o
: (2.17)

A detailed derivation of Eq. 2.17 can be found in Ref. [3]. The question with the

Levenberg-Marquardt method is how to choose and update �. There are several

algorithms developed to solve this problem. The most commonly used one is Mar-

quardt's method. In this method, initially a small positive value is taken for �.

However, in our applications, we use a larger starting value of � to make the model

change smoother from the beginning of the algorithm. The parameter � is divided

by a factor after each successful iteration, and is multiplied by the factor if the new

parameter leads to an increased value of the objective function, i.e., if an unsuccessful

step was proposed. If � is very large, a step in the direction �CMrO is performed.

A lambda value of zero is equivalent to a Gauss-Newton step. The former is robust

but ineÆcient, the latter has a quadratic convergence rate near the minimum but

may lead to unsuccessful steps. The parameter � therefore determines how fast the

step size and step direction changes from steepest descent to Gauss-Newton and vice

versa.
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SUBSPACE METHODOLOGY

Subspace methods reduce the size of the matrix problem that must be solved

at each iteration of the Gauss-Newton method. In a subspace method, the search

direction vector is expanded as a linear combination of basis vectors for a lower

dimensional subspace of the model space. The order of the matrix problem to be

solved at each iteration of the Gauss-Newton procedure is thereby reduced to the

dimension of the subspace. In section 3.1, the computational scheme for the subspace

method is presented.

As addressed previously by Oldenburg et al. [36] the success or failure of

a subspace method depends on the selection of the subspace vectors. Thus, the

questions of \which type" and \how many" must be answered if the subspace method

is to be applied successfully. In section 3.2, we show that there is an optimal number

of basis vectors such that the convergence of the Gauss-Newton method is una�ected

by the reparameterization. Unfortunately, computation of the optimal set of basis

vectors requires computation of eigenvalues of a large matrix which will normally

be too expensive to be practical. Considering the choice of subspace vectors, we

use a procedure for partitioning the data mismatch of the objective function into

sub-objective functions to form the subspace vectors. This procedure, which will be

explained in section 3.3, does not give the optimal number of subspace vectors. To

overcome the problem of the need to know optimal number of subspace vectors in

advance, we use a new technique in which the Gauss-Newton algorithm is started

with a few subspace vectors at early iterations and the number of subspace vectors is

gradually increased at each Gauss-Newton iteration until an acceptable level of data

17
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mismatch is obtained. When we �rst attempted to use this technique, we were not

successful because of addition of new subspace vectors often resulted in an increase

in the model roughness at the next iteration. This problem was resolved by using

the implementation of the Levenberg-Marquardt method with optimal selection of

damping factor which is explained in section 3.4.

E�ective implementation of a subspace method to generate realizations of

rock property �elds conditioned to large amounts of production data and geostatis-

tical information will also require an eÆcient way to generate sensitivity coeÆcients.

In Ref. [48], a modi�ed generalized pulse spectrum technique (MGPST) is used to

generate sensitivity coeÆcients. Even though this technique is quite eÆcient, it does

not yield good estimates of the sensitivity coeÆcients related to the porosity �eld.

Thus, in Ref. [19], a procedure introduced by Carter et al. [6] was extended to

generate eÆciently sensitivity coeÆcients related to three-dimensional permeability

and porosity �elds. The drawback of this method is that it is applicable only for

single-phase ow problems. Ref. [57] contains a recent review of the methods for

calculating sensitivity coeÆcients. In sections 3.5 and 3.6, we show that the adjoint

method can be used to compute the subspace vectors and the \gradient simulator"

method can be implemented to compute sensitivity to coeÆcients of the subspace

vectors. These techniques will eliminate the need to form the entire sensitivity ma-

trix directly. In other words, these techniques will require only 2(NB � 1) (NB is

the number of subspace vectors) simulation runs for the sensitivity calculations at

each iteration (compared to ND for the conventional approach). More importantly,

the use of these techniques will make the proposed subspace method applicable to

multiphase ow problems.

Finally, in section 3.7, we summarize the recommended procedure for use of

subspace vectors in history matching.
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3.1 Computational Scheme

The basic idea of the subspace procedure is that at the lth iteration of the

Gauss-Newton method, one can approximate the search direction Æml as a linear

combination of a relatively small number of subspace vectors, which are denoted

as alj, j = 1; 2; : : : ; NB, without signi�cantly changing the Æml obtained in solving

Eq. 2.14. The change in the model estimate or search direction vector at the lth

iteration of the Gauss-Newton method is then written as

Æml =

NBX
j=1

�l
ja

l
j = Al�

l; (3.1)

where Al is the matrix with jth column equal to the column vector alj, i.e.

Al =
�
al1; a

l
2; : : : ; a

l
NB

�
; (3.2)

and

�l =
�
�l
1; �

l
2; : : : ; �

l
NB

�T
: (3.3)

Note that �l
js are scalars and the superscript l is used to indicate that the subspace

and its basis vectors are recomputed at each iteration of the Gauss-Newton method.

Using Eq. 3.1 in Eq. 2.9 and multiplying the resulting equation by the trans-

pose of Al gives

�
AT
l HlAl

�
�l = �AT

l rOl: (3.4)

Substituting Eqs. 2.11 and 2.13 into Eq. 3.4 gives

�
AT
l (C

�1
M +GT

l C
�1
D Gl)Al

�
�l = AT

l [�C
�1
M (ml �muc)�GT

l C
�1
D

�
g(ml)� duc

�
]: (3.5)

The actual set of subspace vectors used at the lth iteration is de�ned by

alj = CMb
l
j; (3.6)
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j = 1; 2; : : : ; NB, where the bljs are de�ned in subsection 3.3.1. De�ning Bl as the

NM �NB matrix with jth column given by blj, it follows that

Al = CMBl: (3.7)

Then Eq. 3.1 becomes

Æml = Al�
l = CMBl�

l: (3.8)

Substituting Eq. 3.8 into Eq. 3.5 gives

(CMBl)
T (C�1

M +GT
l C

�1
D Gl)(CMBl)�

l

= (CMBl)
T [�C�1

M (ml �muc)�GT
l C

�1
D

�
g(ml)� duc

�
]; (3.9)

or

�
BT
l CMBl + (GlCMBl)

TC�1
D (GlCMBl)

�
�l

= �BT
l (m

l �muc)�
�
GlCMBl

�T
C�1
D

�
g(ml)� duc

�
; (3.10)

which forms the computational scheme for the subspace method and can be solved

for �l. Once �l is obtained, Æml can be computed from Eq. 3.8. The primary

computational advantage of Eq. 3.10 is that it avoids inversion of CM (or the solution

of linear systems with CM as the coeÆcient matrix). Note that it is still necessary to

evaluate the product (m�muc)
TC�1

M (m�muc) in the objective function, to determine

whether or not to stop iterating. We use a diagonal approximation to the covariance

in this case without a�ecting the results signi�cantly. The same approximation is

used in the restricted-step procedure when we need to evaluate the objective function;

however, inversion of CM is eliminated when we evaluate the Hessian for the subspace

method. Also, the matrix problem of Eq. 3.10 is an NB � NB problem, whereas the

original Hessian isNM�NM ; see Eqs. 2.9 and Eq. 2.13. Another advantage of Eq. 3.10

is that the product GlCMBl can be calculated fairly eÆciently using the \gradient

simulator" method.



21

3.2 The \Ideal" Reduced Basis

In the Bayesian framework for solving inverse problems, the solution is based

on a tradeo� between honoring the observations and closeness to the prior model

estimate. It is possible to show in this case that there is an optimal number of basis

vectors such that the convergence of the Gauss-Newton method is una�ected by the

reparameterization.

Let CM = LLT be a square-root decomposition of the model covariance

matrix which has a dimension of NM � NM and de�ne a dimensionless vector of

model corrections

� = L�1Æm: (3.11)

The Gauss-Newton equation for estimation of � is

LT
�
C�1
M +GTC�1

D G
�
L� = �LTrO;�

I + LTGTC�1
D GL

�
� = �LTrO;�

I + U�UT
�
� = �LTrO;

(3.12)

where U�UT is the Schur decomposition of LTGTC�1
D GL. � is a diagonal matrix of

eigenvalues, which are ordered such that �i � �i+1 and U is orthogonal. UUT = I so

U(I + �)UT� = �LTrO: (3.13)

The solution of this equation is clearly

� = �U(I + �)�1UTLTrO; (3.14)

or

� = �U

2
6666664

1=(1 + �1) 0

1=(1 + �2)
. . .

0 1=(1 + �NM
)

3
7777775
UTLTrO: (3.15)
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Suppose that only the �rst p of the eigenvalues are greater than 0.1. Then

� � �U

2
6666666666664

1=(1 + �1) 0
. . .

1=(1 + �p)

1
. . .

0 1

3
7777777777775
UTLTrO

� �U

0
BBBBBBBBBBBB@
I �

2
6666666666664

�1=(1 + �1) 0
. . .

�p=(1 + �p)

0
. . .

0 0

3
7777777777775

1
CCCCCCCCCCCCA
UTLTrO:

(3.16)

Note again that UUT = I so

� � �

0
BBBBBBBBBBBB@
I � U

2
6666666666664

�1=(1 + �1) 0
. . .

�p=(1 + �p)

0
. . .

0 0

3
7777777777775
UT

1
CCCCCCCCCCCCA
LTrO: (3.17)

De�ning Up as the matrix with columns equal to the eigenvectors of L
TGTC�1

D GL as-

sociated with the p eigenvalues whose magnitudes are of order 0.1 or greater, Eq. 3.17
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can be written as

� � �

0
BBB@I � Up

2
6664
�1=(1 + �1) 0

. . .

0 �p=(1 + �p)

3
7775UT

p

1
CCCALTrO

� �

�
I �

pX
k=1

�k
�k + 1

UkU
T
k

�
LTrO;

(3.18)

where Uk is the kth column of U . Substituting the �nal term of Eq. 3.18 into Eq. 3.11

to obtain Æm gives

Æm � �L

�
I �

pX
k=1

�k
�k + 1

UkU
T
k

�
LTrO

� �CMrO +

pX
k=1

LUk

�
�k

�k + 1
UT
k L

TrO

�
:

(3.19)

Hence, we can say that a good approximation to Æm can be constructed from the

columns of LUp. Thus, a decomposition of this form would provide an optimal number

of subspace vectors to use, and an optimal set in the sense that the vectors that are

not used would not contribute to the solution. Unfortunately, computation of this

set of basis vectors is probably too expensive to be practical.

3.3 Choice and Number of Subspace Vectors

The e�ectiveness of the subspace methodology strongly depends on a ju-

dicious choice of subspace vectors. In the previous section, we have shown that the

Schur decomposition of LTGTC�1
D GL provides a way to determine an optimal number

of subspace vectors. As we noted, decomposition of this matrix is too computation-

ally ineÆcient to be practical. By making the number of subspace vectors small, the

size of the system to be solved can be signi�cantly reduced. However, if too few basis

vectors are used or if the basis vectors are poorly chosen, it seems intuitive that the

convergence rate will be a�ected. On the other hand, the total computational e�ort
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is more important than the number of Gauss-Newton iterations so it is necessary

to investigate the tradeo� between the number and choice of subspace vectors and

convergence rate. In Chapter IV, we will illustrate the e�ect of various choices of

basis vectors with two- and three-dimensional single-phase reservoir models.

In some cases, an improper choice of subspace vectors can result in visible

artifacts. This is most noticeable with methods like pilot point. When a good set

of subspace vectors are chosen, the di�erences should be imperceptible. Refs. [36],

[26] and [37] provide several procedures for choosing subspace vectors. The simplest

choice is to use one subspace vector (gradient of the objective function). This choice

makes the subspace method equal to the method of steepest decent which is known to

be ineÆcient. On the other hand, subspace vectors associated with gradients of the

pressure data mismatch and the model mismatch parts of the objective function of

Eq. 2.7 can be used to form a two-dimensional subspace; however, this choice is also

too simple to yield a rapidly converging algoritm. In this study, we use the product

of the prior covariance matrix with gradients of the sub-objective functions as set of

subspace vectors.

3.3.1 Partitioning of the Objective Function

Based on the ideas of Kennett and Williamson [26], Oldenburg et al. [36]

and Oldenburg and Li [37], we partition the total objective function into a term that

arises from model roughness and distance from the prior model and a term that arises

from pressure data mismatch for the problem of conditioning rock property �elds to

transient pressure data. The two partial objective functions are

OM(m) =
1

2

�
m�muc

�T
C�1
M

�
m�muc

�
; (3.20)

and

OD(m) =
1

2

�
g(m)� duc

�T
C�1
D

�
g(m)� duc

�
: (3.21)
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The data mismatch objective function can be further partitioned as

OD(m) =
X
k

Ok
D(m); (3.22)

where

Ok
D(m) =

1

2

�
gk(m)� dkuc

�T
[Ck

D]
�1
�
gk(m)� dkuc

�
; (3.23)

dkuc is the kth set of unconditional simulation of data, and Ck
D is the data covariance

matrix for the kth set of data. Here we have assumed that the measurement errors

are either independent (in which case CD is diagonal), or that the partitioning is done

in such a way that data with correlated measurement errors are included in the same

group. Note also that the partitioning is carried out �rst by well and then by time

interval. Data from di�erent wells are never grouped together.

The gradients of these sub-objective functions are given by

rOM(m) = C�1
M (m�muc); (3.24)

and

rOk
D(m) = GT

k [C
k
D]

�1
�
gk(m)� dkuc

�
: (3.25)

This procedure is done at each iteration of the Gauss-Newton algorithm but, for now,

we have deleted the iteration index l from the notation. One set of subspace vectors

is formed by multiplying rOM by CM and then partitioning the resulting vector into

two parts (one vector for porosity and one for permeability), i.e.

w1 =

2
4m� �muc;�

0

3
5 ; (3.26)

and

w2 =

2
4 0

mk �muc;k

3
5 ; (3.27)
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where, m� is the N -dimensional column vector of gridblock porosities and mk is the

N -dimensional column vector of gridblock log-permeabilities; muc;� and muc;k are the

corresponding vector of unconditional realizations for these attributes. Here, N is

the total number of gridblocks.

