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ABSTRACT

Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the

prediction of future oil production, estimation of the location of bypassed oil, and optimiza-

tion of reservoir management. But while the volume of data that can potentially provide

information on reservoir architecture and fluid distributions has increased enormously in the

past decade, it is not yet possible to make use of all the available data in an integrated

fashion. While it is relatively easy to generate plausible reservoir models that honor static

data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir

models that honor dynamic data such as transient pressures, saturations, and flow rates.

As a result, the uncertainty in reservoir properties is higher than it could be and reservoir

management can not be optimized. The goal of this project is to develop computationally

efficient automatic history matching techniques for generating geologically plausible reservoir

models which honor both static and dynamic data. Solution of this problem is necessary

for the quantification of uncertainty in future reservoir performance predictions and for the

optimization of reservoir management.

Facies (defined here as regions of relatively uniform petrophysical properties) are com-

mon features of all reservoirs. Because the flow properties of the various facies can vary

greatly, knowledge of the location of facies boundaries is of utmost importance for the pre-

diction of reservoir performance and for the optimization of reservoir management. When

the boundaries between facies are fairly well known, but flow properties are poorly known,

the average properties for all facies can be determined using traditional techniques. Tradi-

tional history matching honors dynamic data by adjusting petrophysical properties in large

areas, but in the process of adjusting the reservoir model ignores the static data and often

results in implausible reservoir models. In general, boundary locations, average permeabil-

ity and porosity, relative permeability curves, and local flow properties may all need to be

adjusted to achieve a plausible reservoir model that honors all data. In this project, we

will characterize the distribution of geologic facies as an indicator random field, making use

of the tools of geostatistics as well as the tools of inverse and probability theory for data

integration.
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EXECUTIVE SUMMARY

Bayesian statistics provides a framework for the automatic history matching of multiphase

flow production data to construct estimates or realizations of reservoir properties that are

consistent with time-lapse seismic data, production data and static data obtained from logs,

cores and geologic and geophysical interpretation. The automatic history matching pro-

cedure developed and implemented in our work requires the minimization of an objective

function which consists of the sum of a regularization term and production data mismatch

terms. The regularization term represents a geostatistical model constructed from static

data. If the number of production data is small or the number of reservoir variables to be

estimated is small, we showed in our previous DOE annual report on this project that a mod-

ified Levenberg-Marquardt algorithm or a Gauss-Newton method can be applied to minimize

the appropriate objective function. The Levenberg-Marquardt algorithm and Gauss-Newton

method, however, require the computation of individual sensitivity coefficients and this is

not computationally feasible for large scale problems where the number of production data

to be matched is greater than a few hundred and the number of reservoir variables is on

the order of a few thousand to tens of thousands. In previous reports on this project, we

discussed an implementation of a scaled limited memory Broyden-Fletcher-Goldfard-Shanno

(LBFGS) algorithm and showed that it is a robust and computationally efficient algorithm

for large scale history matching problems.

Since our last report, we have modified our history matching code so that we can condition

a reservoir model to both production and time lapse seismic data. The history matching

procedure enables us to construct estimates of gridblock porosities and log-permeabilities.

Gridblock log-permeabilities are converted to permeabilities when running the simulator.

The reason for constructing estimates of log-permeabilities is that the theoretical justification

of our approach to automatic history matching is based on Bayesian statistics and in this

setting the permeability fields are assumed to be log-normal. The rock properties estimated

are referred to throughout as model parameters.

Because history matching is an inherently ill-conditioned problems, overshooting and
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undershooting often occurs. Overshooting refers to obtaining an estimate of a model param-

eter that is unreasonably high and undershooting refers to obtaining an estimate of a model

parameter that is unreasonably low. To control undershooting and overshooting, we have

added the option of applying constraints in our LBFGS algorithm. We apply a constrained

LBFGS algorithm to to the Tengiz field example and show that the method controls the

overshooting we experienced previously. The Tengiz reservoir is an undersaturated reser-

voir produced by forty four wells. In this example, we estimated permeability fields on a

59× 49× 9 upscaled reservoir simulation grid by conditioning the permeability field gener-

ated from a geostatistical model to pressure buildup data by automatic history matching of

buildup data. By application of the constrained optimization algorithm we found that the

reported pressure and rate data were inconsistent and are currently analyzing the data to

try to properly account for these inconsistencies.

In the chapter entitled “Time Lapse Seismic Data”, we discuss the status of our work

on incorporating time-lapse seismic data. As time-lapse seismic data covers the areal ex-

tent of the reservoir and is related to vertically averaged pressure and fluid saturations, it

is clear that matching these seismic data, simultaneously with production data, will reduce

the uncertainty in our estimates of the rock property fields. Applying a gradient based opti-

mization algorithm to condition rock property fields to seismic data requires the calculation

of sensitivity of the seismic data to the rock property fields. In this report, two synthetic

reservoir examples are considered to investigate our proposed approach for integrating seis-

mic data; one example pertains to waterflooding an oil reservoir and the second is a large

three-dimensional model based on a solution-gas drive reservoir in the middle east. In both

cases, seismic impedance data is available at two or more times where the distribution of

phases saturations in the reservoir are quite different so useful time-lapse impedance data

can be constructed. We have implemented the adjoint procedure to calculate the sensitiv-

ity of seismic impedance to the permeability and porosity fields. The gradient is used in

the limited memory BFGS algorithm to estimate rock property fields by history matching

production data and seismic data simultaneously.

Because we will always use a reservoir simulator to calculate production data for a

given reservoir description, it is convenient to include reservoir simulator gridblock log-

permeabilities and porosities in the set of reservoir variables to be estimated by history-

matching. In many reservoirs, however, the primary control on the distribution of perme-

ability and porosity is the facies; typically the variation of rock properties between facies is

much larger than the variation within a facies. Because of this, it is critical to estimate facies

boundaries in the history matching process. In this work, we have developed a truncated

2



plurigaussian model for the generation of facies maps. Unlike previous implementations of

this method, we have used intersecting lines as thresholds. With this approach, we show that

it is still possible to (1) generate a rich variety of textures and shapes, (2) estimate the loca-

tions of the threshold lines, (3) generate approximations of the sensitivity coefficients needed

to condition reservoir models to facies distributions, and (4) implement the new method into

the existing history-matching code.

We have also introduced uncertainty into the relative permeability curves under the as-

sumption that relative permeability curves can be described by power law models. For some

two-dimensional flow cases, we have shown that reasonable estimates of relative permeabil-

ity curves can be constructed from three-phase flow production data if a prior model for

the parameters defining the power law curves is available from laboratory derived relative

permeability curves.
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INTRODUCTION

Automatic history matching is based on minimizing an objective function which includes a

sum of squared production data mismatch terms. Typically, minimization is done based on a

derivative based optimization routine, such as the Gauss-Newton and Levenberg-Marquardt

algorithms, because algorithms which do not use derivative information converge too slowly

for practical applications. We refer to the reservoir variables to be estimated as model pa-

rameters. The model parameters typically represent reservoir simulator gridblock porosities

and permeabilities (or log-permeabilities), may also represent well skin factors, transmissibil-

ity multipliers, parameters describing relative permeability curves or parameters describing

facies boundaries. Standard implementations of the Gauss-Newton method or Levenberg-

Marquardt algorithm require calculation of sensitivity coefficients, which formally represent

the derivative of predicted production data with respect to the model parameters.

For automatic history matching problems of interest to us, the number of model pa-

rameters is greater than the number of independent production data and thus the history

matching problem does not have a unique solution. If the Gauss-Newton procedure is ap-

plied to minimize an objective function consisting of only the sum of squared production

data misfit terms, the Hessian matrix will be singular and the optimization algorithm will

be unstable. This instability problem can be avoided by adding a regularization term to the

objective function to be minimized; see Tikhonov (1963) and Parker (1994). With a proper

regularization, the Hessian matrix in the Gauss-Newton method will be real symmetric pos-

itive definite and hence nonsingular. In this work, we use a prior geostatistical model to

provide regularization. With this approach, the history matching problem is equivalent to

a Bayesian estimation problem (Gavalas et al., 1976; Tarantola, 1987; He et al., 1997; Wu

et al., 1999).

The Gauss-Newton method is popular because it converges quadratically in the neigh-

borhood of a minimum; see, for example, Fletcher (1987). Sometimes, however, if the initial

guess in the Gauss-Newton method results in a large initial data mismatch, the Gauss-

Newton will converge to a reservoir model which represents a local minimum and does not
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give an acceptable match of production data; see, Wu et al. (1999)and Li et al. (2001a). For

this reason, we often apply a Levenberg-Marquardt algorithm instead of the Gauss-Newton

method if the production data misfit based on the initial reservoir model is very large.