The gradients of the data sub-objective functions (Eqs. 3.25) give vectors of

the form

w2+k = GT
k [C

k
D]

�1
�
gk(m)� dkuc

�
: (3.28)

The set of all ws de�ned in Eqs. 3.26, 3.27 and 3.28 are now used to form an NM�NB

matrixW whereNB is the number ofw vectors used. These vectors, which are referred

as pre-basis or pre-subspace vectors, are now denoted by wl
j, j = 1; 2; : : : ; NB where l

refers to the Gauss-Newton iteration index. Thus, at the lth iteration, the NM �NB

matrix of pre-subspace vectors is given by

Wl =
�
wl
1; w

l
2; : : : ; w

l
NB

�
: (3.29)

It is possible that the pre-subspace vectors of Eq. 3.29 may not be linearly indepen-

dent, and if they are not, direct application of the subspace procedure would yield an

ill-conditioned matrix problem. To ensure the pre-subspace vectors used are linearly

independent and have similar magnitudes, one can apply a Gram-Schmidt procedure

[26, 48], but this procedure su�ers from the accumulation of round-o� error if the

number of subspace vectors is large. Thus, we compute a singular value decomposi-

tion (or QR decomposition) of the matrixWl to obtain orthonormal vectors. Singular

value decomposition of the matrix Wl is given by

Wl = BlSlV
T
l ; (3.30)

where Bl is an NM�NB column-orthogonal matrix; Sl is an NB�NB diagonal matrix

of singular values and V T
l is the transpose of an NB�NB orthogonal matrix Vl. Then,

we multiply the matrix Bl by CM to create the basis vectors, i.e.

Al = CMBl: (3.31)



27

The gradients of the partitioned data objective function clearly provide a

useful set of basis vectors for minimization. If all of the data are grouped together

to generate a single basis vector the method is equivalent to steepest decent. At the

other extreme, the Gauss-Newton equation (Eq. 2.15) can be written in such a way

that the basis vectors are the columns of CMG
T, i.e.

Æml = (muc �ml)�

NDX
i=1

�
CMG

T
l

�
i
�i: (3.32)

This is exactly the basis that would be obtained if each set of data were to include only

one measurement. Hence this method of selecting basis vectors satis�es the suggestion

of Parker [43] that a good depleted basis should at least be capable of approaching

the true optimal solution if enough basis functions are used. The second conclusion

that can be drawn from this comparison is that it is desirable to premultiply the

gradients of the partial objective functions by the prior covariance matrix to generate

subspace vectors for the expansion of Æml. Even though Eq. 3.32 suggests that we

should multiply the vectors arising from rOM by CM once, we multiply them twice.

By doing so we eliminate need of C�1
M without a�ecting the results substantially.

3.4 Levenberg-Marquardt Method with Optimal Selection of �

As we explained earlier, it is computationally ineÆcient to determine the

optimal number of subspace vectors in advance. To eliminate the need to know the

optimal number in advance, we use an eÆcient strategy in which we begin with a small

number of subspace vectors in the early iterations of minimization by grouping more

data together to generate the data sub-objective functions and gradually increase the

number of subspace vectors (i.e., partition the data mismatch objective function into

more groups) at subsequent iterations. Gauss-Newton method did not work well in

this case because the addition of new subspace vectors resulted in an increase in the

model roughness at the next iteration. An increase in the model roughness makes
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the minimization process unstable. As an alternative to Gauss-Newton method, the

standard Levenberg-Marquardt algorithm (explained in subsection 2.2.2) can be used.

In the subspace parameterization, the Levenberg-Marquardt equation is obtained

from Eq. 3.10

�
(1 + �)BT

l CMBl + (GlCMBl)
TC�1

D (GlCMBl)
�
�l

= �BT
l (m

l �muc)�
�
GlCMBl

�T
C�1
D

�
g(ml)� duc

�
: (3.33)

Similar to the Gauss-Newton method, the standard Levenberg-Marquardt

method did not work well in our application of the subspace method because the pa-

rameters (initial �, growth and decay factors of �) required for eÆcient convergence of

the Levenberg-Marquardt algorithm were problem dependent and diÆcult to deter-

mine without much experimentation. Thus, we sought a more robust implementation

of the Levenberg-Marquardt algorithm. In this implementation, we search for the

Levenberg-Marquardt damping factor � that gives the minimum of data mismatch

with a smooth model. More speci�cally, at each Levenberg-Marquardt iteration we

perform a one-dimensional search for the value of � that minimizes

OF = OD + iOM; (3.34)

where OD is the data mismatch objective function, i.e.

OD =
1

2

�
g(m)� duc

�T
C�1
D

�
g(m)� duc

�
; (3.35)

OM is the regularization or smoothing term, i.e.

OM =
1

2

�
m�muc

�T
C�1
M

�
m�muc

�
; (3.36)

and i is the weighting factor for the regularization or smoothing term. We use the

weighting since at early Levenberg-Marquardt iterations OD is extremely large and

the e�ect of the regularization term or smoothing term is little, i.e. much smaller

than OD. We chose to base the magnitude of the weighting factor for regularization
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or model mismatch term on the magnitude of the data mismatch so that the e�ect

of the data mismatch term is reduced. In the ith Levenberg-Marquardt iteration, we

de�ne

i = max[1; Oi�1
D =(8ND)]; (3.37)

where Oi�1
D denotes the value of the data mismatch objective function (Eq. 3.35) at

the previous Levenberg-Marquardt iteration. Motivation for this choice of weighting

is as follows; based on the chi-squared assumption, OD is expected to be on the

order of ND=2. The variance of the chi-squared distribution is ND. We want the

OD term to be limited to being a few standard deviations from the mean. Thus,

we apply this weighting factor which reduces the magnitude of the data mismatch

term when it is far outside the normal range. Even though the choice of weighting

factor or more speci�cally 8ND is ad hoc, i goes to one as the data mismatch, OD, is

reduced so that the correct objective function is minimized. This procedure has some

features in common with the recommendations of Levenberg [32] who proposed using

a Newton-like method to estimate the best value of � that minimizes the objective

function at each iteration. The primary di�erence is that we modify the objective

function for minimization depending on the magnitude of the data mismatch. At

every iteration of Levenberg-Marquardt minimization, we need to search for the �

that minimizes the total objective function of Eq. 3.34. For this one-dimensional

minimization problem, we tried both the Golden Section search method and the

parabolic interpolations of Brent's method as described in Numerical Recipes [46].

Neither of these methods require the calculation of derivatives. In the following two

sub-sections we will briey explain these methods. Detailed information about these

methods can be found in Numerical Recipes [46]. We assume that the optimal value of

� is bracketed by 10log(i)�3:5 and 10log(i)+3:5. For each trial value of �, we must solve

the system of equations in Eq. 3.33, update the model and evaluate the objective

function of Eq. 3.34 again using the diagonal of CM . Evaluation of the objective
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function requires one solution of the forward problem (one simulation run).

3.4.1 Golden Section Search

This method simply describes the successive bracketing of a minimum of a

function f to provide an improved guess for the real value of the minimum.

A minimum is bracketed when there is a triplet of points, a < b < c, such

that f(b) is less than both f(a) and f(c). In this case, the function has a minimum

in the interval (a; c). The bracketing can be successively improved by performing the

following steps.

- Evaluate f at some new point x in the larger of the two intervals (a; b) or

(b; c). Suppose we choose (b; c) to be speci�c.

- If f(b) > f(x) then x replaces the midpoint b, and b becomes an end point,

then, the new bracketing of triplet is b < x < c.

- If f(b) < f(x) then b remains the midpoint with x replacing the end point,

i.e. the new bracketing triplet of points is a < b < x.

Either way the width of the bracketing interval will reduce and the position

of the minima will be better de�ned. This process is repeated until the distance

between the two outer points becomes suÆciently small (i.e., approaches some set

limit, TOL).

An important question remains to be answered is how to choose the new

point x each time. Suppose that b is some fraction w of the distance between a and

c then w = (b� a)=(c� a), and, consequently, 1� w = (c� b)=(c� a). Also suppose

that the new point, x, is some distance z beyond b, then z = (x�b)=(c�a). The next

bracketing interval will, therefore, either be of length w + z relative to the current

one, or of length 1�w. The optimal strategy would make these equal, i.e. z = 1�2w.

This will give the symmetric point to b in the interval a to c, i.e. ja� bj = jx� cj.

How does the value of w get chosen? It must come presumably from the

previous stage of applying the same strategy, so if z is chosen to be optimal, then so
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was w. This scale similarity implies that z should be the same fraction of the distance

from b to c (if that is the bigger interval) as was b from a to c, i.e., w = z=(1�w). These

two equations can be used in w and z to form the quadratic equation w2�3w+1 = 0

yielding w � 0:38197, and 1�w � 0:61803. Therefore the optimal bracketing interval

(a; b; c) has its middle point b a fractional distance 0:38197 from one end, and 0:61803

from the other. These are the so-called golden mean fractions. In each step of the

golden section search, therefore, a new point which is a fraction 0.38197 into the

larger of the two intervals (from the central point of the triplet) is selected.

3.4.2 Parabolic Interpolation and Brent's Method

The Golden Section Search is a method designed to handle the least favorable

of function minimizations: no assumptions are made about the shape of the function

in the region of the minimum, and the minimum is bracketed with greater and greater

precision with each iteration. However, if the function is smooth near the minimum,

then a parabola �tted through any three points near to the minimum should give a

value very close to the actual minimum in one step.

This method is known as inverse parabolic interpolation, as we want to �nd

a point x at which our function f(x) is a minimum (not just a value of f(x)). The

formula for the abscissa x that is the minimum of a parabola through three points

f(a), f(b) and f(c) is

x = b�
1

2

(b� a)2[f(b)� f(c)]� (b� c)[f(b)� f(a)]

(b� a)[f(b)� f(c)]� (b� c)[f(b)� f(a)]
: (3.38)

This equation fails only if the three points are collinear.

A technique likely to be both stable and eÆcient is one that will use a slow-

but-sure method such as the Golden Section Search in unfavorable areas, but can

also switch to parabolic interpolation when it comes suÆciently close to a minimum.

In this way, we can be sure we are approaching a minimum rather than a maximum

(or vice versa) before switching to the more eÆcient parabolic method.
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Brent's method is such a scheme. At each stage, it keeps track of six function

points, a, b, u, v, w, and x. The minimum is bracketed between a and b; x is the

point with the least function value found so far (or the most recent in the case of a

tie); w is the point with the second least function value; v is the previous value of w;

u is the point at which the function was evaluated most recently.

A typical ending con�guration for Brent's method is that a and b are 2 �

x � TOL apart with x (the best abscissa) at the point of a and b, and therefore

fractionally accurate to �2� TOL.

3.5 Computation of Subspace Vectors

Although the proposed pre-subspace vectors could be calculated using the

formula in Eq. 3.28, i.e. GT
k [C

k
D]

�1
�
gk(m)�dkuc

�
, this would not be eÆcient in general

as it would require computation of the sensitivity coeÆcient for each datum. One of

the advantages of the subspace method is the possibility of avoiding computation of

the sensitivities of data to model parameters. It is only necessary to compute the

sensitivities of data sub-objective functions to model parameters. This can be done

using the adjoint method.

The adjoint equations were derived independently for the single-phase history

matching problem by Chen et al. [8] and Chavent et al. [7]. The adjoint method

has been applied to multiphase ow problems [31, 60, 34, 57]. The most detailed

description of the use of the adjoint system for multiphase ow can be found in Li et

al. [33]. Appendix-B contains a detailed description of the equations for single-phase

ow problems.

We implemented the adjoint solution for computation of pre-subspace vec-

tors, then compared the results from the adjoint method with pre-subspace vectors

obtained by direct or �nite perturbation method for a 2-D, single-phase ow problem

with �ve wells. The direct method in which model parameters of each gridblock were
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altered by a small amount and changes in sub-objective functions were calculated

is known to be ineÆcient. There are 441 gridblocks (21 � 21) in the system. The

number of pressure data at each well is equal to 29 (corresponding to 29 timesteps

in the simulation), thus the total number of data is 145. Other related information

about this example will be presented in detail in subsection 4.1.1. We partitioned

the data objective function �rst by well then by time interval. For each well, we

partitioned the data objective function into 9 parts (3 or 4 data grouped together).

Thus, the total number of data sub-objective functions are equal to 45. The gra-

dients of these 45 data sub-objective functions give 45 pre-subspace vectors. The

pre-subspace vectors numbered from 1 to 9 involve the data from Well 1, the ones

numbered from 10 to 18 involve the data from Well 2 and so on. As an example,

Fig. 3.1 shows the 2-D plot of the gradient of the sixth data sub-objective function

(corresponding to build-up data) from Well 1 (located at the center) with respect to

gridblock log-permeabilities obtained from the adjoint method and the direct method.

The results are in excellent agreement. Fig. 3.2 shows a similar comparison for the

gradient of the same data sub-objective function with respect to gridblock porosities.

These two gradients, i.e. gradient of sixth data sub-objective function with respect

to gridblock log-permeabilities and the gradient with respect to gridblock porosities,

form a 882-dimensional sixth pre-subspace vector.

We have also compared the results from the adjoint method with the direct

method for 3-D reservoir models. The example problem is very similar to the 2-D

problem considered. The only di�erences are the size, the dimension of the model

(11�11�3) and the locations of �ve wells. Fig. 3.3 shows similar excellent agreement

between the two methods for the gradient of the sixth sub-objective function (corre-

sponding to build-up data) from Well 1 with respect to gridblock log-permeabilities.
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Figure 3.1: Log-permeability part of 6th pre-subspace vector of Well 1 from, (a) the

direct method, and (b) the adjoint method.

3.6 Sensitivity to CoeÆcients of the Subspace Vectors

Once the subspace vectors have been chosen, we need to calculate the product

GlCMBl or GlAl (see Eqs. 3.7 and 3.10) eÆciently. This product, which is simply the

sensitivity of the data to the coeÆcients of the subspace vectors, can be calculated

eÆciently using the direct or \gradient simulator" method instead of multiplying Al

by Gl directly. Direct multiplication is not preferred because it requires computation

of the sensitivity coeÆcient of each datum to form the matrix Gl.

The direct or gradient simulator method was introduced to the petroleum

engineering literature by Anterion et al. [1], but was known earlier in the groundwater

hydrology literature as the sensitivity equation method [61]. The matrix problem

solved to obtain the product GlAl involves the same coeÆcient matrix as the one
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Figure 3.2: Porosity part of 6th pre-subspace vector of Well 1 from, (a) the direct

method, and (b) the adjoint method.

used to solve for pressures and saturations at this time step. Moreover, the coeÆcient

matrix does not depend on the model parameters; only the right hand side of the

matrix problem depends on the model parameters. Thus, the problem reduces to

solving a matrix problem with multiple right-hand side vectors, one right-hand side

vector, for each subspace vector. Killough et al. [27] developed a fast iterative solver

for this type of problem; the e�ort required for each sensitivity is of the order of 10%

of a forward simulation. Detailed equations are given in Appendix-C to calculate the

sensitivity to coeÆcients of the subspace vectors.

Here we present an example for the computation of the product GlAl (sen-

sitivity of the data to the coeÆcients of the subspace vectors) which is an ND �NB
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Figure 3.3: Pre-subspace vector from, (a) the direct method, and (b) the adjoint

method by layer from the top of the reservoir (top) to the bottom.

matrix, i.e.

GA =
�
r�g

T
�T

=

2
6666664

@g1
@�1

@g1
@�2

: : : @g1
@�NB

@g2
@�1

@g2
@�2

: : : @g2
@�NB

...
...

. . .
...

@gND
@�1

@gND
@�2

: : :
@gND
@�NB

3
7777775
; (3.39)
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where we have deleted the iteration index from our notation to simplify the equations.

Appendix-C contains detailed equations to obtain Eq. 3.39. The example problem

considered here is the same as the 2-D one used for the comparison of computation

of pre-subpsace vectors in the previous section. In our comparisons, we actually

calculated the product GB where B is the matrix formed by the 45 pre-subspace

vectors explained in the previous section. We compare the results obtained from

the gradient simulator method with the product GB formed by multiplying the G

matrix by the B matrix. In the later case, the sensivity coeÆcient matrix G is

obtained using Carter's method. We compared the two GB matrices obtained from

the gradient simulator method and the direct multiplication by plotting each row of

these matrices and observed excellent agreement. As an example, Fig. 3.4 shows the

comparison of the 70th row of GB calculated from the gradient simulator method

(illustrated by diamonds) and the GB product formed by multiplying the Gmatrix by

the B matrix. The results are in excellent agreement. Recall that we have 29 pressure

data at each well and the total number of data is equal to 145, so the GB matrix has

a dimension of 145�45. Thus, 70th row of GB corresponds to the sensitivities of the

12th pressure at Well 3 with respect to the coeÆcients of the pre-subspace vectors.

Since the pre-subspace vectors numbered from 19 to 27 involve the data at Well 3,

the considered pressure data is more sensitive to these coeÆcients of the pre-subspace

vectors.

Fig. 3.5 shows a similar comparison for another row which is the 115th row

of the GB product. Again, the two sets of results are in excellent agreement. This

row represents the sensitivity of the 28th pressure at Well 4 (the observation well) to

the coeÆcients of the subspace vectors.
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Figure 3.4: 70th row of GB.

3.7 Summary of the Recommended Procedure

The recommended procedure for use of subspace vectors in history matching

is as follows.

1. Generate pre-basis vectors by the following procedure.

- Partition the total objective function into a term that arises from the model

roughness and distance from the prior model and a term that arises from data

mismatch.

- One set of pre-basis vectors are formed by multiplying the gradient of the

partial objective function from the model part by CM and then partitioning

the resulting vector into two parts (one vector for porosity and one vector for
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Figure 3.5: 115th row of GB.

permeability).

- Partition the data mismatch partial objective function further by well and time

interval to generate data sub-objective functions. Gradients of these data sub-

objective functions provide another set of pre-basis vectors. Use the adjoint

method to compute the gradients of sub-objective functions with respect to

all model parameters (one system solve per sub-objective function). Use a

small number of partitions at early iterations, and increase the number as the

minimum is approached. (Based on the limited cases we tried, we recommend

an ad hoc procedure in which we start with one subspace vector per well at the

�rst iteration and then increase the number by adding one subspace vector per

well at each subsequent iteration until the convergence is obtained.)
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2. Use SVD (or QR decomposition) to ensure that the pre-basis vectors are inde-

pendent and have similar magnitudes, then multiply by CM to create the basis

vectors.

3. Compute matrix products of the form GA using the gradient simulator method

(one system solve per column of A), see Appendix-C.

4. Solve the system

�
(1 + �)BT

l CMBl + (GlCMBl)
TC�1

D (GlCMBl)
�
�l

= �BT
l (m

l �muc)�
�
GlCMBl

�T
C�1
D

�
g(ml)� duc

�
; (3.40)

for �l using the optimal � determined by the procedure explained in section

3.4.

5. Compute the correction to the model, Æml = Al�
l.

6. Update the model estimate, ml+1 = Æml +ml.

7. Iterate until convergence is obtained.



CHAPTER IV

COMPUTATIONAL RESULTS

In this chapter, we illustrate the use of the subspace method on synthetic

two- and three-dimensional example problems. In the 2-D case, we generate the

maximum a posteriori estimate of the model parameters. We use the randomized

maximum likelihood method to generate conditional realizations of the 3-D model.

We compare the results of the subspace method with the conventional Gauss-Newton

history-matching approach that uses the full parameterization of the model. Most

of the investigations are carried out using the 2-D example problem because it is

small enough that we can run many cases to study the e�ects of several parameters

and issues. However, the 3-D example problem has a fairly large number of model

parameters and involves over 400 conditioning pressure data.

4.1 Description of the Example Problems

4.1.1 Two-Dimensional Example Problem

The areal dimensions of the 2-D synthetic reservoir are 2,100 feet by 2,100

feet; the reservoir thickness is uniform and equal to 25 feet. A 21 by 21 grid with

�x = �y = 100 feet is used in the numerical solution of the ow equations. Fig. 4.1

shows the schematic of the reservoir model grid and the locations of �ve wells. Well 1

produces at a constant rate 700 rb/day for the �rst 1 day, followed by a 1 day shut-in

period, after which it is returned to production at 700 rb/day for 1 day; Wells 2 and 3

produce at �xed rates of 500 rb/day and 800 rb/day, respectively, for all times; Well

4 is an observation well (no production); Well 5 produces at a constant rate of 600

41
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rb/day for 2 days after which it is shut-in for 1 day.
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Figure 4.1: Schematic of the 2-D reservoir model grid and well locations.

The \true" distributions of porosity and log-permeability, which were used

to generate synthetic pressure data, are correlated Gaussian random �elds with

anisotropic spherical variograms [24]. The correlation coeÆcient between porosity

and log-permeability is 0.5. The range of the variogram is 400 feet in the x-direction

and 900 feet in the y-direction. The prior mean for log-permeability is 4.0 and the

prior variance is 1.0. The prior mean for porosity is 0.25 and the prior variance
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is 0.0025. Fig. 4.2 shows the true log-permeability and porosity �elds. The stan-

dard deviation of measurement errors for all pressure data was assumed to be 0.1

psi. Although it is possible to estimate skin and permeability simultaneously, for
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Figure 4.2: The true log-permeability �eld (left) and porosity �eld (right) for the 2-D

problem.

this illustration, the skin factors were assigned prior values of 3.0, 5.0, 5.0, 0.0 and

3.0 respectively for each well and given a very small uncertainty (�2s = 10�7). The

uid is assumed to remain as a single phase at all pressures; system compressibility,

ct = 10�5 1/psi, uid viscosity, � = 0:8 cp, all wellbore radii, rw = 0:3 feet; and

the initial pressure, pi = 3; 230 psi. Synthetic pressure data are then computed from

the reservoir ow simulator using the true reservoir description as input data. The

data for each well are shown by solid symbols in Fig. 4.3. There are 29 pressure

measurements at each well so ND is 145.
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Figure 4.3: Observed versus calculated pressure data for the 2-D problem.

4.1.2 Three-Dimensional Example Problem

Potential strengths and weaknesses in the methodology should be more ap-

parent in a larger model. For this reason, a three-dimensional model with 25�25�10

gridblocks was also used for evaluation. Each gridblock in the 3-D model is 10 ft thick

and 100 ft in the x and y directions. The log-permeability and porosity �elds were

modeled as Gaussian random �elds with anisotropic spherical variograms. The cor-

relation coeÆcient between log-permeability and porosity is 0.7. The range of the

variogram is 1,200 ft in the x-direction, 800 ft in the y-direction and 30 ft in the

vertical direction. The prior mean for porosity is 0.20 and the prior variance is 0.002.

The prior mean for log-permeability is 4.0 and the prior variance is 0.5. The per-

meability was assumed to be isotropic, i.e., k = kx = ky = kz. In this model, there



45

are thus 12,500 model parameters (6,250 gridblocks and two model parameters per

gridblock).

Fig. 4.4 shows the areal grid and the locations of �ve wells for the 3-D model.

Well 1 produces at a constant rate 3,000 rb/day for the �rst 1 day, followed by a 1

day buildup, then production is at a constant rate of 3,500 rb/day for 1 day; Well 2

produces at a constant rate of 3,400 rb/day for 1 day, then a 2 day buildup; Well 3

produces at a constant rate of 1,500 rb/day for 1 day, then 2,500 rb/day for 1 day

and �nally 3,500 rb/day for 1 day; Well 4 is an observation well; Well 5 produces at

a �xed rate of 3,200 rb/day, for all times.

Synthetic pressure data (Fig. 4.5) are generated using the true log-permeability

and porosity �elds shown in Fig. 4.6. In this case, we have 86 pressure data at each

well so the total number of data is equal to 430. Pressure measurement errors were

assumed to be independent, with variance, �2d = 0:01 psi2. For simplicity, the skin

factors at the wells were assumed to be known. Other reservoir and uid properties

are the same as the two-dimensional example.

4.2 Results from Simple Partitioning with Constant Basis Dimension

4.2.1 Two-Dimensional Maximum a Posteriori Estimates

Using the conventional Gauss-Newton history-matching approach without

subspace vectors, the maximum a posteriori (MAP) estimates of log-permeability

and porosity (conditioned to pressure data from the true 2-D model) were generated.

Recall that we have shown (Chaper III, Eq. 3.32) that this conventional approach is

equivalent to the subspace method in which each set of data includes only one mea-

surement. The MAP estimates of log-permeability and porosity from the conventional

approach are shown in the left column of Fig. 4.7. As expected, these MAP estimates

are smooth and they capture the trend of the true �elds. Generation of the MAP

estimates using the conventional approach (Eq. 2.15) requires computation of 145
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Figure 4.4: Areal grid, well locations and well numbers for the 3-D problem.

sensitivity vectors for each iteration of the Gauss-Newton procedure, and \inversion"

of a 145� 145 matrix. For single-phase ow in a uid with small compressibility, the

computation of all 145 sensitivity vectors requires work equivalent to approximately

6 ow simulations using Carter's method [6]. For a multiphase ow problem, the

computational e�ort required to generate one sensitivity vector would be equivalent

to approximately one ow simulation using the adjoint method.

A straightforward approach to selecting subspace vectors is to partition the
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Figure 4.5: Observed pressure data at the wells for the 3-D problem.

data in the objective function �rst by the well at which the data were measured, and

then by time period. By trial-and-error, we found that partitioning the data from

each well into 9 subsets resulted in convergence to a minimum value of the objective

function that was just as rapid as when all the data were used. This partitioning

produced 45 subspace vectors from the data mismatch part of the objective function

and there are 2 subspace vectors from the model mismatch part of the objective func-

tion, thus the total number subspace vectors are equal to 47. The resulting estimates

for log-permeability and porosity were quite similar to the MAP estimates obtained

using the conventional method (Fig. 4.7). The results from the subspace approach

were obtained in far less time, however (see section 4.6 for detailed computational

eÆciency gains). In this 2-D example, although the total number of model parame-
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Figure 4.6: True log-permeability �eld (above) and true porosity �eld (below).
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Figure 4.7: Comparison of MAP estimates for 2-D example.
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ters is 882 and the number of pressure data is 145, it was possible to parameterize

the changes in the model in a subspace whose dimension was only 47, without signif-

icantly a�ecting the number of iterations required for convergence or the quality of

the match.

The decision to use 47 subspace vectors in this example was somewhat ad hoc

but an analysis of the spectrum of the dimensionless Hessian, LTGTC�1
D GL, shows

that the number of subspace vectors required to span the data space in the �rst

iteration is on the order of 50 (see Fig. 4.8) based on the cut-o� value of 0.1 which

was discussed in section 3.2. So, the use of 47 subspace vectors is probably close

to optimal number. Although this matrix changes as the minimum is approached,

we observed that the number of eigenvalues that are greater than 0.1 was relatively

constant in these examples.

4.2.2 Three-Dimensional Reservoir Realizations

In the 3-D example, we generate conditional realizations using the random-

ized maximum likelihood method. Fig. 4.9 shows the unconditional realizations of

log-permeability and porosity generated using sequential Gaussian cosimulation [15].

Fig. 4.10 shows the conditional (conditioned to pressure data) log-permeability and

porosity realizations obtained from the conventional Gauss-Newton history-matching

approach. The conditional realizations from the subspace method using 47 vectors

(i.e. 9 data sub-objective functions per well plus 2 model mismatch vectors) are shown

in Fig. 4.11. Comparison of Figs. 4.10 and 4.11 shows that the reservoir model from

the conventional method is nearly identical to the model created using the subspace

method. The quality of the comparison is easier to see in Fig. 4.12, which shows

the vertically averaged log-permeability in the true model, the unconditional model

that was used as the starting point, and the conditional realizations from the con-

ventional and the subspace methods. Vertically averaged conditional realization of

log-permeability from subspace method is very close to the one obtained from the
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Figure 4.8: The �rst 145 eigenvalues of the matrix LTGTC�1
D GL showing that ap-

proximately 40{50 basis vectors are suÆcient to accurately construct Æm in a Gauss-

Newton iteration.

conventional method. Both the conventional and subspace cases terminated with a

fairly low value of the objective function after 13 iterations. We should note that

the subspace method requires much less work per iteration. We will discuss the

computational eÆciency issues in section 4.6.

In this fairly large 3-D example, we again show that it is possible to param-

eterize changes in the model in a subspace whose dimension was only 47, although

the total number of parameters is 12,500 and the number of pressure data is 430.