Automatic history matching traces its roots to research conducted in the 1960’s by

Jacquard (1964), Jacquard and Jain (1965) and Jahns (1966). To the best of our knowledge,

Jacquard and Jain (1965) presented the first procedure for numerically computing sensitivity

coefficients for history matching purposes. They applied their method to the estimation of

permeability in a two-dimensional reservoir from pressure data obtained under single-phase

flow conditions. They used a combination of zonation (less than twenty distinct values) and

an algorithm conceptually similar to the Levenberg-Marquardt algorithm to provide regular-

ization. Jahns estimated transmissibility (kh/µ) values and storativity (φcth) simultaneously

by history matching single-phase flow pressure data. He used the finite difference method

to compute sensitivity coefficients and applied the Gauss-Newton method with an exact line

search to estimate the rock property fields by minimizing an objective function consisting

only of the sum of squared pressure mismatch terms. Zonation was used to provide regular-

ization. Jahns actually used a sequence of minimization steps where the number of zones,

and hence the number of parameters was increased at each minimization step. The maximum

number of parameters estimated was nine, eight zonal transmissibilities (or permeabilities)

and total storativity. The finite difference method used to compute sensitivities requires

Nm + 1 runs of the simulator where Nm is the number of model parameters estimated. This

procedure would not be feasible when thousands of model parameters are estimated.

Jacquard and Jain (1965) based their procedure for computing sensitivity coefficients on

an electric-circuit analogue. Later, motivated by Jacquard and Jain’s ideas, Carter et al.

(1974) presented an elegant derivation of a method to compute sensitivity coefficients for two-

dimensional single-phase flow problems. As originally presented, the procedure of Carter et

al. can be applied to compute the sensitivity of simulator gridblock pressures to all gridblock

permeabilities and porosities. If each well penetrates only a single gridblock, one can compute

the sensitivity of the wellbore pressure to model parameters from the well’s gridblock pressure

sensitivities, provided the simulator uses a formula like the one of Peaceman (1978) to relate

wellbore pressure and gridblock pressure. For two-dimensional single-phase flow problems

with pressure measurements at Nw wells, this procedure requires Nw +1 reservoir simulation

runs to compute all sensitivity coefficients regardless of the number of model parameters and

regardless of the number of pressure data. For three-dimensional problems, the number of

simulation runs required would be equal to one plus the number of gridblocks penetrated

by wells. If the number of such gridblocks is large, the Carter et al. procedure becomes
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less computationally attractive. However, He et al. (1996) have developed an approximate

three-dimensional version of the Carter et al. method which is computationally efficient.

Regardless of the number of gridblocks penetrated by wells, the method of He et al. requires

only Nw + 1 reservoir simulation runs to compute the sensitivity of all well pressure data to

all gridblock permeabilities and porosities. The method is only approximate and does not

always yield accurate results if vertical flow is significant in gridblocks penetrated by wells.

It is not clear, however, whether the fact that the sensitivity coefficients are approximate

leads to significant errors in the history matching process.

For nonlinear problems, e.g., multiphase flow problems, the derivations of Carter et al.

(1974) and He et al. (1996) do not apply. Thus, we are forced to seek other alternatives. One

possible choice is the adjoint or optimal control method, introduced independently for the

single-phase history matching problem by Chen et al. (1974) and Chavent et al. (1975). (For

single-phase flow problems, Carter et al. (1982) have shown that their method is equivalent

to the adjoint method.)

Unlike the Carter et al. (1982) method, however, the adjoint method can be applied

to compute sensitivity coefficients in multiphase flow problems. Unfortunately, the proce-

dure requires Nd adjoint solutions where Nd is the number of production data to be history

matched. The sensitivities can be calculated easily once the adjoint variables have been

computed. Solving an adjoint problem is similar to solving the simulation finite difference

equations with two distinct differences: (i) to find the adjoint variables needed to computed

the sensitivity of a particular production data at the time tl, the appropriate adjoint prob-

lem is solved backward in time, from time tl to time zero; (ii) unlike the forward problem

(simulator problem), the adjoint problem is linear. At each time step in the adjoint solu-

tion, a matrix problem is solved. The coefficient matrix is independent of the production

data but the right hand side of the matrix problem is determined directly from the specific

production data. If Nd production data are uniformly spaced in time and the final time at

which we have measured production data is tL, then computing all adjoint solutions needed

to compute the sensitivities of all production data effectively requires solving a sequence of

matrix problems related to solving the adjoint problem backward in time from tL. At each

time step, the matrix problem is solved with an average of Nd/2 right-hand side vectors; see

Wu et al. (1999) for additional discussion. Even if one uses a procedure based on solving a

matrix problem with multiple right hand sides, the solution of the adjoint systems needed

to compute sensitivities for Nd production data will not be feasible when Nd is large. If

one assumes that solving the adjoint matrix systems with an average of Nd/2 right hand

side vectors is equivalent to at least (0.1Nd)/2 simulation runs, the number of equivalent
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simulation runs required is prohibitive if there are several hundred production data to be

matched. Because of this, the adjoint method traditionally has been used only in conjunction

with optimization methods which require only the gradient of the objective function, e.g.,

conjugate gradient or variable metric methods; see, for example, Wasserman et al. (1975),

yong Lee and Seinfeld (1987); Lee and Seinfeld (1987), Yang and Watson (1988), Makhlouf

et al. (1993). Computation of the gradient of the objective function requires only the so-

lution of a single adjoint system and thus requires no more computational time than one

reservoir simulation run. Unfortunately, the implementations of these methods have resulted

in slow convergence. For example, Makhlouf et al. (1993) reported that history matching a

two-phase flow 450 cell reservoir model required 6400 CPU seconds on a CRAY X-MP/48.

In their work, a conjugate gradient method was used as the optimization algorithm. For

one three-phase flow problem with 450 grid blocks, 222 iterations of the conjugate gradient

algorithm were required to obtain convergence.

Largely because of the results of Makhlouf et al. (1993), until recently, our work on auto-

matic history matching has focused on using the Gauss-Newton and Levenberg-Marquardt

algorithms instead of conjugate gradient or variable metric algorithms. Wu et al. (1999)

were the first to use the adjoint method in conjunction with the Gauss-Newton method to

perform history matching. They implemented the adjoint method to compute the sensitiv-

ity of all production data to gridblock permeabilities and porosities. In their work, they

constructed estimates and realizations of permeability and porosity fields by conditioning a

prior geostatistical model to pressure and water-oil ratio data. They considered only two-

dimensional, two-phase flow (water-oil) systems. As noted in our previous DOE annual

report on this process, we have extended the Gauss-Newton and Levenberg-Marquardt al-

gorithms in conjunction with the adjoint method for sensitivity calculation to the problem

of history matching production data for three-dimensional, three-phase flow problems. The

resulting history matching process, however, is not practically feasible for problems of inter-

est to us where both the number of data and the number of model parameters exceed a few

hundred.

Perhaps because it is simple to implement, the so-called gradient method is frequently

used to compute sensitivity coefficients needed for automatic history matching. This method

was introduced into the petroleum engineering literature by Anterion et al. (1989), but was

known earlier in the ground water hydrology literature as the sensitivity coefficient method;

see, for example, the review of parameter identification methods by Yeh (1986). In this

procedure, the sensitivity of pressures and saturations to model parameters at the end of a

simulator time-step can be obtained by solving a matrix problem obtained by differentiating
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the matrix form of the finite difference equations with respect to a model parameter, e.g., a

gridblock value of permeability or porosity. From the pressure and saturation sensitivities,

one can easily construct other sensitivity coefficients, e.g., the sensitivity of gas-oil ratio

to model parameters. The advantage of the gradient simulator method is that the matrix

problem solved to obtain these sensitivity coefficients involves the same coefficient matrix

as the one used to solve for pressures and saturations at this time step. Moreover, the

coefficient matrix does not depend on the model parameters; only the right hand side of the

matrix problem depends on the model parameters. Thus, the problem reduces to solving a

matrix problem with multiple right-hand side vectors, one right-hand side vector, for each

model parameter. The difficulty is that if we wish to estimate (or construct realizations of)

permeabilities and porosities at several thousand gridblocks, then we have several thousand

right-hand sides. The number of right-hand sides is equal to the number of model parameters

to be estimated. With the fast iterative solver developed by Killough et al. (1995), it appears

that the computational time to compute a single sensitivity coefficient is on the order of

10% of a forward simulation. For the gradient simulator to be practical, the number of

model parameters must be small. This means, if the underlying reservoir simulation problem

involves tens of thousands of gridblocks, one must reduce the number of parameters estimated

directly in the optimization algorithm by some form of reparameterization, e.g., zonation

(Jacquard and Jain, 1965) or gradzones (Bissell et al., 1994; Bissell, 1994; Tan, 1995), pilot

points (de Marsily et al., 1984; RamaRao et al., 1995; Bissell et al., 1997) or subspace

methods (Kennett and Williamson, 1988; Oldenburg et al., 1993; Reynolds et al., 1996;

Abacioglu et al., 2000).

When the number of model parameters and number of production data to be matched are

both large and can not be reduced by some reparameterization technique without incurring

a significant loss of information, one must seek an alternative to computing and storing the

full sensitivity coefficient matrix, G. One can write the Gauss-Newton method such that

each iteration requires the solution of an Nd ×Nd matrix problem where Nd represents the

number of production data to be matched. If this matrix problem is solved by a conjugate

gradient method (Hestenes and Stiefel, 1952; Fletcher and Reeves, 1964; Shanno, 1978a,b),

the explicit direct computation of G is not required. Each iteration requires only the product

of G times a vector and the product of the transpose of G times a vector. A procedure for

computing these matrix vector products without first computing G was introduced into the

petroleum engineering literature by Chu et al. (2000) although the basic idea appeared earlier

in a somewhat simpler context in the geophysics literature; see Mackie and Madden (1993).