Fig. 4.13 shows the eigenvalues of the dimensionless Hessian, LTGTC�1
D GL, at the

�rst Gauss-Newton iteration. The number of subspace vectors required to span the
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data space is on the order of 50 based on the cut-o� value of 0.1 so the ad hoc use of

47 vectors is also close to optimal number in this 3-D example.

4.3 The E�ect of Small and Large Basis Dimensions

We observed that the number of iterations required to obtain an acceptable

level of data mismatch in a Gauss-Newton method is a function of the number of

subspace vectors used in the representation of Æm and, to a lesser extent, a function

of the actual choice of subspace vectors. Fig. 4.14 illustrates the e�ect of the number

of subspace vectors used in the representation of Æm in the Gauss-Newton method

for the 2-D example problem. With 47 subspace vectors (i.e. 9 data sub-objective

functions per well plus two model mismatch vectors) convergence was achieved in

4 iterations, which was the same as in the conventional Bayesian inverse approach

(Eq. 2.15). When 7 subspace vectors were used (i.e. 1 data sub-objective function

per well plus two model mismatch vectors), the initial rate of reduction in the data

mismatch was large but after two Gauss-Newton iterations the rate of reduction

slowed substantially. Even after 50 iterations, the total objective function was 9206

which is still very far from the value obtained in 4 iterations with 47 subspace vectors.

Results with 12 (i.e. 2 data sub-objective functions per well plus 2 model

mismatch vectors) and 22 subspace vectors (i.e. 4 data sub-objective functions per

well plus 2 model mismatch vectors) were intermediate between 7 and 47 subspace

vector cases. In these cases, the initial rate of reduction in the data mismatch was

large, but after three iterations the rate of reduction again slowed substantially (see

curves marked with black triangles and squares in Fig. 4.14). After 15 iterations, the

value of the objective function obtained with 22 subspace vectors was 280 while the

value obtained with 47 subspace vectors in 4 iterations was 220.

The case with 87 subspace vectors (i.e. 17 data sub-objective functions per

well plus 2 model mismatch vectors) uses more subspace vectors than optimum num-
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Figure 4.9: Unconditional realizations of log-permeability (above) and porosity (be-

low).
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Figure 4.10: Conditional realizations of log-permeability (above) and porosity (below)

from the conventional method.
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Figure 4.11: Conditional realizations of log-permeability (above) and porosity (below)

from the subspace method with 47 subspace vectors.
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Figure 4.12: Comparison of average permeabilities.
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D GL for 3-D example

problem.

ber of 47. In this case, convergence was obtained in 4 iterations as in the subspace

case with 47 subspace vectors and conventional method. Final MAP estimates ob-

tained with 87 subspace vectors are identical to those obtained with 47 subspace

vectors. Note that this case requires more computational time than the 47 subspace

vector case.

In general, we observed that when the number of subspace vectors used

was smaller than some limiting value, the rate of reduction in the data mismatch

function would slow to an unacceptably slow rate after a few iterations. The number

of subspace vectors required to achieve rapid convergence seems to be approximately

equal to the number of eigenvalues of LTGTC�1
D GL that are greater than 0.1. Because

it is unlikely that the eigenvalues of the dimensionless Hessian will be computed for
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Figure 4.14: The number of Gauss-Newton iterations required to reduce the objective

function to the desired level depends on the number of subspace vectors used in the

expansion of Æm.

large problems, however, we explored the consequences of using a smaller than optimal

number of subspace vectors which resulted in slower convergence. Incidentally, the

consequence of using more than the optimal number is simply an additional expense

in computer time. There is no detrimental e�ect on the resulting estimate when

additional subspace vectors are used.

4.4 Importance of the Choice of Subspace Vectors

We initially believed that it would be important to group data with similar

information content together to generate basis vectors. Thus, we never combined

data from two ow periods (such as buildup and drawdown). If this had been true it
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would have had severe consequences on the utility of the method in practice where the

measurements generally show frequent rate changes. In fact, we found that the rate

of reduction in the objective function seems to be dictated largely by the number

of subspace vectors, and not by the exact choice of vectors. Fig. 4.15 contains a

comparison of the results from two di�erent subspace vector selection schemes, both

of which have 22 subspace vectors (i.e. 4 data sub-objective functions per well plus

two model mismatch vectors). In the �rst case, (across ow periods), we simply

partitioned the data from each well into 4 sets of approximately equal size, i.e. at

each well data numbered from 1 to 7 form the �rst set, from 8 to 14 form the second

set, from 15 to 21 form the third set and from 22 to 29 form the fourth set. By

this partitioning, data from di�erent ow periods (such as buildup and drawdown)

are combined. For example, at Well 1 data numbered from 1 to 10 correspond to

drawdown period and data numbered from 11 to 20 correspond to buildup period so

the second set from this well combines data from both drawdown and buildup periods.

In the second case, (within ow periods), we did not allow data from di�erent ow

periods to be combined. For example, for Well 1, the 4 sets are generated by grouping

the data numbered 1-5, 6-10, 11-20, 21-29 so the �rst two sets group the data only

from the �rst drawdown period, the third set involves the data only from the buildup

period and the last set groups the data only from the second drawdown period. The

results were nearly identical from these two partitioning cases (Fig. 4.15). Fig. 4.16

shows similar comparison of the objective function using 47 subspace vectors. The

results were again almost identical. Similarly, following the ideas of Oldenburg and

Li [37], we also initially thought that a systematic approach would be to select data

partitioning based on the magnitude of the data mismatch, i.e. partitioning the data

into more groups in the wells that have larger data mismatches. However, we observed

that whether an equal number of subspace vectors were chosen for each well, or

whether the data were partitioned based on the magnitude of the data mismatch, the

resulting convergence rate and model estimates were approximately the same. These



60

results are encouraging as it suggests that the subspace spanned by the gradients of

sub-objective functions for any reasonable partitioning of the data are similar.

We also initially attempted to use a technique in which we proposed a set

of trial subspace vectors and eliminated the singular vectors corresponding to the

smallest singular values from a SVD. More speci�cally, if the singular values are

ordered from largest to smallest as

�1 � �2 � � � � � �NB
; (4.1)

with the associated orthonormal vectors denoted by bl1; b
l
2; : : : ; b

l
NB

and ordered the

same way as the singular values, then upon return from the singular value decompo-

sition (SVD) routine, we retained only the blj's, j = 1; 2; : : : ; r where r is the smallest

interger such that

rX
j=1

�j � �

NBX
j=1

�j; (4.2)

and � is a factor which determines the level of approximation. We tried � = 0:98

which means that we were retaining ninety-eight percent of the total energy in the

spectrum and �ltering out the subspace vectors corresponding to high frequencies. In

most cases, this choice of � yielded too few subspace vectors (approximately NB=4

vectors). Thus, the results obtained from this technique were very similar to those

obtained by simple partitioning of the objective function into a small number of

groups. Fig. 4.17 shows an example for this conclusion. In the �rst case, we simply

partitioned the data mismatch objective function into 10 groups (2 per well) to form

the subspace vectors from the data mismatch part of the objective function and used

2 subspace vectors from the model mismatch part of the objective function. Thus, the

total number of subspace vectors is equal to 12. The second case had more-or-less 12

singular vectors (� = 0:98) from a SVD of 47 subspace vectors at each Gauss-Newton

iteration. The 47 subspace vectors are the same ones used in the previous section.

Both techniques show similar slow convergence rate after 3 iterations. These results
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also support our conclusion of the importance of the number of subspace vectors, not

the exact choice.
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Figure 4.15: The convergence behavior of the objective function for two di�erent

methods of partitioning the data with 22 subspace vectors.

We should note that not every partitioning of the data provides an equally

good set of subspace vectors. A particularly poor choice of initial subspace vectors

often gives a large reduction in the data mismatch, but results in a large increase in

the model roughness. For example, we ran a case using two subspace vectors for the

data in Well 4, none for data in Well 3, and one subspace vector for each of the other 3

wells. We knew that this was not a true partitioning of the data as the data fromWell

3 were not represented in any subspace vector. However, the purpose of running this

case is to show that poor partitioning of the data mismatch objective function does
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Figure 4.16: Comparison of the objective functions for two di�erent methods of par-

titioning the data with 47 subspace vectors.

not yield good results. After 15 iterations, the data objective function was 1:7� 106.

The model roughness introduced in the �rst iteration, remained at the end. Fig. 4.18

shows the log-permeability �eld after the �rst Gauss-Newton iteration. This �eld is

rough, meaning that it has a large deviation from the prior model, and has a large

di�erence between the lowest and highest values of the gridblock log-permeabilities.

In this case, recall that the prior model for log-permeability is an homogeneous �eld

with each gridblock value equal to 4.0. A similar rough �eld is observed for porosity.

We also explored the use of constant vectors in our methodology. This idea

was originally used by Oldenburg et al. [36] who have noted that convergence of

the subspace method is accelerated by adding a constant vector. However, for the
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Figure 4.17: Comparison of the results obtained by simple partitioning and SVD.

subspace methodology we present here, including the constant vectors did not improve

the convergence and did not yield any signi�cant improvement in the resulting model

estimates.

4.5 Gradual Increase in Dimension of Basis

In section 4.3, we showed that unless we chose enough subspace vectors,

the rate of convergence could become quite slow. It was unclear, however, how to

estimate the proper number in advance without computing eigenvalues or singular

values of a large matrix. Secondly, we observed that the initial rate of reduction in

the data mismatch was always large, even for small numbers of subspace vectors.

This suggests that an eÆcient strategy for minimizing the computational e�ort is to
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Figure 4.18: Log-permeability �eld after �rst iteration.

begin with a small number of subspace vectors in the early iterations, adding more

when needed to maintain a high rate of convergence.

Gauss-Newton had worked quite well for most cases in which the number of

subspace vectors was constant (e.g., 47 subspace vectors at all iterations), but when

the number of subspace vectors was increased at every iteration it became more

diÆcult to achieve convergence to a small value of the objective function. In this

case, we typically found that the addition of new subspace vectors at some iterations

resulted in an increase in the model roughness at the next iteration. Although the

restricted step method was tried to cure this problem, it was diÆcult to remove the

model \roughness" in subsequent iterations and reduction in the step size caused

slow convergence. Fig. 4.19 depicts this case in terms of the reduction in the total

objective function for the 2-D problem (labeled with G-N). In this case, the number of
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subspace vectors used was 7, 17, 27, 37 and 47 in iterations 1 through 5, respectively.

An equal number of subspace vectors (i.e. 1 per well, 3 per well, 5 per well, 7 per well

and 9 per well) were used for each well at each Gauss-Newton iteration. In Fig. 4.19,

when we increased the number of subspace vectors from 17 to 27, we had the model

roughness problem. Fig. 4.20, which is a plot of OM(m) (model mismatch objective

function with the diagonal of CM) versus iteration, illustrates the model roughness

problem that occurred at the third iteration. As a result, convergence slowed down

and the model became rough.

To solve this problem, we tried to use the Levenberg-Marquardt algorithm.

However, in the standard implementation of the Levenberg-Marquardt algorithmwith

growth and decay factors of 10 for � the problems we experienced were similar to those

we experienced with the Gauss-Newton method; if the value of � was too small at

an early iteration, the model again acquired \roughness" at the third iteration which

was diÆcult to remove at later iterations (see the curve for � = 10�1 in Fig. 4.21).

On the other hand, when we started with a value of � that was too large, the initial

rate of reduction in the objective function was small (see � = 109 in Fig. 4.21), or

the rate at later iterations was small (see � = 105 to 109 in Fig. 4.21). Although

starting values for � in the range 102 to 103 worked well for this 2-D example, it

was necessary to start with � between 106 and 107 and growth and decay factors of

2 to achieve a small value of the objective function for the 3-D reservoir example.

So, we concluded that the value of initial � and growth and decay factors of � for

eÆcient convergence of the Levenberg-Marquardt algorithm are problem dependent

and diÆcult to determine without much experimentation. Thus, we required to seek

a more robust implementation of the Levenberg-Marquardt algorithm.

In the standard Levenberg-Marquardt method, by trial and error, we tried

to �nd a value of � that gives the minimum of data mismatch with a smooth model

at each iteration. By doing so, when the number of subspace vectors was gradually

increased, the objective function was reduced nearly as fast as when 47 subspace
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Figure 4.19: The convergence is only slightly slower, but the total work is reduced

when the number of subspace vectors is gradually increased at each iteration with

Levenberg-Marquardt method.

vectors were used in all iterations (see curve labeled with L-M in Fig. 4.19). Table 4.1

contains the schedule of the values of � used in this case. Note that in this trial

and error procedure, we start searching for optimal lambda at the second iteration

because using 7 subspace vectors at the �rst iteration with Gauss-Newton method did

not produce any problem in terms of convergence and roughness. However, this was

not the case in the 3-D problem in which using 7 subspace vectors at the �rst iteration

required a big value of � to enhance the convergence and reduce the roughness. The

success of this manual method motivated us to develop an automated method to �nd

the optimum value of � at each iteration. This procedure was explained in section
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Iteration �

1 0.0

2 75.0

3 200.0

4 35.0

5 20.0

Table 4.1: Schedule of �.
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Figure 4.20: Comparison of OM(m) versus iteration for the three methods.

3.4. Recall that in this automated procedure we perform a one-dimensional search

for the value of the � that minimizes a weighted objective function, i.e.

OF = OD + iOM: (4.3)
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Figure 4.21: Reduction in the objective function for a wide range of starting values

of the Levenberg-Marquardt damping factor.

As an example, Fig. 4.22 shows the values of OD, OM and OF for di�erent values of

� at the third iteration (27 subspace vectors) of the 2-D model with 7, 17, 27, 37, 47

and 57 subspace vectors used at iterations 1 through 6, respectively. As is expected,

we see that the larger values of � give smoother models. However, for the smooth

models the data mismatch function is high. The trade-o� between the data mismatch

and model roughness can be obtained with the corresponding � (which is 5; 000 for

this case) at the minimum of OF . For this case,  obtained by applying Eq. 3.37 is

equal to 560. Note that in this automated method we start searching for the optimal

� at the �rst iteration.