Although computation of the matrix products is relatively efficient, the conjugate gradient
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method may require up to Nd iterations to obtain convergence if the matrix is poorly condi-

tioned and no good preconditioning matrix is available (see Axelsson (1994)). If Nd is large,

this would render the algorithm impractical. Although the convergence of the conjugate

gradient method can be considerably accelerated by the choice of a good preconditioner, it

is not clear that one can construct a good preconditioner since the coefficient matrix for the

matrix problem that is solved is not explicitly computed. To compute this coefficient matrix

would require the explicit computation of the full sensitivity coefficient matrix G.

One can also avoid explicit computation of all sensitivity coefficients if history matching is

done using a nonlinear optimization method, that requires only the gradient of the objective

function. As mentioned previously, Makhlouf et al. (1993) found that a nonlinear conjugate

gradient algorithm could require over two hundred iterations to converge even for a small

three-phase flow history matching problem. As each conjugate gradient iteration requires

roughly the equivalent of three reservoir simulation runs, history matching a large problem

using a nonlinear conjugate gradient method does not appear to be feasible based on the

results of Makhlouf et al. (1993). However, Makhlouf et al. (1993) did not apply precondi-

tioning. If a good preconditioning matrix can be found for nonlinear conjugate gradients, it

is conceivable that convergence could be considerably accelerated.

Quasi-Newton or variable metric methods, which are based on generating an approxima-

tion to the inverse of the Hessian matrix, require only the gradient of the objective function.

The methods differ in how they correct or update the inverse Hessian approximation at each

iteration. The rank one correction formula was first suggested by Broyden (1967). Another

formula, now called the DFP algorithm, was first suggested by Davidon in 1959 and later

presented by Fletcher and Powell (1963). The BFGS correction formula, suggested inde-

pendently by Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970), and

several variants of the BFGS formula (like the self-scaling variable metric (SSVM) by Oren

(1973), limited memory BFGS by Nocedal (1980) and Liu and Nocedal (1989)) have also

been advanced as useful variable metric methods.

The conjugate gradient method was originally proposed by Hestenes and Stiefel (1952)

for solving linear systems and extended to nonlinear optimization by Fletcher and Reeves

(1964) to obtain the Fletcher-Reeves algorithm. Later Polak (1971) proposed a different

formula to calculate the coefficient involved in the search direction update equation. Powell

(1977) presented some numerical results and theoretical reasons which indicate that the

Polak-Ribière algorithm is superior to the Fletcher-Reeves algorithm. The efficiency of the

conjugate gradient method depends primarily on the preconditioner used.

The limited memory BFGS (LBFGS) was designed for the purpose of solving large scale
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problems which involve thousands of variables. Limited memory methods originated with

the work of Shanno (1978a), and were subsequently developed and analyzed by Buckley

(1978), Nazareth (1979), Nocedal (1980), Shanno (1978b), and Buckley and Lenir (1983).

Liu and Nocedal (1989), and Nash and Nocedal (1991) tested LBFGS method with a set of

problems. They concluded that LBFGS performs better than conjugate gradient in terms

of computational efficiency, except in cases where the function evaluation is inexpensive.

Nash and Nocedal (1991) also tested a truncated-Newton method in their work. From their

comparison, none of the algorithms is clearly superior to the other.

The self-scaling variable metric (SSVM) method was used by Yang and Watson (1988)

on hypothetical water floods of both 1D and 2D reservoir models. The 1D reservoir model

consisted of 10 gridblocks with an injection well at one end and a producing well at the other

end. Sixty data from each well were used for history matching. Four cases based on this

1D reservoir model were tested. The reservoir was characterized by different parameters in

different cases. The number of model parameters varied from 9 to 19. Two other cases were

based on a quarter of a five-spot 2D model which consisted of a 10 × 10 grid. Again sixty

data from each well were history matched. The number of model parameters for these two

cases were 4 and 11 respectively. In this paper, the authors tested four different algorithms,

BFGS, SSVM, conjugate gradient and steepest descent. They concluded that (i) the self-

scaling variable metric method is significantly more efficient than the BFGS method; (ii)

the SSVM and BFGS methods are more efficient and robust than the conjugate gradient

method, except in the case where the objective function is nearly quadratic; and (iii) both

SSVM and BFGS methods perform significantly better than the steepest descent method.

Masumoto (2000) applied the SSVM method to a water-oil two phase fluid flow problem.

The author considered a 1D reservoir model with 20 gridblocks. With a fixed porosity field,

the author estimated the gridblock permeabilities. The objective function he minimized

included a pressure mismatch part and the pressure derivative mismatch part. The author did

not give any information about how many data he history matched or any assessment of the

minimization algorithm. Savioli and Grattoni (1992) compared four different minimization

algorithms: Davidon-Fletcher-Powell (DFP), Fletcher-Reeves (FR), BFGS and Levenberg-

Marquardt (LM). The authors presented two examples. In the first example, they estimated

one permeability value and one porosity value by applying these four algorithms. The second

example they considered was an oil-water two phase water flooding problem. They estimated

the exponent used to define the relative permeability and capillary curves with a power law

function (only one adjustable parameter for each curve). They concluded that among these

four algorithms, BFGS performed best in terms of computational efficiency and stability.
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Given the small number of parameters estimated, it is difficult to know whether these results

will extrapolate to large scale problems.

As noted in our previous annual report, all computations we have done suggest that

the limited memory BFGS (LBFGS) procedure is the most viable optimization algorithm

for automatic history matching of multiphase flow production data for problems where the

number of reservoir variables to be estimated and the number of data are both large. Thus,

unless specifically noted otherwise, the reader should assume that the history matching

examples presented in this report were done with the LBFGS algorithm. In particular, the

Tengiz true field example as well as the synthetic Tengiz examples were history matched

with the LBFGS algorithm.

Time-lapse seismic is the process of repeating 3D seismic surveys over a producing reser-

voir to monitor changes in saturation and pressure. The potential impact on reservoir en-

gineering and reservoir management is large because time-lapse seismic may allow direct

imaging of rock properties that are closely related to vertically averaged fluid saturations

and pressure. This is much different from the current limitation of measurements of these

quantities at well locations. In general, seismic images are sensitive to the spatial variation

of two distinct types of reservoir properties (Arenas et al., 2001):

• Non-time-varying static geologic properties such as lithology, porosity, cementation,

and shale content.

• Time-varying dynamic fluid-flow properties such as fluid saturation and pore pressure.

If data were available from only one 3D seismic survey, it would not be possible to

differentiate between the effects of static features and those due to changes in saturation and

pressure. By comparing the data from 3D surveys acquired at different times in the same

location, however, it is possible to eliminate the effects of unknown static properties to focus

on the dynamic changes in production related properties.

The simplest, most direct method of using time-lapse seismic data is to qualitatively

monitor reservoir changes due to production. In this approach, one simply identifies regions

in which the amplitude or impedance has changed with time and attributes these changes to

changes in saturation, pressure, or temperature. The first tests of this concept were carried

out by Arco in the Holt Sand fireflood from 1981 to 1983 (Hughes, 1998). Similar studies

have been reported by Cooper et al. (1999) at the Foinhaven Field and Lumley et al. (1999)

at the Meren Field in Nigeria. The primary objectives at Foinhaven were simply to map

fluid movements and to identify by-passed oil. The authors of the study concluded that the

time-lapse signal qualitatively agreed with the expected reservoir performance. At Meren,
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the goal was to identify pathways of injected water, sealing faults, and compartments that

may have by-passed oil. The authors concluded that the data was successful in achieving

these objectives.

The other, more difficult, approach is to use the time-lapse data to estimate the reservoir

flow parameters, such as permeability and porosity. Advances in automatic or computer-

assisted history matching have allowed researchers to consider the integration of time-lapse

seismic data with production data. All quantitative approaches for doing this involve the

minimization of an objective function that includes the mismatch between the synthetic

changes in seismic data and the observed changes. Using optimization methods, a distri-

bution of parameters that minimize the objective function is sought. The type of seismic

data used in the objective function has varied among the researchers. Huang et al. (1997)

used amplitude difference or other seismic attributes difference while Arenas et al. (2001)

used velocity difference. Landa and Horne (1997) assumed that saturation changes could be

obtained directly from time-lapse surveys.

While a number of geophysicists (Tura and D.Lumley, 1999; Landro, 2001; Meadows,

2001) have proposed estimation of saturation and pressure directly from time-lapse seismic

data (including amplitude variation with offset data), it is clearly less restrictive to use all

data (including production data) in the estimation of saturation and pressure to ensure that

the saturations and pressures are consistent with material balance. Thus we use the seismic

data in the objective function—not saturations and pressures.