For one-dimensional minimization, we found that Brent's method is the most

computationally eÆcient because it requires fewer iterations to �nd the optimal �. It
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Figure 4.22: E�ect of � on the roughness for the 2-D problem with 27 subspace

vectors.

is critical to reduce the number of iterations to �nd � because each iteration requires

an evaluation of the objective function which requires solution of the forward problem

(i.e. a simulation run). With Brent's method we were able to �nd the optimal � at

each iteration of the Levenberg-Marquardt algorithm in 6-8 iterations for the 2-D

problem and in 7-14 iterations for the 3-D problem with tolerance, TOL, equal to

0.01 (see subsection 3.4.2). We should note that the number of iterations required

for the Brent's method to �nd optimal � strongly depends on the tolerance. At

some iterations, we observed that objective function, OF , of Eq. 4.3 behaves more-

or-less constant around the actual minimum. In this case, Brent's method required

more iterations to �nd optimum �. Thus, we introduced a new stopping criterion in

Brent's method which reduces the number of iterations without signi�cantly changing
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the results. The new stopping criterion is based on the objective function, i.e.

OF (�w)�OF (�x)

OF (�w)
< � (4.4)

where OF (�x) is the least objective function value found so far and OF (�w) is the

second least objective function value. We found that using � = 0:05 works well for

both 2-D and 3-D problems. Using this new stopping criterion number of iterations

required to �nd the approximate optimum � reduced to 3-4 iterations in the 2-D

problem and reduced to 5-9 iterations in the 3-D problem without any changes in the

convergence and model estimates.

The convergence behavior and schedule of optimal values of � for the 2-D and

3-D problems were much di�erent (Fig. 4.23). In both cases, however, the procedure

of gradually increasing the number of basis vectors and solving for the best � at each

iteration was more eÆcient than traditional Gauss-Newton or Levenberg-Marquardt.

Detailed time comparisons will be given in section 4.6. In the 3-D case, we have

started with 1 subspace vector per well plus the 2 subspace vectors from the model

mismatch part of the objective function. Thus, the total number of subspace vectors

used at the �rst iteration is equal to 7. Then, we added 1 subspace vector per well at

each Levenberg-Marquardt iteration. Thus, we ended up with 67 vectors at the 13th

iteration. The work done in this variable subspace dimension case to compute the

subspace vectors and the sensitivities to coeÆcients of subspace vectors was about

78% of the work required for the case with 47 subspace vectors in all iterations. The

savings from using an increasing number of subspace vectors would probably be larger

in practice as the number of subspace vectors to use in a constant dimension method

would likely be estimated suboptimally.

We have investigated the e�ect of  or more speci�cally the e�ect of the

constant in the denominator of  on the results. Fig. 4.24 shows the total objective

function for the constants 4, 8, and 16 in the denominator of  for the 2-D model.

The results are not so di�erent. Similar results were obtained for the 3-D model
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under consideration.

4.6 Computational Analysis

In this section, we make a general computational analysis for generating the

MAP estimates or realizations of the rock property �elds with NM model parameters

conditioned to ND data by the conventional Bayesian inversion method and the sug-

gested subspace reparameterization method. We will compare the methods in terms

of the computational components which take the most time in one minimization iter-

ation. In our comparisons, we use the conventional Bayesian inversion method in the

form of the alternative formulation of the Gauss-Newton equation (Eq. 2.15) which

requires the solution of a system of ND equations. This alternative formulation is

more eÆcient than the original Gauss-Newton equation (Eq. 2.14 which requires the

solution of a system of NM equations) since we generally have ND < NM . It is obvi-

ous that if we had compared the results from our subspace method with the original

Gauss-Newton method we would have shown more eÆciency gain.

Computational components in the conventional method that take a signi�-

cant amount of time are:

1. Calculation of sensitivity coeÆcients.

2. Computation of CMG
T .

3. Computation of GCMG
T .

4. Solution of Ax = b where A denotes ND � ND matrix (CD + GlCMG
T
l ) (see

Eq. 2.15).

Similarly, computational components in the subspace method that take a

signi�cant amount of time are:
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Figure 4.23: The rates of reduction in the objective function (above) and in the

optimal value of � (below) are much di�erent for the 2-D and 3-D problems.
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Figure 4.24: E�ect of  on the convergence of the objective function for the 2-D

problem.

1. Calculation of subspace vectors.

2. Computation of CMB.

3. Computation of sensitivity to subspace vectors, i.e. GA.

4. Solution of Ax = b which is NB � NB (see Eq. 3.10) where NB is the number

of subspace vectors.

5. Finding optimum � by one-dimensional minimization.

Generation of the MAP estimates or conditional realizations from the RML

method using the conventional method requires computation of ND sensitivity vec-
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tors for each iteration of the minimization procedure. For single-phase ow in a uid

with small compressibility, a three-dimensional extension [19] of a method developed

by Carter et al. [6] is known to be the most eÆcient method for computing sensi-

tivity coeÆcients. With this method computation of ND sensitivity vectors for Nw

wells requires work equivalent to approximately Nw + 1 simulation runs. However,

for multiphase ow problems Carter's technique is not applicable. Even though we

have demonstrated the use of the subspace method by considering single-phase ow

problems, we would like the method to be applicable to multiphase ow problems.

For multiphase ow problems, the adjoint method is an eÆcient method for calculat-

ing sensitivity coeÆcients. Using the adjoint method, computational e�ort required

to generate ND sensitivity vectors would be equivalent to approximately ND ow

simulation runs.

In our subspace methodology, the main computational components are the

computation of the subspace vectors (the ones generated from the data mismatch ob-

jective function) and the computation of the product GA which is the sensitivity to

the coeÆcients of the subspace vectors. Computation of subspace vectors requires the

solution of one adjoint system per subspace vector (Appendix-B). Roughly speaking,

the computational time required to solve one adjoint system is equivalent to one sim-

ulation run. Thus, calculation of (NB�2) subspace vectors (2 vectors from the model

mismatch objective function are easily computed) requires approximately (NB � 2)

simulation runs at each minimization iteration. The computational e�ort required

to compute the sensitivity of pressure data to the coeÆcients of subspace vectors

(GA) is approximately equivalent to NB simulation runs. Thus, these techniques

require only 2(NB � 1) simulation runs for the sensitivity calculations at each iter-

ation of the subspace method. Recall that NB < ND, so the subspace method is

approximately ND=[2(NB � 1)] times faster than conventional approach in terms of

simulation runs for the sensitivity calculations. For example, for the 3-D example

considered (ND = 430 and NB = 47 assuming 47 vector case at every iteration), this
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ratio is equal to about 4.67.

In terms of matrix multiplications, the conventional method requires cal-

culating CMG
T and GCMG

T whereas the subspace methodology requires only the

computation of CMB at each minimization iteration. Recall that GT is an NM �ND

matrix and B is an NM �NB matrix, so the computational time required to compute

CMB is ND=NB times less than the computational time required to compute CMG
T .

The time spent for the calculation of GCMG
T in the conventional method is totally

saved in the subspace method.

In terms of solving Ax = b, the conventional method has ND � ND dimen-

sional A matrix whereas in the subspace method the dimension of A is reduced to

NB � NB. Although the solution of 430 equations took a few seconds in the 3-D

example problem that we considered, this would not be the case when ND is very

large.

In the subspace method, eÆciency is increased by starting with as few sub-

space vectors as possible at early iterations, then gradually increasing the number of

the subspace vectors in order to achieve the required reduction in the objective func-

tion. In this case, as we noted it is required to use the Levenberg-Marquardt method

with optimal selection of � to eliminate model roughness problems. Thus, �nding the

optimum � by one-dimensional minimization requires extra simulation runs (5-9 runs

for the 3-D problem we considered) at each iteration of the subspace method. How-

ever, reduction in the computational time required for the sensitivity calculations and

matrix multiplications in the early iterations is more than the computational time

required to �nd the optimum � at all iterations.



CHAPTER V

CONCLUSIONS

In this study, an eÆcient method of reparameterization for solving large-

scale reservoir inverse problems with large amounts of production data using the

subspace methodology has been developed. We demonstrated the use of the sub-

space methodology for the problems of generating maximum a posteriori estimates

and realizations of log-permeability and porosity �elds conditioned to synthetic pres-

sure data for single-phase ow for both 2-D and 3-D cases. However, the subspace

methodology developed in this study is applicable to multiphase ow problems.

Based on this study, we arrive at the following conclusions.

1. We have shown that it is possible to construct the model correction vector, Æm

from a reduced basis, whose dimension is much less than the number of data

(ND) or the number of model parameters (NM), without a�ecting the result or

the number of iterations required to obtain a minimum.

2. We have shown that the product of the prior model covariance matrix with

gradients of the data sub-objective functions provides a good set of subspace

vectors for history matching. Partitioning the data by well and then by time

interval is an e�ective method of choosing subspace vectors. We found that the

eÆciency of the method is not very sensitive to the details of partitioning. Any

reasonable partitioning of the data gave similar results.

3. On the other hand, we observed that the method is sensitive to number of

subspace vectors. If too few subspace vectors are chosen, the number of Gauss-

Newton iterations required is very large. The initial rate of reduction in the

76
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objective function is largely independent of the number of subspace vectors,

however.

4. We have shown that there is an optimal number of basis vectors such that the

convergence of the Gauss-Newton method is una�ected by the reparameteriza-

tion. Unfortunately, computation of the optimal set of basis vectors requires

computation of eigenvalues of the dimensionless Hessian matrix which could be

too expensive to be practical.

5. We have shown that an eÆcient strategy for minimizing the computational e�ort

is to begin with a small number of subspace vectors in the early iterations and

to gradually increase the number of subspace vectors at subsequent iterations.

Unfortunately, the process of increasing the number of subspace vectors at

each Gauss-Newton iteration made the minimization process more unstable.

We found that the eÆciency could be improved by using a modi�ed form of

the Levenberg-Marquardt algorithm in which an optimal damping parameter is

computed at each iteration.



NOMENCLATURE

CD covariance matrix for pressure measurement errors.

CM prior covariance matrix.

d vector of observed data.

Gl sensitivity coeÆcient matrix at lth Gauss-Newton iteration.

g(m) calculated pressure data from simulation.

k permeability, md.

NM total number of model parameters.

mp vector of prior means of model parameters.

N number of simulator gridblocks.

ND number of conditioning pressure data.

Nw number of wells at which data are measured.

NB number of subspace vectors.

� porosity, fraction.

78



79

Subscripts

k related to log-permeability �eld.

uc unconditional.

� related to porosity �eld.

Superscripts

T matrix transpose.

�1 matrix inverse.
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APPENDIX A

SINGLE-PHASE FLOW SOFTWARE FOR CONDITIONING A

GEOSTATISTICAL MODEL TO WELL-TEST PRESSURE DATA

A.1 General Information

The program, written in standard FORTRAN 77, facilitates generation of

realizations of three-dimensional rock property �elds (simulator gridblock values of

log-permeability and porosity) conditioned to multiwell pressure data and prior in-

formation using inverse problem theory. The reservoir model is assumed to be a

rectangular parallelepiped of uniform thickness h. Reservoir boundaries are assumed

to be no-ow boundaries. We assume either two- or three-dimensional single-phase

ow in a Cartesian coordinate system. The reservoir can contain any number of

complete-penetration or restricted-entry wells. Each well is produced at a speci�ed

sequence of rates where the rate may vary with time and may be di�erent at each

well; pressure buildup at a well is simulated by setting the rate to zero subsequent

to a producing period. Interference or observation wells are simulated by setting the

rate to zero at all times. The permeability and porosity �elds are assumed to be het-

erogeneous. Since log-permeability is often modeled as a Gaussian random variable,

the natural logarithm of gridblock values of permeability is used. The code assumes

that the prior model for the rock property �elds is multivariate Gaussian, character-

ized by means and covariances (arising from a speci�ed variogram) with permeability

assumed to be log-normal, porosity assumed to be normal with correlation between

log-permeability and porosity determined by specifying a correlation coeÆcient. As

the model is currently written, permeability is assumed to be isotropic. However, the

code can be easily extended to anisotropic permeability case. In the three-dimensional

87
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case, one can specify that vertical permeability in each gridblock is equal to horizontal

permeability multiplied by an input constant factor. If the prior geostatistical model

is non-Gaussian, then one can still condition a realization generated from the prior

model to pressure data, but to do so, one has to �rst estimate means and variograms

(or covariances) from the geostatistical realization. Uncertainty in the prior means

is incorporated using a partially, doubly-stochastic model; see Reynolds et al. [49].

The program can be used to generate either the maximum a posteriori estimate (most

probable model) or realizations conditioned to the prior model and multiwell pressure

data. The maximum a posteriori estimate is generated by minimizing the objective

function derived from the a posteriori pdf using the procedure described by He [20]. A

complete description of the procedure used to generate sensitivity coeÆcients can be

found in He [20]. In generating the maximum a posteriori estimate and in generating

realizations, one can incorporate hard data for porosity at any gridblock penetrated

by a well. One must specify the variance of the measurement error in hard data. This

variance can be small but not zero. Hard data for permeability is not allowed.

Skin factors at active wells can be estimated directly as part of the condi-

tioning process. The recommended procedure is to estimate one skin factor per well.

For three-dimensional problems, one can estimate a skin factor for each gridblock

penetrated by a well, but these individual \layer" skin factors can not be resolved

accurately, unless layer ow rates are available.

Pressure responses are obtained by a standard purely-implicit, seven-point

�nite di�erence simulator, where wellbore pressure is related to the well's gridblock

pressures by Peaceman's method. Detailed ow equations are given in the �rst section

of Appendix-B.
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A.2 Source Code Files

There are 8 source code �les (INVS.FOR, SUBR.FOR, SIMSEN.FOR, COV-

CAL.FOR, SUBSP.FOR, MXSOLV.FOR, QR.FOR and DIRECT.FOR) in the pro-

gram. In the following we briey describe these �les.

INVS.FOR: This �le includes the main code in which minimization of

the objective function using the restricted-step Gauss-Newton method (or using

Levenberg-Marquardt) is carried out. All variables are de�ned at the beginning of

the code. Throughout the code, the ongoing computations are fully explained using

comment statements. In applying the Gauss-Newton method, iteration stops when

any one of the following stopping criteria is chosen (user has these options to choose):

1) Stop if data mismatch is satis�ed to a speci�ed tolerance, i.e.