In studies to date, the sensitivity of time-lapse seismic data to changes in model param-

eters has either been computed by the finite-difference method (Huang et al., 1997, 1998,

2001; van Ditzhuijzen et al., 2001) or the gradient simulator method (Landa and Horne,

1997). It is not feasible to compute sensitivity coefficients using either of these methods

when the number of model parameters is large, however. The only reasonable approach is

to use the adjoint method to integrate seismic impedance data into our objective function

and to compute the sensitivity of data to model parameters. It will also be necessary to use

more efficient optimization methods in the history matching than those used previously to

get optimum model parameters. A practical method for doing this will be outlined in this

document.

Researchers have been building tools for history matching of permeability and porosity

distributions to honor production data for several years. The assumption is almost always

made that the rock properties are distributed randomly and that the randomness can be

adequately described by the mean and the spatial covariance of the property fields. If there

is more than one type of rock, region or facies, the assumption is usually made that the
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location of the boundaries of these regions is known. Bi et al. (2000) and Zhang et al. (2002)

relaxed this restriction by allowing the boundaries of a three dimensional channel to be

adjusted interactively during the history matching process. While the method worked quite

well for a single channel in a background low-permeability facies, it became apparent that

the extension to a reservoir with large numbers of channels would be impractically difficult.

As a result, we began consideration of the truncated plurigaussian model for the descrip-

tion of facies boundaries. The truncated plurigaussian is attractive for modeling facies for

several reasons.

1. The model is capable of generating a wide variety of facies shapes and neighbor rela-

tions.

2. The model is based on Gaussian random fields, which are well-suited to current in

history matching codes.

3. The truncation, or threshold maps, can be described by relatively few parameters.

In this report, we describe progress on two aspects of the history matching problem. The

first problem has to do with the specification of a prior geostatistical model, the purpose

of which is to ensure plausibility of realizations. This is considerably more complex for the

truncated plurigaussian model than for many geostatistical models because it is necessary

to specify at least two covariance models (types, ranges, variances, and orientations), as well

as the threshold parameters for the truncation. The second problem is adjustment of the

facies boundaries for a fixed set of geostatistical model parameters. This requires efficient

minimization of an objective function that is not differentiable.

In this report, we also consider the simultaneous estimation of the absolute permeability

field and relative permeability curves from three-phase flow production data. Irreducible

water saturation, critical gas saturation and residual oil saturations are assumed to be known.

The two-phase relative permeability curves for an oil-gas system and the two-phase relative

permeability curves for an oil-water system are represented by power law models. The three-

phase oil relative permeability curve is calculated from the two sets of two-phase curves using

Stone’s Model II. The adjoint method is applied to three-phase flow problems to calculate the

sensitivity of production data to the absolute permeability field and the parameters defining

the relative permeability functions. Using the calculated sensitivity coefficients, absolute

permeability and relative permeability fields are estimated by automatic history matching

of production data. As the example problems considered here are relatively small, we apply

the Levenberg-Marquardt algorithm to do history matching. As the detailed history given
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below indicates, this problem is not new, although to the best of our knowledge, this is the

first attempt to three-phase relative permeabilities by history matching.

It appears that Archer and Wong (1973) were the first authors to consider the estimation

of relative permeability curves by applying a reservoir simulator to history match labora-

tory core flood data. They estimated only parameters that define the shape of relative

permeability curves for simple empirical relative permeability models and adjusted relative

permeabilities by a trial and error method during the history matching.

Sigmund and McCaffery (1979) were the first to apply nonlinear regression to the prob-

lem of history matching laboratory core flood data. They used power law expressions to

model relative permeability curves and estimated only the two exponential parameters in

these formulas. Kerig and Watson (1986) considered a similar problem. They calculated

predicted data from the Buckley-Leverett model, used cubic splines to parameterize rela-

tive permeability curves and compared relative permeability estimates obtained with such a

representation to those obtained using a power law functional form. They showed that, in

general, power law models do not contain enough degrees of freedom to represent the truth

well, whereas cubic splines with a small number of knots appear to be sufficiently flexible

to yield more accurate estimates of true relative permeability curves. In their results, they

assume absolute permeability is known. In a later paper, Kerig and Watson (1987) showed

how to impose constraints to ensure that the estimated relative permeabilities are concave up

(convex downward), nonnegative and monotonic. The Levenberg-Marquardt modification of

the Gauss-Newton method was applied for optimization. With cubic spline representations,

not all coefficients are independent. Kerig and Watson (1986) presented a procedure to

determine the parameters that should be adjusted when matching core flood data. Later,

Watson et al. (1988) avoided this difficulty by modeling each relative permeability function

as a sum of B-splines. With B-splines, the independent adjustable parameters are simply the

coefficients of the B-splines in the sum. They showed that with parabolic splines, it is easy to

constrain the derivatives at the knots and endpoints to be nonnegative which automatically

constrains the relative permeability curves to be monotonic, but does not constrain them to

be concave up.

Lee and Seinfeld (1987) considered the simultaneous estimation of the absolute permeabil-

ity field and relative permeabilities for a two-dimensional, two-phase flow oil-water system.

They assumed power law relative permeability curves and assumed that the end point values

of relative permeabilities were known. Thus only the two exponents in the power law relative

permeability functions were estimated. They modeled the two-dimensional isotropic hetero-

geneous permeability field using bi-cubic B-splines. In the specific examples considered,
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they matched pressure and water cut data at wells producing from an oil reservoir under

waterflood. Tikhonov (1963) regularization was used to stabilize the nonlinear least squares

problem. Matching of data was accomplished by a three-step process with the steepest de-

scent algorithm applied for minimization of the objective function which includes the sum of

squared data mismatch terms. In the application of steepest descent, the gradient of the ob-

jective function was calculated using the adjoint method (Chen et al., 1974; Chavent et al.,

1975). In the first minimization step, regularization is not applied, but the permeability

field is assumed homogeneous so only three parameters are estimated, absolute permeability

and the two relative permeability parameters. In the second step, the maximum likelihood

estimate of gridblock permeabilities and the two relative permeability parameters are esti-

mated using the results of the first step as the initial guess. In the last step, the absolute

permeability field and relative permeabilities (the two power law exponents) are estimated

simultaneously with the degree of regularization estimated from results of the previous two

steps. For the synthetic examples presented, the procedure presented was robust to the ini-

tial guesses and good estimates of absolute and relative permeability were obtained. For the

examples considered, however, the permeability fields were smooth and the level of hetero-

geneity was low with the ratio of the maximum permeability to the minimum permeability

equal to two.

Yang and Watson (1991) considered the estimation of relative permeability curves using

a Bayesian approach with relative permeability functions modeled as a linear combination

of B-splines. In this approach, the objective function to be minimized is the sum of two

terms, a production data mismatch term and a term which measures the deviation from

a prior relative permeability model. (A prior model would typically be developed from

laboratory core floods or by analogy with similar reservoirs.) The authors presented a

procedure to estimate the relative weighting of the two terms of the objective function

so that estimated relative permeabilities will remain as close as possible to the prior model

but still yield calculated data that gives an acceptable match of observed production data.

They considered only homogeneous reservoirs and assumed that all physical properties except

relative permeabilities were known. Minimization of the objective function was accomplished

with a Broyden-Fletcher-Goldfarb-Shanno optimization algorithm. They illustrated their

methodology by applying it to a synthetic two-dimensional, two-phase flow waterflooding

problem with a single injection well and a single producing well. They matched pressure

data at both wells and WOR data at the producing well. Relative permeabilities were

constrained to be monotonic and bounded above by unity. For the example considered,

water saturations at the producer corresponded to relatively low values. When conventional
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history matching with no prior model was used, the estimated relative permeabilities were

accurate only for relatively low water saturation values. For the Bayesian approach, the high

saturation portion of the estimated curves was close to the prior relative permeability curves

and the low saturation portion was resolved accurately by the production data.

Watson et al. (1980) considered the simultaneous estimation of porosity, absolute per-

meability and relative permeability by automatic history matching of production data, but

restricted their application to two-dimensional oil-water systems where permeability and

porosity are homogeneous. In these examples, they use power law relative permeabilities

and estimated only the two exponents in these two power law functions, i.e., they assume

end-point relative permeabilities are known.

Kulkarni and Datta-Gupta (2000) also consider the estimation of relative permeabili-

ties from water-cut and pressure data for a two-phase flow oil-water system. Like earlier

work, they modeled relative permeabilities with both B-splines and power law functions,

but used a streamline simulator instead of a finite-difference simulator to perform automatic

history matching. In one example, they showed that using only a prior model (zeroth order

derivative) to provide regularization resulted in estimated relative permeability curves which

exhibited changes in concavity, but if both zeroth order derivatives and second order deriva-

tives were used in the regularization term, then the estimated relative permeability functions

were non-oscillatory. Similar to the classical analytical results of Watson et al. (1984) on

linear flow problems, they found that there is considerable uncertainty in estimated relative

permeability curves when only water-cut data is matched but that the uncertainty is less

when both pressure data and water cut data are used to constructs estimate. Adding reg-

ularization further reduced the uncertainty. They found that the uncertainty was greater

for heterogeneous permeability fields than for a homogeneous permeability field. For het-

erogeneous permeability fields, they found that applying regularization and matching both

water cut and pressure data are necessary to obtain reasonable estimates of both absolute

permeability and the relative permeability parameters.

All of the papers discussed above considered only oil-water system. Labban and Horne

(1991) considered the estimation of relative permeabilities for three-phase black-oil problems.

They used stabilized inflow performance relations for multiphase flow problems to postulate

linear relations between relative permeabilities and fluid properties and production data.

The coefficients in these linear relations were determined by two simulation runs with two

different relative permeability curves. They also assumed a power-law relation between phase

saturation and phase relative permeability for two different simulation runs at equivalent

times. With these relations, they estimate relative permeability at different times from
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historical data and then use the saturation/relative permeability relation mentioned above to

otain updated relative permeabilities as functions of phase saturations for the next simulation

runs. They claim the procedure gives reasonable estimates of relative permeability. The

procedure assumes that absolute permeability and porosity are known.

Li et al. (2001a) implemented a procedure to estimate absolute permeability fields by

automatic history matching of three-phase flow production data. They assumed that rela-

tive permeabilities were known. To the best of our knowledge, the current paper is the first

one that discusses the simultaneous estimation of absolute permeability fields and relative

permeability curves under three-phase flow conditions. A power law form of relative perme-

ability curves is used, but the procedure is general and could be applied using a B-spline

representation of relative permeability curves. A prior model for absolute permeability and

relative permeability parameters is assumed to provide regularization, i.e., Bayesian estima-

tion is applied to generate estimates. Model parameters, which are estimated by automatic

history matching of production data, consist of gridblock absolute log-permeabilities and the

parameters defining the relative permeability curves. All results are presented in terms of

oil field units.

17



EXPERIMENTAL

Experimental work is not applicable to the research tasks and goals of this project. Conse-

quently, no experimental work has or will be done.
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HISTORY MATCHING OF DATA

Model Estimation and Simulation

Here, we define the reservoir model parameters and the a posteriori probability density func-

tion (pdf) for these parameters. This pdf, which is conditional to observed data, determines

the set of plausible reservoir descriptions. We discuss the computation of the maximum a

posteriori (MAP) estimate of reservoir variables. The MAP estimate is the model which

maximizes the a posteriori pdf and is thus conveniently referred to as the most probable

model. A method for sampling this pdf to generate multiple realizations of reservoir vari-

ables is discussed briefly.

The Prior Model.

For simplicity, the reservoir is assumed to be a rectangular parallelepiped which occupies the

region

Ω = {(x, y, z) | 0 < x < Lx, 0 < y < Ly, 0 < z < Lz}. (1)

The forward model is a fully-implicit finite-difference simulator based on a block centered

grid. The principle permeability directions are assumed to be aligned with the coordinate

directions so that the permeability tensor is diagonal. Fluid properties are assumed to be

known. Given two-phase oil-water and two-phase oil-gas relative permeabilities, the three-

phase oil relative permeability is constructed from Stone’s Model II; see Aziz and Settari

(1979). Wellbore constraints are handled using the equation of Peaceman (1983).

Here, model parameters or reservoir variables include only gridblock porosities, horizontal

log-permeabilities, vertical log-permeabilities and the skin factor at each well. In a later

chapter, we discuss our initial work on estimating the location of the boundaries between

facies to match production data. We assume the permeability is areally isotropic so that

kx = ky. Thus we present our equations for the case where the model parameters are

simulator gridblock porosities, horizontal log-permeabilities, vertical log-permeabilities and
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well skin factors. Thus, if there are N simulator gridblocks and Nw wells, the total number

of model parameters is equal to Nm = 3N +Nw. Specifically, the vector of model parameters

is given by

m = [mT
φ , mT

k , mT
kz

, mT
s ]T , (2)

where mφ is an N -dimensional column with its jth entry equal to the porosity of gridblock

j, where mk is an N -dimensional column with its jth entry equal to the horizontal log-

permeability for gridblock j, mkz is an N -dimensional column with its jth entry equal to the

vertical log-permeability for gridblock j, and ms is an Nw dimensional column vector with its

jth entry given by the skin factor at the jth well. These reservoir parameters are modeled as

random variables, so m is a random vector. From a purely history matching point of view,

we wish to construct an estimate of m from production and time lapse seismic data (dynamic

data) and static data. However, there are an infinite number of models which will give equally

reasonable matches of the data, and it is desirable to define a procedure for generating a

particular estimate or to characterize the uncertainty in reservoir descriptions. From both

the philosophical and practical points of view (see Tarantola (1987) and Omre et al. (1993)),

the most challenging part of the inverse problem is the determination of a representative pdf

for reservoir parameters. Similar to the recent work on automatic history matching by He

et al. (1997) and Wu et al. (1999), we follow ideas that can be found in Tarantola (1987) and

simply assume that a prior geostatistical model for mr = [mφ, m
T
k , mT

kz
]T can be constructed

from static data, e.g. log, core and other geologic data. In our work, we assume this prior

geostatistical model can be represented by a multivariate Gaussian distribution for mr with

a given mean and covariance matrix. In practice, the prior covariance matrix for the rock

property fields can be generated from semivariograms by assuming that horizontal, vertical

permeability can be modeled as stationary random functions. In our implementation, we

make this assumption and then apply the Xu et al. (1992) screening hypothesis to generate

the prior covariance matrix for mr; see, Chu et al. (1995b). In the prior model, each well skin

factor is treated as an independent Gaussian variable with specified mean and variance. If the

skin factor was estimated by fitting pressure data with a classical well testing model solution

using nonlinear regression, then the estimate of the skin factor would be its prior mean

and its variance can be constructed directly from the same information used to construct

confidence intervals.
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The vector of prior means is given by

mprior =


mφ,prior

mk,prior

mkz ,prior

ms,prior

 . (3)

We let Cφ denote the prior covariance matrix for mφ, Ck denote the prior covariance matrix

for mk, Ckz denote the prior covariance for mkz , Ck,kz denote the cross covariance matrix

between mk and mkz and let Cs denote the Nw ×Nw model covariance matrix for the vector

of well skin factors. Then the prior model covariance matrix is given by the Nm×Nm matrix

CM =


Cφ Cφ,k Cφ,kz O

Cφ,k Ck Ck,kz O

Cφ,kz Ck,kz Ckz O

O O O Cs

 , (4)

where the O’s denote null submatrices of the appropriate size. If porosity is uncorrelated

with horizontal and vertical permeability, then Cφ,k and Cφ,kz are null matrices. If horizontal

and vertical permeability are not correlated, then Ck,kz is also a null matrix.

The prior pdf for m is then given by

πp(m) = a exp
{
− 1

2
(m−mprior)

T C−1
M (m−mprior)

}
, (5)

where a is the normalizing constant. Note the model which has the highest probability based

on Eq. 5 is m = mprior, thus it is convenient to think of mprior as the best estimate of the

model based on static data.

The a Posteriori Probability Density Function.

We wish to determine the conditional pdf for m given observed production data and/or time-

lapse seismic data. Here, we consider only three types of production data, wellbore pressure

(pwf ), producing water-oil ratio (WOR) and producing gas-oil ratio (GOR). The WOR and

GOR data are not actually measured directly but are constructed from rate measurements.

Nevertheless, we will refer to the values of WOR and GOR as measured or observed data.

The column vector dobs,w contains all observed WOR data that will be used as conditioning

data. The column vector dobs,g contains the set of GOR conditioning data and dobs,p contains

all conditioning pressure data. Throughout, the Nd dimensional column vector dobs includes

all data that will be used to condition the model m. This may include one type of data, e.g.,
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only GOR data or multiple types of data, e.g., pressure, WOR and GOR data and time-lapse

seismic data. Although, we do not consider it here, dobs may even include hard data, e.g.,

observed porosities at wells.

Pressure measurements errors are modeled as independent identically distributed Gaus-

sian random variables with mean zero and variance σ2
p. GOR measurement errors are mod-

eled as independent identically distributed Gaussian random variables with mean zero and

variance σ2
g . WOR ratio measurement errors are modeled by the procedure introduced by

Wu et al. (1999). In this model, the WOR measurement error depends on the magnitude of

the measurement. Specifically, the variance of a particular measurement error is defined as

Var(eWOR) = WOR2
obsεo +

1

q2
o,obs

max
[
ε2
wq2

w,obs, σ2
w,min

]
, (6)

where eWOR denotes the error in the “measurement” of WOR constructed from the observed

oil and water rates, qo,obs and qw,obs. Here, εm denotes the relative measurement error for the

flow rate of phase m. For example, if the relative measurement error in the oil flow rate is two

per cent, then εo = 0.02. The term σw,min is used so that we do not prescribe unrealistically

small measurement errors for the WOR when the WOR is small. To use this model, one

must specify values of εw, εo, and σw,min. The three diagonal matrices, CD,p, CD,w and CD,g,

respectively, denote the covariance matrices for pressure data measurement errors, WOR

measurement errors and GOR measurement errors. In addition, we let CD,s denote the data

covariance matrix for time lapse seismic “measurement” errors. It is generally incorrect to

model CD,s as a diagonal matrix, but construction of CD,s is difficult; see Aannonsen et al.