RMSE =

vuut 1

Nd

NdX
i=1

�
di � gi(m)

�2
� "1�d; (A.1)

where RMSE stands for the root-mean-square error, di represents the ith data mea-

surement when the MAP estimates are generated or represents the ith unconditional

simulation of the data when the RML method is applied and gi(m) represents the ith

calculated data, and �d is the standard deviation of the data measurement errors. In

the code EP1, which is an input, corresponds for "1 and is currently chosen as 1.0.

2) Stop if

kÆml+1k

kmlk+ 10�12
� "2; (A.2)

where m is the vector of the model parameters and the norm in this equation is the

two-norm. "2 (EP2 in the code) is currently set to 10�5.

3) Stop if the maximum number of iterations (MNI in the code) exceeds an

input value (currently set as 13).

4) Stop if

O(ml)�O(ml+1)

O(ml) + 10�14
� "3; (A.3)
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where O(ml) and O(ml+1) are the values of the objective function at the previous and

current iterations, respectively. Currently, the code uses a diagonal approximation

to the covariance matrix for evaluation of these objective functions. In Eq. A.3, "3 is

denoted by EP3 in the code and its input value is currently set to 10�3.

SUBR.FOR: This �le includes several subroutines (namely INPUT, PIK-

SRT, MEANC, LUDCMP, LUBKSB and TIMEINT) for di�erent purposes. Sub-

routine INPUT is basically used for reading the data for the reservoir simulator. If

non-uniform grid sizes in any of the directions are used, the data are also read in this

subroutine. Subroutine PIKSRT sorts an array into ascending numerical order, by

straight insertion. Subroutine MEANC is called by the main code when we want to

incorporate the uncertainty in prior means of porosity and log-permeability. This �le

also contains subroutines LUDCMP and LUBKSB from Numerical Recipes to do LU

decomposition.

Construction of the time steps for the reservoir simulator is done in the

subroutine TIMEINT. Details on the construction of time steps is explained next.

We model the reservoir with multiple wells where rate changes may occur

at di�erent times at each well. Thus, we need to change time steps whenever there

is a discrete rate change (or pressure change if the well constraint represents the

speci�cation of the owing bottom-hole pressure) at any well. Let Tfj , j = 1; 2; :::

denote the duration of each time interval (total times). In subroutine TIMEINT, we

construct the Tfj 's using the duration of each rate at each well. For example, suppose

we have three wells, well 1 produces at �xed rate of 80.0 rb/day for all times, well 2

produces at a constant rate 150.0 rb/day for the �rst 1.5 days, which is followed by a

two day buildup test, then we bring it on production at a constant rate 200.0 rb/day

for 6.5 days; well 3 produces at a constant rate 750.0 rb/day for 8 days and then we

run a two day buildup test. Note the total simulation run is ten days. Table A.1

contains the input data.

From this input the subroutine TIMEINT computes the total time sequence
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Well Number or Index Rate, rb/day Duration, days

1 80.0 10.0

2 150.0 1.5

2 0.0 2.0

2 200.0 6.5

3 750.0 8.0

3 0.0 2.0

Table A.1: Input data.

for Tfj 's as Tf1 = 1:5, Tf2 = 3:5, Tf3 = 8:0 and Tf4 = 10:0 days and the total number

of ow periods as 4. Note that a new �Tfj value is de�ned whenever there is a rate

change at any well.

To construct the time steps, we input for all ow periods an initial time step

size, (DT0 in the program); a maximum allowable time step change (DTMAX) and

a time step multiplier (TSM) which is denoted by �. Then, time steps are calculated

as

tn+1 = tn +�tn; (A.4)

where

�tn = ��tn�1: (A.5)

Suppose for concreteness, we are constructing the solution on the time interval

[Tf1 ; Tf2] = [1:5; 3:5] so we set t0 = 1:5 days and set �t0 equal to the input value. At

the �rst step, we simply apply Eq. A.4 to get t1, but at the subsequent steps, we use

the multiplier, i.e. apply Eq. A.5 before applying Eq. A.4. After computing tn+1, we

perform a check before computing the solution at the new time step as follows:

If tn+1 > Tf2 then set tn+1 = Tf2(�t
n = Tf2 � tn).
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If tn+1 < Tf2 but t
n+1 + 0:5��tn � Tf2 , then set tn+1 = Tf2(�t

n = Tf2 � tn).

SIMSEN.FOR: This �le includes subroutines to perform reservoir simu-

lation and the sensitivity coeÆcient calculations. The reservoir simulator can be

applied to two-dimensional or three-dimensional, single-phase ow in an x � y � z

coordinate system. The ow equation is discretized using a standard seven-point

�nite-di�erence scheme. Subroutine SENS can be considered as the main code for

simulation and sensitivity coeÆcient calculation. It calls subroutine TRANS to gen-

erate transmissibilities, subroutine AMAT to form the coeÆcient matrix and right

hand side vector for the �nite di�erence equations, subroutine WELLIND to calcu-

late well indices and derivatives of the well indices, subroutine SOURG to set the

sink term for gridblocks penetrated by a well and subroutine SENSIT to calculate

sensitivity coeÆcients using Carter's method. In the subroutine SENSIT, one should

note that we interpolate the pressure data calculated from the simulator to the times

at which we want to calculate the sensitivity coeÆcients - the times at which we have

conditioning pressure data do not need to correspond to simulator time steps.

COVCAL.FOR: This �le contains several subroutines and functions to gen-

erate the prior covariance matrix, CM , for a speci�ed variogram structure. Subroutine

COVANCE, which is essentially identical to subroutine LUSIM from GSLIB (Geo-

statistical Software Library), is used to generate the prior covariance matrix. Since

the prior covariance matrix is a sparse matrix (number of nonzero entries depends

on the variogram range), a signi�cant reduction in memory requirements is obtained

by storing only non-zero entries of the prior covariance matrix. In the program, we

have taken advantage of the sparseness of the prior covariance matrix by only storing

the non-zero elements using the following procedure: Let the maximum correlation

length (measured in units of gridblock length) in the three gridblock directions be

Lx, Ly and Lz. For any parameter in the grid, only the covariance with parameters

in two regions (there are two parameters per cell; permeability and porosity) of di-

mension LT = (2Lx � 1) � (2Ly � 1) � (2Lz � 1) must be stored because all other
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values of the covariance are essentially zero. Instead of storing a sparse covariance

matrix of dimension 2NT � 2NT (where NT is the total number of cells), we store a

dense matrix whose dimensions are 2NT � 2LT where, typically, LT � NT . If in this

storage procedure, one wishes to use non-uniform grid sizes in any of the directions,

then Lx, Ly and Lz must be based on the �nest gridblock size. In the subroutine

COVANCE, the array MGXYZ stores the limits of nonzero covariance.

SUBSP.FOR: This �le includes subroutines and functions to apply our

current implementation of the subspace method. If one does not want to apply

the subspace method, this �le can be discarded. Subroutine SUBSPACE contains

the main code for the subspace method. In this subroutine, minimization of the

objective function is also carried out. For minimization, we have three options to

use: Gauss-Newton with restricted step, standard Levenberg-Marquardt method and

modi�ed Levenberg-Marquardt method (with optimal selection of �). In the modi�ed

Levenberg-Marquardt method, we need to search for the � as a one-dimensional min-

imization problem. For this one-dimensional minimization, there are two options for

the user to specify: Golden Section search method and Brent's method. These options

are chosen by specifying ags in the input �le STAT.PAR which will be explained

later. We suggest to use modi�ed Levenberg-Marquardt method for minimization

of the objective function and Brent's method for one-dimensional minimization of �

with the current implementation of the subspace methodology.

As noted in Chapter-III of this dissertation, we have formulated the sub-

space method such that it is unnecessary to solve linear systems with the prior co-

variance matrix as the coeÆcient matrix. Formally, C�1
M is required to incorporate the

restricted-step method into the Gauss-Newton procedure, but in the current imple-

mentation of the restricted-step, we simply replace C�1
M by the inverse of the diagonal

of CM .

The recommended procedure for the subspace method is outlined in section

3.7 of Chapter-III. One of the important features of this procedure is that we begin
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with a small number of subspace vectors in the early iterations and gradually increase

the number of subspace vectors at subsequent iterations. We usually start with one

subspace vector per well by grouping all the data corresponding to a particular well

and increase the number of vectors by adding 1 or 2 (user can specify) more subspace

vectors per well at each iteration. This somewhat ad hoc increasing procedure worked

well for all synthetic examples that we considered.

MXSOLV.FOR: This �le includes several subroutines to compute the so-

lution of the linear system Ax = b using a preconditioned iterative solver. There are

four solvers available in this �le. These are Conjugate Gradient method, General-

ized Minimal Residual (GMRES), Bi-Conjugate Gradient and Minimal Residual. We

always use the Conjugate Gradient method.

DECOMP.FOR: This �le contains several subroutines to do matrix de-

composition. Subroutine SVDCMP and function PYTHAG are used to do singular

value decomposition. QR decomposition is done using several other subroutines in

this �le.

DIRECT.FOR: This �le includes the subroutines to calculate the sensi-

tivity coeÆcients using the direct or �nite di�erence method. This �le is just for

checking the calculations of sensitivity coeÆcients.

A.3 Input Data Files

Most of the FORTRAN source code �les utilize the FORTRAN include �le

\INCLUDE.DAT" which contains parameters that de�ne the sizes of the various

arrays at compile time. De�nitions of the parameters are given in this �le. In the

event any of the parameters are changed, the entire program must be recompiled.

This �le also contains the common blocks.

Data are input to the program via three data �les: STAT.PAR, SIM.PAR

and PRESS.PAR. These �les are needed for all the cases.
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All data �les contain the variables describing the case to be run. Data

are input in free format, i.e., individual data entries are separated either by spaces

or commas within the �rst 72 columns of the �le. Comment lines may be added

arbitrarily throughout the data �les. Comment lines may begin with 'c' or 'C'. Any

line which starts with `c' or `C' in the �rst column is removed from the data �le by

the program before the run is started.

Three temporary �les STAT.DAT, SIM.DAT and PRESS.DAT are created

on the user directory; these temporary �les contain the uncommented user data in the

input �les STAT.PAR, SIM.PAR and PRESS.PAR, respectively. In the following, we

briey explain the data �les STAT.PAR, SIM.PAR and PRESS.PAR since all these

�les are self-documented.

STAT.PAR: This �le contains mainly statistical and geostatistical data

(variogram information). The �rst two cards are used for specifying the optimization

procedure. In Card 1, the ag MTHD that can take three di�erent integer values

(namely 1, 2 and 3) speci�es the optimization algorithm. If MTHD=1, Gauss-Newton

with restricted step is used as the method of minimization. In this case Card 2 is not

included. If MTHD=2, standard Levenberg-Marquardt method is the minimization

algorithm. In this case, initial value of �, and growth and decay factors of � must

be speci�ed in Card 2. Finally, if MTHD=3, modi�ed Levenberg-Marquardt method

(with optimal selection of �) is used. This option can be chosen if and only if subspace

method is used. In this case, the method of one-dimensional search and tolerance

for the termination of one-dimensional search must be speci�ed in Card 2. We can

either choose Golden Section search (ISRCH=1) or Brent's method (ISRCH=2) for

one-dimensional minimization. (We recommend to use ISRCH=2.) The third card in

this �le consists of several ags; each of which can be assigned a value of either 0 or

1. As an example, the program can generate either maximum a posteriori estimates

(MAPE=1) or realizations (MAPE=0). In the program, we can condition to hard

data for porosity (i.e., IHARD=1). Card 4 must be supplied if we have hard data for
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porosity. We assume that the hard data are collected at the same locations as the

observed pressure (or rate) data. At each well, a porosity value (hard data) is read

in for each gridblock in the z-direction.

SIM.PAR: This �le includes the data required for the reservoir simulation

run. We specify the type of production (i.e., constant owrate production or constant

wellbore pressure production) via the ag ICQP. We have an option to estimate one

skin factor at each well (ag ISKIN=1) or one skin factor for each gridblock in the

z-direction (ISKIN=0).

PRESS.PAR: This �le is used for reading observed pressure (or rate) data.

Time values at which we have the data are also supplied by this �le.

In addition, three input �les KXINI.DAT, PINI.DAT and SINI.DAT are

used to input prior models (unconditional realizations) for the log-permeability �eld,

porosity �eld and skin factors respectively, for the case where we wish to generate real-

izations. If we wish only to generate maximum a posteriori estimates, then we do not

need to include the �les KXINI.DAT and PINI.DAT. Note that if one wishes to gener-

ate more than one realization, all the unconditional realizations for log-permeability

and porosity must be stored in the same �les KXINI.DAT and PINI.DAT respectively.

In this case, the parameter NR in the INCLUDE.DAT �le must be set equal to the

number of realizations which we wish to generate. In the input �les, KXINI.DAT

and PINI.DAT, unconditional realizations for both log-permeability �eld and poros-

ity �eld must be stored as follows: Let i, j, and k denote the indices for the x, y, and

z-directions, respectively. We �rst start with �rst gridblock in the z-direction (i.e.,

k = 1, top layer, see Fig. A.1), then the y-direction index, j, increases from top to

bottom (see Fig. A.2). For each index j, the x-direction index increases from left to

right. The same ordering is repeated for k = 2; 3; :::; Nz, where Nz is the total number

of gridblocks in z-directions. Well locations are indexed in the same order. Note that

this same storage scheme is used in the output �les which contain model parameters.

This is done for plotting purposes, but log-permeability and porosity �elds are stored
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as 1-D arrays in the code. Skin factors, in both input and output �les, are stored in

a similar way, i.e., starting from the �rst gridblock in the z-direction. Skin factors

should be read in the same order as well numbers, i.e. �rst skin factor value corre-

sponds to �rst well, etc. Well numbers are determined by the order of the reading of

the well indices in the input �le SIM.PAR.

k=1

Nz

Well(s) located at gridblock (i,j)
penetrates through z-direction partially or fully.

Figure A.1: 3-D schematic of the reservoir.

If one wants to use non-uniform grid sizes in any of the directions, the data

has to be read in from the �les GRIDX.DAT, GRIDY.DAT, and GRIDZ.DAT for

the x, y, and z-directions, respectively. Otherwise, these are not be created. In all

examples that we have presented, we have used uniform grids.

A.4 Output Files

Results from the run are contained in several output �les. These �les are:

CHECK.DAT: This �le stores various information such as number of iter-
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y

x

j=1

Ny

Nxi=1

Figure A.2: Areal schematic of the reservoir.

ation, value of the objective function, etc.

KREAL.DAT: This �le stores realizations (or the maximum a posteriori

estimate) of the log-permeability �eld after conditioning to both pressure data and

hard data for porosity. (It is not necessary to use any hard data).

PREAL.DAT: This �le stores realizations (or maximum a posteriori esti-

mate) of porosity �eld after conditioning to both pressure data and hard data for

porosity. (It is not necessary to use any hard data).

SREAL.DAT: This �le stores skin factors after conditioning to both pres-

sure data and hard data for porosity. (It is not necessary to use any hard data).

PITER.DAT: This �le stores times versus observed and calculated pressure

responses at each iteration of the Gauss-Newton procedure.

PFINAL.DAT: This �le stores times versus observed and calculated pres-

sure responses at convergence of the Gauss-Newton procedure.

HITER.DAT: This �le stores the location (gridblock number) versus ob-

served and calculated porosity values at the hard data locations at each iteration of



99

the Gauss-Newton procedure (if IHARD=1). This �le is used only for testing of the

code.

UCOR.DAT: This �le stores the corrections to the prior means for porosity

and log-permeability in the case IMEAN=1.



APPENDIX B

ADJOINT METHOD

B.1 Flow Equations

Here, we consider three-dimensional single phase ow of a slightly compress-

ible uid of constant viscosity and constant compressibility. We use an x-y-z Carte-

sian coordinate system. Neglecting the gravity e�ects, the governing ow equation

can be written in oil �eld units as

C1

�
r �
�
[k]rp(x; y; z; t)

�
=
�ct
C2

@p

@t
+ q̂w(x; y; z; t); (B.1)

where C1 = 1:127 � 10�3 and C2 = 5:615 and [k] denotes the permeability tensor.

We assume that the principal axes of permeability coincide with the directions of the

coordinate system so that

[k] =

2
6664
kx 0 0

0 ky 0

0 0 kz

3
7775 : (B.2)

The term q̂w(x; y; z; t) is the source or sink term at time t at well w in units of RB/ft3-

day and for production at well w, q̂w is positive; while for injection, q̂w is negative

and is nonzero only if the point (x; y; z) is intersected by a well. The reservoir model

is assumed to be a rectangular parallelepiped, i.e., Eq. B.1 applies for all t > 0 on


 =
h
(x; y; z) j 0 < x < Lx; 0 < y < Ly; 0 < z < Lz

i
; (B.3)

where the boundary of 
 is denoted by @
. Assuming a uniform initial pressure, pi,

the initial conditions are given by

p(x; y; z; 0) = pi; (B.4)

100
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for (x; y; z) in 
. We also assume no ow boundary conditions at outer edges of the

reservoir.

We partition 
 into gridblocks using a standard block-centered grid and

let (xi; yj; zk) for i = 1; 2; : : : ; Nx, j = 1; 2; : : : ; Ny and k = 1; 2; : : : ; Nz denote the

gridblock centers. Using a purely implicit �nite-di�erence scheme, Eq. B.1 can be

di�erenced. Multiplying the resulting equation by �xi�yj�zk, where �xi, �yj and

�zk are the dimensions of the gridblock centered at (xi; yj; zk) gives

Tz;i;j;k�1=2p
n
i;j;k�1 + Ty;i;j�1=2;kp

n
i;j�1;k + Tx;i�1=2;j;kp

n
i�1;j;k � (Ti;j;k + V n

i;j;k)p
n
i;j;k

+ Tx;i+1=2;j;kp
n
i+1;j;k + Ty;i;j+1=2;kp

n
i;j+1;k + Tz;i;j;k+1=2p

n
i;j;k+1 � qni;j;k = �V n

i;j;kp
n�1
i;j;k;

(B.5)

for i = 1; 2; : : : ; Nx, j = 1; 2; : : : ; Ny and k = 1; 2; : : : ; Nz. Note that in Eq. B.5 qni;j;k

represents the internal sink or source term at time tn in gridblock (i; j; k) and has

unit of RB/D. The transmissibilities, denoted by T 's in Eq. B.5, are de�ned as

Ti;j;k = Tx;i+1=2;j;k + Tx;i�1=2;j;k + Ty;i;j+1=2;k + Ty;i;j�1=2;k

+ Tz;i;j;k+1=2 + Tz;i;j;k�1=2; (B.6)

Tx;i+1=2;j;k =
C1�yj�zkkx;i+1=2;j;k

�(xi+1 � xi)
; (B.7)

for i = 1; 2; : : : ; Nx � 1 and all j and k,

Tx;1=2;j;k = Tx;Nx+1=2;j;k = 0; (B.8)

for all j and k;

Ty;i;j+1=2;k =
C1�xj�zkky;i;j+1=2;k

�(yj+1 � yj)
; (B.9)

for j = 1; 2; : : : ; Ny � 1 and all i and k,

Ty;i;1=2;k = Ty;i;Ny+1=2;k = 0; (B.10)
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for all i and k;

Tz;i;j;k+1=2 =
C1�xi�yjkz;i;j;k+1=2

�(zk+1 � zk)
; (B.11)

for k = 1; 2; : : : ; Nz � 1 and all i and j,

Tz;i;j;1=2 = Tz;i;j;Nz+1=2 = 0; (B.12)

for all i and j. Permeabilities at gridblock interfaces are computed as harmonic

averages.

In Eq. B.5, V n
i;j;k is de�ned by

V n
i;j;k =

�i;j;kct�xi�yj�zk
C2�tn

: (B.13)

The relation between a gridblock source or sink term, the gridblock pressure

and owing bottom hole pressure is speci�ed by applying Peaceman's equation [44,

45], i.e.,

qni;j;k = WIi;j;k(p
n
i;j;k � pnwf;i;j); (B.14)

where WIi;j;k, the well index term, is given by

WIi;j;k =
2�C1�zk

p
kx;i;j;kky;i;j;k

�[ln(ro;i;j;k=rw;i;j) + si;j;k]
: (B.15)

Here, rw;i;j is the wellbore radius of the well k and si;j;k is the skin factor at the well

for model layer k and

ro;i;j;k =
0:28073�xi

r
1 +

kx;i;j;k�y2j
ky;i;j;k�x2i

1 +
p
kx;i;j;k=ky;i;j;k

: (B.16)

The individual gridblock rates must sum to the total rate, i.e.

qni;j =
l2X

k=l1

qni;j;k =
l2X

k=l1

WIi;j;k(p
n
i;j;k � pnwf;i;j); (B.17)

where the sum is over all gridblocks penetrated by the well.
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Substituting Eq. B.14 into Eq. B.5 gives

Tz;i;j;k�1=2p
n
i;j;k�1 + Ty;i;j�1=2;kp

n
i;j�1;k + Tx;i�1=2;j;kp

n
i�1;j;k

� (Ti;j;k +WIi;j;k + V n
i;j;k)p

n
i;j;k + Tx;i+1=2;j;kp

n
i+1;j;k + Ty;i;j+1=2;kp

n
i;j+1;k

+ Tz;i;j;k+1=2p
n
i;j;k+1 +WIi;j;kp

n
wf;i;j = �V n

i;j;kp
n�1
i;j;k; (B.18)

for i = 1; 2; : : : ; Nx, j = 1; 2; : : : ; Ny and k = 1; 2; : : : ; Nz. Eq. B.17 can be rewritten

as

l2X
k=l1

WIi;j;kp
n
i;j;k �

 
l2X

k=l1

WIi;j;k

!
pnwf;i;j = qni;j: (B.19)

Assuming ow rates are speci�ed atNw wells, Eq. B.19 is applied at each well,

i.e., Eq. B.19 represents Nw equations. Thus Eqs. B.18 and B.19 represent N + Nw

equations in N + Nw unknowns. The unknowns are the N gridblock pressures and

the Nw wellbore pressures. Combining Eqs. B.18 and B.19, we obtain the following

matrix equation for the ow problem with well rates speci�ed:2
6666666666664

A1;1 A1;2

A2;1 A2;2

3
7777777777775

2
6666666666664

pn1
...

pnN

pnwf;1
...

pnwf;Nw

3
7777777777775
= �

2
6666666666664

V O

O O

3
7777777777775

2
6666666666664

pn�11

...

pn�1N

pn�1wf;1

...

pn�1wf;Nw

3
7777777777775
+

2
6666666666664

0
...

0

q1
...

qNw

3
7777777777775
; (B.20)

where the gridblock pressures are ordered in a one-dimensional array as follows. We

�rst start with �rst gridblock in the z-direction (i.e., k = 1) and with �rst gridblock

in the y-direction (i.e., j = 1), then the x-direction index increases from 1 to Nx. The

same ordering of the x-direction index is repeated for j = 2; 3; :::; Ny. Then, the same

ordering of the x-direction and the y-direction indices is repeated for k = 2; 3; :::; Nz.

In Eq. B.20, A1;1 is an N � N dimensional 7-band matrix with diagonal entries

given by terms �
�
Ti;j;k +WIi;j;k + V n

i;j;k

�
and the other 6 nonzero diagonals given by
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gridblock transmissibilities; A1;2 is an N �Nw matrix whose entries are either zero or

equal to a well index term. Each column of A1;2 which corresponds to a particular well

has non-zero entries equal to well index terms, WIi;j;k, at gridblocks corresponding

to that particular well; A2;1 is an Nw � N matrix which is equal to AT
1;2; A2;2 is an

Nw�Nw diagonal matrix with a particular diagonal entry corresponding to negative

of the sum of well index terms corresponding to a particular well, i.e. �
Pl2

k=l1WIi;j;k;

V is an N � N diagonal matrix with diagonal entries equal to V n
i;j;k terms and O's

are null matrices. In general matrix notations, Eq. B.20 can be written as

Anp
n = �Dnp

n�1 +Q; (B.21)

where pn and pn�1 are the vectors of pressures in all gridblocks and wellbores at

the nth and (n � 1)th timesteps, respectively. An and Dn are matrices of ow and

accumulation coeÆcients, i.e.

An =

2
4A1;1 A1;2

A2;1 A2;2

3
5 ; (B.22)

and

Dn =

2
4V O

O O

3
5 : (B.23)

Q contains source and sink terms. The matrix An can be written as

An = Bn �Dn; (B.24)

where Bn is the matrix obtained from replacing the diagonal entries of An which are

�
�
Ti;j;k +WIi;j;k + V n

i;j;k

�
terms by the terms � (Ti;j;k +WIi;j;k). Thus, Eq. B.21 can

also be written as

Bnp
n = Dn(p

n � pn�1) +Q: (B.25)
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B.2 Adjoint Equations

Assume we wish to compute the gradient of some real-valued function ĝ(p)

with respect to a vector m of model parameters. We need one Lagrange multiplier

or adjoint variable � for each pressure. Thus, we let �s be an (N +Nw)-dimensional

column vector, i.e.,

�ns = [�ns;1; �
n
s;2; :::; �

n
s;N ; �

n
s;N+1; �

n
s;N+2; :::; �

n
s;N+Nw

]T ; (B.26)

and adjoin Eq. B.21 to the function ĝ to obtain the functional J given by

J = ĝ +
LX

n=1

(�ns )
T [Anp

n +Dnp
n�1 �Q]: (B.27)

It is obvious that the terms in the sum are zero for any values of the adjoint variables.

This implies that

rJ = rĝ; (B.28)

where jth component of rĝ is the derivative of ĝ with respect to the jth model

parameter, i.e., sensitivity coeÆcient. Considering J as a function of kx, ky, kz and

�, its total di�erential can be written as

ÆJ = (rkxJ)
T Ækx +

�
rkyJ

�T
Æky + (rkzJ)

T Ækz + (r�J)
T Æ�; (B.29)

where Æ denotes the total di�erential operator and kx, ky, kz and � are respectively

the vectors of gridblock permeabilities and porosities, i.e.,

kx = [kx;1; kx;2; : : : ; kx;N ]
T ; (B.30)

ky = [ky;1; ky;2; : : : ; ky;N ]
T ; (B.31)

kz = [kz;1; kz;2; : : : ; kz;N ]
T ; (B.32)
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� = [�1; �2; : : : ; �N ]
T ; (B.33)

and their di�erentials are given by

Ækx = [Ækx;1; Ækx;2; : : : ; Ækx;N ]
T ; (B.34)

Æky = [Æky;1; Æky;2; : : : ; Æky;N ]
T ; (B.35)

Ækz = [Ækz;1; Ækz;2; : : : ; Ækz;N ]
T ; (B.36)

Æ� = [Æ�1; Æ�2; : : : ; Æ�N ]
T : (B.37)

In Eq. B.29 the terms (rkxJ)
T ,
�
rkyJ

�T
, (rkzJ)

T and (r�J)
T give the sensitivity

coeÆcients for the functional. Taking the total di�erential of Eq. B.27 using standard

operational formulas and notation, we obtain

ÆJ = Æĝ +
LX

n=1

(�ns )
T
h
An Æp

n +
�
rkx(Anp

n)T
�T

Ækx

+
�
rky(Anp

n)T
�T

Æky +
�
rkz(Anp

n)T
�T

Ækz

+
�
r�(Anp

n)T
�T

Æ�+DnÆp
n�1 +

�
r�(Dn p

n�1)T
�T

Æ�
i
: (B.38)

For the problems considered here the expression for ĝ will involve only pressures so

the total di�erential of ĝ can be written as

Æĝ =

LX
n=1

(rpn ĝ)
T Æpn; (B.39)

and Æpn denotes di�erential of pn. By changing the index of summation, we have

LX
n=1

(�ns )
T DnÆp

n�1 =
L�1X
n=1

�
�n+1s

�T
Dn+1Æp

n: (B.40)

Note that since p0 represents �xed speci�ed initial condition, its di�erential is zero,

i.e. Æp0 = 0. Since the entries of the matrix Bn do not depend on �, it follows that

r� (An p
n)T = r� ((Bn �Dn) p

n)T = �r� (Dn p
n)T : (B.41)
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Using Eqs. B.40 and B.41 and making rearrangements, Eq. B.38 can be written as

ÆJ =
LX

n=1

h
(�ns )