(2002).

If the total number of conditioning data is Nd, i.e., the dimension of dobs is Nd, then the

overall data covariance matrix is given by the following Nd ×Nd diagonal matrix:

CD =


CD,p O O O

O CD,w O O

O O CD,g O

O O O CD,s

 . (7)

We of course do not need to use all types of data as conditioning data. For example, if we

wish to history match only GOR data, then dobs = dobs,g and CD = CD,g.

For a given model m, d denotes the predicted, true or calculated data corresponding to

dobs. If m is the true reservoir from which dobs was obtained and there are no measurement

errors, then d = dobs. As d depends on the model, we write

d = g(m), (8)
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to represent the operation of calculating d given m. In our work, Eq. 8 represents the

operation of running the reservoir simulator to calculate d.

Bayes’ theorem (see Tarantola (1987)) implies that the a posteriori pdf for the model

m conditional to the observed data is proportional to the product of the prior pdf and the

likelihood function for the model, and is thus given by

f(m|dobs) = a exp{−O(m)}, (9)

where a is the normalizing constant and

O(m) =
1

2

[(
m−mprior

)T
C−1

M

(
m−mprior

)
+
(
g(m)− dobs

)T
C−1

D

(
g(m)− dobs

)]
. (10)

Construction of the MAP Estimate and Realizations.

The maximum a posteriori (MAP) estimate is denoted by m∞ and is defined to be the

model that maximizes the pdf of Eq. 9, or equivalently minimizes the objective function of

Eq. 10. Although gradient based methods appear to be the only feasible way to construct a

minimum of O(m), there is no guarantee that Eq. 10 has a unique global minimum, or that

a gradient-based optimization procedure will converge to a global minimum. In fact, if a

gradient method is applied to minimize O(m), it is important to check the results to ensure

that the method did not converge to a local minimum which yields an unacceptable match

of production data, or unreasonable reservoir properties.

If one wishes to generate multiple realizations of the model, it is necessary to sample the

conditional pdf of Eq. 9. The most common way to do this is to apply the method proposed

by Oliver et al. (1996) and Kitanidis (1995). In our work this method is referred to as the

randomized maximum likelihood method. To generate a realization with this procedure, we

calculate an unconditional realization muc from

muc = mprior + C
1/2
M zM , (11)

where zM is Nm-dimensional column vector of independent standard random normal deviates.

The matrix C
1/2
M is a square root of CM and is normally chosen as C

1/2
M = L where

CM = LLT , (12)

is the Cholesky decomposition of CM . For large problems, generation of the Cholesky de-

composition is not feasible, and we apply sequential Gaussian co-simulation to generate an
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unconditional realization of the model; see Gómez-Hernández and Journel (1992). Similarly

a realization of the data is generated from

duc = dobs + C
1/2
D zD, (13)

where zD is an Nd-dimensional column vector of standard random normal deviates. The

conditional realization of m is then obtained by minimizing

Or(m) =
1

2
(m−muc)

T C−1
M (m−muc) +

1

2
(d− duc)

T C−1
D (d− duc). (14)

It can be argued (see Zhang et al. (2001)) that O(m) can be approximated as a chi-squared

distribution with expectation given by E(O(m)) = Nd and standard deviation given approxi-

mately by σ(O(m)) ≈
√

2Nd. Virtually all samples should be within five standard deviations

of the mean. Thus, if applying an optimization algorithm to minimize Eq. 14 gives a result

mc, we accept mc as a legitimate realization if and only if

Nd − 5
√

2Nd ≤ O(mc) ≤ Nd + 5
√

2Nd. (15)

Although Eq. 15 has proved to be very reliable for single-phase flow history matching syn-

thetic problems and for multiphase flow problems, we occasionally encounter situations where

we are unable to decrease the objective function to a value consistent with Eq. 15. This as-

pect needs further investigation.

We wish to be able to history match several hundred production data to generate re-

alizations of tens of thousands of model parameters. Thus computational efficiency is an

extremely important consideration. For such problems, it is not feasible to compute the

individual sensitivity coefficients required by standard implementation of the Gauss-Newton

and Levenberg-Marquardt algorithms. Thus, we are forced to focus on algorithms which

require only the gradient of the objective function. As steepest descent often exhibits poor

convergence properties (see, for example, Fletcher (1987)). The only viable algorithms in

this category appear to be variable metric (quasi-Newton) methods and preconditioned con-

jugate gradient (PCCG) methods. The efficiency of PCCG methods largely rest on finding

a good preconditioner. This, however, is not an easy task and despite significant effort we

have not been able to find a preconditioner that yields a PCCG method that is as reliable

as the quasi-Newton methods we have implemented.

The Gauss-Newton method with restricted step has often been used to minimize O(m);

see Chu et al. (1995a). However, if the initial guess for the model yields a very poor match

of the observed production data, a straightforward application of the method may converge
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extremely slowly or may converge to a model which yields an unacceptable match of pro-

duction data; see Wu et al. (1999). Wu et al. (1999) overcame this problem by using an

artificially high value for the variance of data measurement errors at early iterations. Here,

we avoid this difficulty by using a form of the Levenberg-Marquardt algorithm introduced

by Bi (1999). This algorithm can be written in two different forms. The first comes from a

modification of the standard Gauss-Newton method and is given by[
(1 + λl)C

−1
M + GT

l C−1
D Gl

]−1

δml+1 = −
[
C−1

M (ml −mprior) + GT
l C−1

D (g(ml)− dobs)
]
, (16)

ml+1 = ml + αlδm
l+1 (17)

where αl = 1. Here l, as either a subscript or superscript, refers to the iteration index. The

matrix Gl denotes the Nd ×M sensitivity coefficient matrix evaluated at ml. The entry in

the ith row and jth column of Gl represents the sensitivity of the ith calculated data gi to

the jth model parameter evaluated at ml, i.e., this entry is ∂gi(m
l)/∂mj, where mj is the

jth entry of m. If O(ml+1) < O(ml), we set λl+1 = λl/10, and if the objective function does

not decrease, we increase the Levenberg-Marquardt parameter by a factor of 10. We start

with an initial value of λ = 10, 000. For the multiphase flow problems we have considered to

date, this simple procedure works well.

Calculation of the Gradient of the Objective Function

The equations that must be solved to compute sensitivity coefficient with the adjoint method

were presented in the first annual report on this project. These results can also be found in

Li et al. (2001a). Implementation of methods for calculating the gradient of the objective

function for use in the limited memory Broyden-Flection-Goldfarb-Shanno (LBFGS) algo-

rithm were given in the second annual report on this project and can also be found in Zhang

and Reynolds (2002a) and Zhang (2002). Thus, we do not present here the specific equations

for the calculations of sensitivities of the gradient of an objective function. As our algorithm

of choice for large problems is LBFGS, we do include a description of the algorithm; for

additional details see the last annual report on this project, Zhang and Reynolds (2002a)

and Zhang (2002).

LBFGS Algorithm

The search direction in the Newton’s method can be written as

dk+1 = −H−1
k gk, (18)
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where Hk and gk, respectively, denote the second derivative (Hessian matrix) and the first

derivative (gradient) of the objective function evaluated at mk and k is the iteration index.

With O(m) given by either Eq. 10 or Eq. 14, the Gauss-Newton Hessian matrix is estimated

by

Hk = C−1
M + GT

k C−1
D Gk, (19)

where Gk is the sensitivity matrix evaluated at mk. As noted before, if both the number of

model parameters and the number of data are large, the evaluation of Gk is computationally

expensive. In quasi-Newton methods, H−1
k is approximated by a symmetric positive definite

matrix H̃−1
k which is corrected or updated from iteration to iteration. With this Hessian

inverse approximation matrix, the search direction can be written as

dk+1 = −H̃−1
k gk. (20)

Because the matrix H̃−1
k takes the place of H−1

k in Eq. 18, the method with search direction

given by Eq. 20 is called a quasi-Newton method. This method is also called a variable

metric method.