T An +
�
�n+1s

�T
Dn+1 + (rpn ĝ)

T
i
Æpn

+
LX

n=1

(�ns )
T �rkx(Anp

n)T
�T

Ækx +
LX

n=1

(�ns )
T �rky(Anp

n)T
�T

Æky

+
LX

n=1

(�ns )
T �rkz(Anp

n)T
�T

Ækz �
LX

n=1

(�ns )
T
�
r�

�
Dn(p

n � pn�1)
�T�T

Æ�: (B.42)

In Eq. B.42, choosing the adjoint variables to insure that the coeÆcients multiplying

Æpn vanish, we obtain

(�ns )
T An +

�
�n+1s

�T
Dn+1 + (rpn ĝ)

T = 0; (B.43)

for n = 1; 2; : : : ; L�1. Taking the transpose in Eq. B.43 and rearranging the resulting

equation gives the discrete system of adjoint equations

An�
n
s +Dn+1�

n+1
s = �rpn ĝ; (B.44)

for n = 1; 2; : : : ; L� 1. The additional constraint is given by

�Ls = 0: (B.45)

Eq. B.44 is solved for the adjoint variables backward in time by applying Eq. B.45 as

a constraint. Once we solve for adjoint variables, sensitivity of any function ĝ with

respect to model parameters are calculated using the following equations obtained by

comparing Eqs. B.29 and B.42,

rkxJ =
LX

n=1

rkx [Anp
n]T �ns ; (B.46)

rkyJ =
LX

n=1

rky [Anp
n]T �ns ; (B.47)
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rkzJ =
LX

n=1

rkz [Anp
n]T �ns ; (B.48)

and

r�J = �
LX

n=1

r�

�
Dn(p

n � pn�1)
�T
�ns : (B.49)

If the permeability is isotropic, i.e. kx = ky = kz = k then we simply use

rkJ =
LX

n=1

rk [Anp
n]T �ns : (B.50)

B.3 Calculation of Subspace Vectors

We wish to compute gradients of partial data objective functions. Recall

that (section 3.3.1) data objective function is partitioned as

OD(m) =
X
k

Ok
D(m); (B.51)

where

Ok
D(m) =

1

2

�
gk(m)� dkuc

�T
[Ck

D]
�1
�
gk(m)� dkuc

�
: (B.52)

For the problems considered here, Ck
D is a diagonal matrix with all diagonal entries

equal to �2d;k; g
k(m) contains the kth set of calculated wellbore pressures obtained

from the model using the reservoir simulator and dkuc is the kth set of unconditional

simulation of the observed wellbore pressure data. Eq. B.52 can be written as

Ok
D =

1

2

NkX
l=1

�
gkl (m)� dkuc;l

�2
�2d;k;l

: (B.53)

For the particular problem of computing gradients of partial data objective

functions, we choose

ĝ =
1

2

NkX
l=1

�
gkl (m)� dkuc;l

�2
�2d;k;l

: (B.54)
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To compute the gradient (i.e. sensitivity) of ĝ with respect to model parameters (a

subspace vector) we �rst need to compute the source term on the right-hand side of

Eq. B.44, i.e. �rpn ĝ, then solve the adjoint equations. So

rpn ĝ = rpn

"
1

2

NkX
l=1

�
gkl (m)� dkuc;l

�2
�2d;k;l

#
: (B.55)

The �rst N entries of rpn ĝ are equal to zero since ĝ is independent of gridblock

pressures. The remaining Nw entries of rpn ĝ which will be denoted by rpnw ĝ (where

pnw is the Nw-dimensional vector which contains wellbore pressures at the wells at nth

timestep) are zero except when tn = tl. If tn = tl, then

rplw
ĝ = ew

�
gkl (m)� dkuc;l

�
�2d;k;l

; (B.56)

where ew is an Nw-dimensional vector with the entry corresponding to the location

of wellbore pressure in the vector plw equal to one and all other entries zero.

As a �nal comment we should note that for every subspace vector based on

the gradient of a sub-objective function, there is one adjoint system to solve.



APPENDIX C

SENSITIVITY TO COEFFICIENTS OF SUBSPACE VECTORS

C.1 The Product GlAl

Before starting to derive the equations for computing the product GlAl using

the gradient simulator method, it might be bene�cial to show the product GlAl.

Recall that Gl is the sensitivity coeÆcients matrix evaluated at ml, i.e.

G =
�
rmg

T
�T

=

2
6666664

@g1
@m1

@g1
@m2

: : : @g1
@mNM

@g2
@m1

@g2
@m2

: : : @g2
@mNM

...
...

. . .
...

@gND
@m1

@gND
@m2

: : :
@gND
@mNM

3
7777775
: (C.1)

Note that in Eq. C.1 we have deleted the iteration index to simplify the equations.

We want to calculate sensitivities with respect to some subspace vectors that

are linear combinations of the gridblock model parameters, i.e.

ml = ml�1 + A�; (C.2)

or

ml = ml�1 +

NBX
j=1

aj�j: (C.3)

The kth entry of Eq. C.3 can be written as

ml
k = ml�1

k +

NBX
j=1

ajk�j: (C.4)

Di�erentiating Eq. C.4 gives

ajk =
@mk

@�j
; (C.5)
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so

A =

2
6666664

@m1

@�1
@m1

@�2
: : : @m1

@�NB

@m2

@�1

@m2

@�2
: : : @m2

@�NB
...

...
. . .

...
@mNM

@�1

@mNM

@�2
: : :

@mNM

@�NB

3
7777775
: (C.6)

Note that in Eqs. C.5 and C.6 we have again deleted the iteration index to simplify

the equations. Multiplying Eq. C.1 with Eq. C.6 gives

GA =

2
6666664

@g1
@m1

@m1

@�1
+ : : :+ @g1

@mNM

@mNM

@�1
: : : @g1

@m1

@m1

@�NB
+ : : :+ @g1

@mNM

@mNM

@�NB
@g2
@m1

@m1

@�1
+ : : :+ @g2

@mNM

@mNM

@�1
: : : @g2

@m1

@m1

@�NB
+ : : :+ @g2

@mNM

@mNM

@�NB
...

. . .
...

@gND
@m1

@m1

@�1
+ : : :+

@gND
@mNM

@mNM

@�1
: : :

@gND
@m1

@m1

@�NB
+ : : :+

@gND
@mNM

@mNM

@�NB

3
7777775
: (C.7)

Each entry of matrix of Eq. C.7 represents the chain rule, so Eq. C.7 can be rewritten

as

GA =
�
r�g

T
�T

=

2
6666664

@g1
@�1

@g1
@�2

: : : @g1
@�NB

@g2
@�1

@g2
@�2

: : : @g2
@�NB

...
...

. . .
...

@gND
@�1

@gND
@�2

: : :
@gND
@�NB

3
7777775
; (C.8)

which is simply the sensitivity of the data to the coeÆcients of the subspace vectors.

C.2 Computation of GlAl

Again, we begin with the simulator equation (Eq. B.21) which is repeated

here as

Anp
n = �Dnp

n�1 �Q: (C.9)

Taking the total di�erential of Eq. C.9, we obtain

Æ (Anp
n) = �Æ

�
Dnp

n�1
�
+ ÆQ; (C.10)
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where Æ denotes the total di�erential operator. We consider the case that ow rates

are speci�ed, so ÆQ = 0 in Eq. C.10. We let An;i denote the ith row of the matrix An

so

An =

2
6666666666664

An;1

An;2

...

An;i

...

An;NT

3
7777777777775
; (C.11)

and

Anp
n =

2
6666666666664

An;1p
n

An;2p
n

...

An;ip
n

...

An;NT
pn

3
7777777777775
; (C.12)

where NT = N +Nw. Thus, Æ (Anp
n) can be written as

Æ (Anp
n) =

2
6666666666664

Æ (An;1p
n)

Æ (An;2p
n)

...

Æ (An;ip
n)

...

Æ (An;NT
pn)

3
7777777777775
=

2
6666666666664

PNM

j=1
@(An;1pn)

@mj
ÆmjPNM

j=1
@(An;2pn)

@mj
Æmj

...PNM

j=1
@(An;ip

n)

@mj
Æmj

...PNM

j=1

@(An;NT p
n)

@mj
Æmj

3
7777777777775
; (C.13)

where the last equality of Eq. C.13 is obtained from the relationship between the

total di�erential and partial derivatives of the model parameters.

Since each An;ip
n in Eq. C.12 is simply a number,

(Anp
n)T = [An;1p

n � � � An;ip
n � � � An;NT

pn] : (C.14)
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Using basic vector calculus, the gradient of the vector (Anp
n)T is obtained as

rm (Anp
n)T =

2
6666664

@(An;1pn)

@m1

@(An;2pn)

@m1
: : :

@(An;NT p
n)

@m1

@(An;1pn)

@m2

@(An;2pn)

@m2

: : :
@(An;NT p

n)

@m2

...
...

. . .
...

@(An;1pn)

@mNM

@(An;2pn)

@mNM

: : :
@(An;NT p

n)

@mNM

3
7777775
; (C.15)

where rm represents the gradient operator with respect to the model and thus in-

volves partial derivatives with respect to all parameters. Taking the transpose of

Eq. C.15 and multiplying by the model perturbation vector, it follows that

�
rm (Anp

n)T
�T

Æm =

2
6666666666664

PNM

j=1
@(An;1pn)

@mj
ÆmjPNM

j=1
@(An;2pn)

@mj
Æmj

...PNM

j=1
@(An;ip

n)

@mj
Æmj

...PNM

j=1

@(An;NT p
n)

@mj
Æmj

3
7777777777775
: (C.16)

Comparing Eq. C.16 with Eq. C.13, we obtain the following equality

Æ (Anp
n) =

�
rm (Anp

n)T
�T

Æm: (C.17)

Expanding the derivatives in Eq. C.15 gives

rm (Anp
n)T =

2
6666664

An;1
@pn

@m1
An;2

@pn

@m1
: : : An;NT

@pn

@m1

An;1
@pn

@m2

An;2
@pn

@m2

: : : An;NT

@pn

@m2

...
...

. . .
...

An;1
@pn

@mNM

An;2
@pn

@mNM

: : : An;NT

@pn

@mNM

3
7777775
+

2
6666664

@An;1
@m1

pn @An;2
@m1

pn : : :
@An;NT
@m1

pn

@An;1
@m2

pn @An;2
@m2

pn : : :
@An;NT
@m2

pn

...
...

. . .
...

@An;1
@mNM

pn @An;2
@mNM

pn : : :
@An;NT
@mNM

pn

3
7777775
: (C.18)
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From Eqs. C.11, C.17 and C.18, it follows that

Æ (Anp
n) =

�
rm (Anp

n)T
�T

Æm =

2
6666664

An;1

An;2

...

An;NT

3
7777775
�
@pn

@m1

@pn

@m2
� � �

@pn

@mNM

�
Æm +

�
@An

@m1
pn

@An

@m2
pn � � �

@An

@mNM

pn
�
Æm: (C.19)

Applying the same arguments used to derive Eqs. C.17 and C.19, it is easy

to show that

Æpn =
�
rm (pn)T

�T
Æm =

�
@pn

@m1

@pn

@m2
� � �

@pn

@mNM

�
Æm: (C.20)

Using Eqs. C.11 and C.20, Eq. C.19 can be rewritten as

Æ (Anp
n) =

�
rm (Anp

n)T
�T

Æm = AnÆp
n +

�
@An

@m1
pn

@An

@m2
pn � � �

@An

@mNM

pn
�
Æm:

(C.21)

De�ning Fn by

Fn =

�
@An

@m1

pn
@An

@m2

pn � � �
@An

@mNM

pn
�
; (C.22)

Eq. C.21 can be rewritten as

Æ (Anp
n) =

�
rm (Anp

n)T
�T

Æm = AnÆp
n + FnÆm: (C.23)

The same basic derivation used to derive Eq. C.23 can be applied to show

that

Æ
�
Dnp

n�1
�
= DnÆp

n�1 + EnÆm; (C.24)

where

En =

�
@Dn

@m1
pn�1

@Dn

@m2
pn�1 � � �

@Dn

@mNM

pn�1
�
: (C.25)
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Using Eqs. C.23 and C.24 in Eq. C.10 and rearranging, we obtain

AnÆp
n = �FnÆm�DnÆp

n�1 � EnÆm: (C.26)

The same derivation of Eq. C.26 was previously given by Chu and Reynolds [9].

Here, we want to calculate sensitivities with respect to some subspace vectors

that are linear combinations of the gridblock model parameters, i.e. Æm = A� = AÆ�.

Substituting this into Eq. C.26 gives

AnÆp
n = �FnAÆ��DnÆp

n�1 � EnAÆ�: (C.27)

Considering pn as a function of �'s, the following equations which can be shown

using the arguments similar to those presented previously relate changes in pressure

to changes in subspace coeÆcients,

Æpn�1 =
h
r�

�
pn�1

�TiT
Æ�; (C.28)

and

Æpn =
h
r� (p

n)T
iT

Æ�: (C.29)

Using Eq. C.28 in Eq. C.27 gives

AnÆp
n = �FnAÆ��Dn

h
r�

�
pn�1

�TiT
Æ�� EnAÆ�: (C.30)

Eq. C.30 can be rearranged to obtain

Æpn = A�1
n

�
�FnA�Dn

h
r�

�
pn�1

�TiT
� EnA

�
Æ�: (C.31)

Comparing Eq. C.31 with Eq. C.29, it follows that

h
r� (p

n)T
iT

= A�1
n

�
�FnA�Dn

h
r�

�
pn�1

�TiT
� EnA

�
; (C.32)

or

An

h
r� (p

n)T
iT

= �FnA�Dn

h
r�

�
pn�1

�TiT
� EnA: (C.33)
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Eq. C.33 can be written for each column of A (i.e., aj) as

An

2
6666666666664

@pn
1

@�j
...

@pnN
@�j

@pnwf;1
@�j
...

@pnwf;Nw
@�j

3
7777777777775
= �Fnaj �Dn

2
6666666666664

@pn�1
1

@�j
...

@pn�1
N

@�j
@pn�1wf;1

@�j
...

@pn�1
wf;Nw

@�j

3
7777777777775
� Enaj: (C.34)

Finally, Eq. C.34 can be solved for j = 1; 2; : : : ; NB to obtain
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