In a quasi-Newton method, the key issue is how to generate the approximation to the

inverse Hessian matrix. Different quasi-Newton methods use different formulas to calculate

H̃−1
k+1 from H̃−1

k . All updating formulas satisfy the quasi-Newton condition given by

H̃−1
k+1yk = sk, (21)

where

yk = gk+1 − gk, (22)

and

sk = mk+1 −mk. (23)

Various possible updating formulas honor this quasi-Newton condition. The Broyden family

equation is given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sT
k yk

− H̃−1
k yky

T
k H̃−1

k

yT
k H̃−1

k yk

+ θkvkv
T
k , (24)

where θk ∈ [0, 1] and

vk = (yT
k H̃−1

k yk)
1/2
( sk

sT
k yk

− H̃−1
k yk

yT
k H̃−1

k yk

)
. (25)

Given that the line search is exact and the initial Hessian inverse approximation is real

symmetric positive definite, the Hessian inverse approximation generated by Eq. 24 is guar-

anteed to be symmetric positive definite; see details in Zhang (2002). In our procedure, we
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use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) correction equation proposed by Broy-

den (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970) independently, which is a

special case of Broyden family obtained by setting θk = 1 in Eq. 24. The BFGS update

equation is given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sT
k yk

− H̃−1
k yky

T
k H̃−1

k

yT
k H̃−1

k yk

+ vkv
T
k . (26)

The limited memory BFGS (LBFGS), which uses a limited number of previous vectors

(yk’s and sk’s) to construct the inverse Hessian approximation at each iteration, is an ap-

propriate method for large scale problems where it is not feasible to explicitly store and

compute the full matrix H̃−1
k . In our work, the algorithm proposed by Nocedal (1980) was

implemented and applied. In order to derive the limited memory BFGS, the normal BFGS

formula Eq. 26 can be written as

H̃−1
k+1 = V T

k H̃−1
k Vk + ρksks

T
k , (27)

where ρk = 1/yT
k sk and Vk = I − ρkyks

T
k . Nocedal (1980) suggested a procedure where only

the L previous vectors are used when constructing the new H̃−1
k+1. When k < L, the update

equation is still given by Eq. 27 which can be rewritten as

H̃−1
k+1 =V T

k V T
k−1 · · ·V T

0 H̃−1
0 V0 · · ·Vk−1Vk

+ V T
k · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k .

(28)

For k + 1 > L the update equation is

H̃−1
k+1 =V T

k V T
k−1 · · ·V T

k−L+1H̃
−1
0 Vk−L+1 · · ·Vk−1Vk

+ V T
k · · ·V T

k−L+2ρk−L+1sk−L+1s
T
k−L+1V1 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k .

(29)

Unless the dimension of H̃−1
k is small, direct application of Eqs. 28 and 29, which involve

matrix products, is inefficient. Instead, we form the product H̃−1
k gk, which is used to con-

struct the search direction, directly by using the algorithm proposed by Nocedal (1980).
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The calculation of H̃−1
k gk only involves vector products instead of matrix products. Because

only the L most recent vectors from the set of sk and yk are used to construct H̃−1
k+1, this

algorithm is called the limited memory BFGS method.

The basic LBFGS algorithm we use to minimize an objective function (Eq. 10 or Eq. 14)

is given below.

Step 1 Initialization

(a) Provide an initial guess, m0, of the model, calculate the objective function corre-

sponding to m0 and evaluate the gradient of the objective function at m0, i.e., compute

g0;

(b) provide an initial Hessian inverse approximation H̃−1
0 (e.g., CM in our examples),

set the initial iteration index k=0.

Step 2 Calculate the search direction dk = −H̃−1
k gk and check whether it is a downhill di-

rection, i.e., check to see if dT
k gk < 0. If dk is not a downhill search direction, set

dk = −H̃−1
0 gk.

Step 3 Calculate the step size αk by a line search procedure as discussed later.

Step 4 Update the model to mc = mk + αkdk.

Step 5 Calculate the objective function based on mc.

Step 6 Determine if the Wolfe conditions are satisfied; if they are satisfied, then set mk+1 = mc

and go to step 7, otherwise do

(a) fit a quadratic and find a step size by minimizing this quadratic, then go to step 4;

(b) if a quadratic fit has already been done, cut the step size by a specified factor (in

our examples we cut the step size by a factor of 10) and go to step 4. All computations

we have done suggest this case does not occur very often.

Step 7 Determine if the stopping criteria are satisfied. If satisfied, then stop; otherwise go to

step 8.

Step 8 Calculate sk = mk+1 −mk = αkdk and yk = gk+1 − gk. Apply Eq. 28 or 29 to update

the inverse Hessian approximation H̃−1
k+1. Set k = k + 1 and then go to step 2.

Although the procedure presented above is convenient for discussion, we never explicitly

update the inverse Hessian approximation as part of Step 8 after the first iteration. Instead

we use the algorithm presented by Nocedal (1980) to compute dk = −H̃−1
k gk in Step 2. This

eliminates the need to explicitly compute or store H−1
k for k > 0.
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For BFGS and LBFGS, scaling can have a significant effect on the rate of convergence;

Shanno (1970), Oren and Luenberger (1974), Oren (1974), Oren and Spedicato (1976). If

scaling is used, Step 8 needs to be modified. As scaling was considered in detail in last

year’s annual report, here we only give the scaling algorithm we use. Although this scaling

algorithm was shown to be robust for several examples, there is no theoretical result that

guarantees that it will always work well.

For the LBFGS algorithm, we have found a variant of the optimal switching rule given

by Oren and Spedicato (1976) which works well. Specifically, we compute

τ̃k =
sT

k H̃0sk

sT
k yk

, (30)

σ̃k =
sT

k yk

yT
k H̃−1

0 yk

, (31)

and then determine the scaling factor γk by the following rule:

γk =

τ̃k if τ̃k < 1.0

σ̃k. otherwise.
(32)

For the LBFGS algorithm with initial scaling, we just replace H̃−1
0 in Eq. 28 at the first

iteration and and then use Eqs. 28 and 29 without modification at all subsequent iterations.

For the LBFGS with scaling at all iterations, we replace H̃−1
0 in Eqs. 28 and 29 by γkH̃

−1
0

in computing H̃−1
k+1. In our examples, we use scaling at all iterations. The efficient LBFGS

method given by Nocedal (1980) avoids formation of H̃−1
k for k ≥ 1, only H̃−1

k gk is calculated

at each iteration. However, H̃−1
0 must be provided as the initial approximation to the inverse

Hessian. In our implementation, we use H̃−1
0 = CM , where CM is the prior covariance matrix.

Convergence Criteria

In our results, the following stopping criteria are used to terminate the algorithm:

1.
| Ok+1 −Ok |
Ok + 10−14

< ε1 (33)

and
‖ mk+1 −mk ‖2

‖ mk ‖2 +10−14
< ε2 (34)

where k denotes the iteration index and ‖ · ‖2 denotes the l2 norm of a vector. Both

conditions must be satisfied to terminate the iteration. If we use only Eq. 33 as the
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convergence criterion, the algorithm may converge prematurely especially when the

objective function decreases very slowly at the early iterations. Because at the early

iteration, the objective function is relatively big such that Eq. 33 becomes easier to be

satisfied.

2. Specify a maximum allowable iteration number. If the number of iterations exceeds the

specified number, we force the iteration to stop. In our examples, we usually specify

the maximum number of iterations as 300.

Line Search

In our implementation of conjugate gradient and quasi-Newton methods, the line search is

performed using one iteration of the Newton-Raphson method followed by a quadratic fit if

necessary. We do not do an exact line search, but terminate the line search when the Wolfe

conditions are satisfied; see, for example, Fletcher (1987). The Wolfe conditions are used to

ensure that step sizes are not too small and that the reduction in the objective function is

not negligible. In addition, the Wolfe conditions are side conditions for the exact line search;

see Kolda et al. (1998). At each iteration, we perform one Newton-Raphson iteration to

find a step size. Then we check whether this step satisfies the Wolfe conditions. If it does,

we accept this step size. Otherwise we find an optimum step size by fitting a quadratic,

as discussed in the last annual report, and then check whether the new step satisfies the

Wolfe conditions. If it does, we accept this new step. Otherwise, we check whether the

objective function increases or decreases. If it increases, we cut the step size by a factor of

10. If it decreases, we accept this new step size no matter whether the Wolfe conditions are

satisfied or not. Our experience shows that for most of the iterations, the step size generated

by one Newton-Raphson iteration satisfies the Wolfe conditions and two-thirds or more of

the step sizes satisfy the Wolfe conditions after the quadratic fit. However, technically the

Wolfe conditions should be satisfied at each iteration to guarantee convergence. Because of

this, we have implemented a new line search procedure which may prove to be both more

computationally efficient and robust. We are currently testing the new line search algorithm.
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HISTORY MATCHING, TENGIZ

FIELD EXAMPLE

Tengiz Reservoir

In this chapter, we consider matching static pressures from pressure buildup surveys for the

Tengiz reservoir, which is an undersaturated oil reservoir. We consider history matching

buildup data from the Tengiz reservoir which is located in the Pri-Caspian Basin. Tengiz is

a carbonate reservoir which was formed during Devonian and Carboniferous time. Figure 1

shows that the central or “platform” portion of the reservoir is relativly flat with localized

structural highs on the south and eastern edges. As shown in Fig. 1, the platform is bounded

by faults or lithologic breaks and surrounded by gently sloping “flanks” of carbonate debris;

see Chambers (1997) and He and Chambers (1999) for additional details on the geology. The

index on the x and y axes is the number of gridblocks, i.e., the areal grid for the original

reservoir model was 90× 100.

Tengiz is an undersaturated oil reservoir produced by 44 wells. With very rare exception,

all flowing bottomhole pressures have been maintained above bubble point pressure, which

is equal to 3586 psi. Initial reservoir pressure is 11950 psi at a datum of 14765 ft subsea.

Current average reservoir pressure remains more than twice the bubble point pressure, and

consequently, the oil flows as a single phase in the reservoir.

Our history match of static pressure data from pressure buildup surveys is based on an

upscaled reservoir model of Tengiz. The upscaled reservoir model of Tengiz was created by

removing most of the sloping flanks near the outer edges of the reservoir and upscaling the

remainder of the reservoir to a 59× 49× 9 grid. In the upscaled model, the gridblock sizes

in the x and y directions are almost uniform with values between 815 and 825 ft. Gridblock

sizes in the z direction are non-uniform with values varying between 15 and 150 ft. Figure 2

shows a contour map of the top of the reservoir with well locations.

The initial permeability and porosity field are from a geostatistical model, generated by
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Figure 1: A 3D plot of the Tengiz field.
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Figure 2: A contour plot of the upscaled model with the well locations.
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Figure 3: Cross plot of porosity to permeability.

Chevron geoscientists. The cross plot of the permeability versus porosity in Figure 3 shows

an overall least square regression trend of increasing porosity with increasing permeability.

The porosity varies from less than 2 percent to over 14 percent, while permeability varies

from less than 0.01 md to over 9 md.

Overshooting/Undershooting

For large scale history matching problems where the number of reservoir variables estimated

or simulated is too large to be resolved by the number of independent data, the history

matching problem is ill-conditioned. Ill-conditioning can lead to undershooting/overshooting

problems where the estimates of some variables are unreasonably small or unreasonably large.

Regularization by using a prior geostatistical model does not usually alleviate this problem

if the initial data mismatch is large. As mentioned previously, Li et al. (2003) used a modi-

fied Levenberg-Marquardt algorithm to damp changes in model variables at early iterations

to reduce undershooting/overshooting. However, the modified Levenberg-Marquardt algo-
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rithm is impractical if we wish to estimate or simulate thousands of reservoir variables.

Thus, we consider imposing constraints on the model parameters in order to control the

undershooting/overshooting problem. We investigate two methods for transforming the re-

sulting constrained optimization problem to a unconstrained optimization problem. The

first method simply adds a penalty function to the objective function. The second method

uses a logarithmic transformation.

As noted in the last annual DOE report, history matching pressure data from the Tengiz

reservoir resulted in abnormally large changes in permeability in some grid blocks. The

right figure in Fig. 4 shows the horizontal permeability field for the second layer of the

Tengiz reservoir that was obtained by history matching pressure data. The left figure shows

the corresponding layer from an initial model provided by ChevronTexaco. This represents

an unconditional realization of the log-permeability field. This unconditional realization

was used as the initial guess in the LBFGS algorithm which at convergence gave the log-

permeability field shown by the right figure in Fig. 4. In the unconditional realization the

maximum value of horizonatl log-permeability is about 2.2 (9 md). After history matching

production data, the values of ln(k) increased to 6 (403 md) in some reservoir simulator grid

blocks, but decreased to around −5 (0.007 md) in some other grid blocks.

Motivated by the results obtained for the Tengiz example, we investigate algorithms to

overcome under and overshooting. Damping the data mismatch part is one way to control

this problem that we have used previously. Applying constraints is another option.

Regularized History Matching

As noted in Chapter 3, the the a posteriori pdf of the model parameters given the vector of

observed data, dobs, is estimated by Eqs. 9 and 10 which are repeated here as

f(m|dobs) = a exp{−O(m)}, (35)

where a is the normalizing constant and

O(m) =
1

2

[(
m−mprior

)T
C−1

M

(
m−mprior

)
+
(
g(m)− dobs

)T
C−1

D

(
g(m)− dobs

)]
. (36)

As also noted in Chapter 3, to generate a realization of the model by the randomized maxi-

mum likelihood method, we minimize

O(m) =
1

2

[(
m−muc

)T
C−1

M

(
m−muc

)
+
(
g(m)− duc

)T
C−1

D

(
g(m)− duc

)]
, (37)

where muc is an unconditional realization of the prior model.
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Figure 4: Example of Overshooting.

In practice, we can apply a damping factor η to avoid the undershooting/overshooting

problem. When the damping function is introduced, the objective function is modifed to the

following:

O(m) =
η

2

[
dobs − g(m)

]T
C−1

D

[
dobs − g(m)

]
(38)

+
1

2
(m−mprior)

T C−1
M (m−mprior).

It may be best to look at this approach as a modification of CD. If η is small, we have

effectively reduced C−1
D , or equivalently, increased CD. Increasing CD weights the data

less in the overall objective function and results in damping of the changes in the model

over an iteration. This tends to help control undershooting/overshooting. There are many

variations of this approach, for example, we modify the CD matrix directly and use different

modifications for different types of data (pressure, GOR and WOR). In fact, we can estimate

a modified CD at each iteration as some fraction of the variances estimated from the current

data mismatch term. We can also rescale the measurement errors to a relative basis before

modifying CD. Although we have experimented with a variety of procedures, we have no

clear cut conclusions at this time. Moreover, the constrained algorithms presented below
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are more efficient when the LBFGS algorithm is used for minimization so we focused on the

constrained algorithms.

Constrained Optimization

Let ml and mu, respectively, denote vectors with entries representing the lower and upper

bounds of the model parameters; these bounds would be specified from physical knowledge

of the reservoir model. We present two methods for constraining the variables based on these

specified bounds, the penalty function method and a log-transformation method.

Penalty Function method

Penalty functions represent “soft” constraints. In this approach a penalty function term is

added to the original objective function and then the modified objective function is mini-

mized. If model parameter exceeds its upper or lower bounds, the penalty function will be

very large, and hence such a values of model parameters can not represent a minimum of the

modified objective function and the objective function will not converge to such a model.

Before constructing the penalty function, we first apply a linear transformation to rescale

the model parameters by their upper and lower bounds:

mm,j =
1

2
(mu,j + ml,j)

mr,j =
1

2
(mu,j −ml,j)

sj =
mj −mm,j

mr,j

(39)

Here, sj represents the rescaled variable corresponding to the jth entry of the vector m of

model parameters. When mj → mu,j, sj → 1, and when mj → ml,j, sj → −1.

The penalty function is defined by

Ob(m) = µ

Nm∑
j=1

{exp[a(sj − 1)] + exp[−a(sj + 1)]} (40)

where µ > 0 and a > 0 are constants which determine the weight and shape of the penalty

function. The partial derivative of the penalty function with respect to sj is:

∂Ob(m)

∂sj

= µa
Nm∑
j=1

{exp[a(sj − 1)]− exp[−a(sj + 1)]} (41)
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By adding the penalty function to the original objective function (Eq. 37 or 36), we transfer

the constrained optimization problem into an unconstrained optimization problem. The

LBFGS optimization algorithm discussed above can be applied to the new objective function.

Logarithmic Transformation Method

Another procedure for transforming the constrained optimization problem into an uncon-

strained optimization problem is to find a suitable transformation that can map the upper

bound to ∞ and the lower bound to −∞. Through this transformation, the boundaries are

removed. In general, the transformation needs to be invertible (one-to-one) which is nor-

mally achieved by using a monotonic transformation. One choice for such a transformation

is given by the following logarithmic transformation:

mj = mm,j + mr,j
exp(sj)− 1

exp(sj) + 1
(42)

= mm,j + mr,j
1− exp(−sj)

1 + exp(−sj)

sj = ln
(mj −ml,j

mu,j −mj

)
(43)

The relationship between the derivatives of any function f(m) with respect to mj and the

derivative with respect to sj can be obtained from the chain rule as follows:

dmj

dsj

= 2mr,j
exp(sj)

{exp(sj) + 1}2
(44)

= 2mr,j
exp(−sj)

{exp(−sj) + 1}2

∂f

∂sj

=
∂f

∂mj

dmj

dsj

= 2mr,j
exp(sj)

{exp(sj) + 1}2

∂f

∂mj

(45)

= 2mr,j
exp(−sj)

{exp(−sj) + 1}2

∂f

∂mj

If mj → mu,j, then sj → ∞; and if mj → ml,j, then sj → −∞. Thus, the boundary

constraints are removed. Note, however, that for very large values of |sj|, we may encounter

overflow when evaluating the exponentials. To avoid this problem, we apply the equation

that involves exp(−sj) when sj > 0; otherwise, we apply the equation with expression that

involves exp(sj).
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ln k ln kz φ

Var 0.8073 0.9376 0.000261

(ln k, ln kz) (ln k, φ) (ln kz, φ)

ρ 0.5 0.9096 0.662

Table 1: Statistical Parameters for Tengiz.

History Matching Pressure Data

As noted previously, the unconditional realization of the permeability and porosity fields

are from a geostatistical model generated by ChevronTexaco geoscientists. As examples,

Figs. 5 through 10 show the initial porosity, horizontal log-permeability and vertical log-

permeability fields for the third and fourth layers of the reservoir. The geostatistical model

parameters used to generate an unconditional realization are given in Table 1. We used a

spherical covariance structure with ranges in the x, y and directions, respectively, equal to

6560 ft, 4920 ft and 165 feet. Phi_Initial_layer3_dat_4
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Figure 5: Initial Porosity for Layer 3 of

Tengiz
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Figure 6: Initial Porosity of Layer 4 of Ten-

giz

A total of 104 observed pressure data from 40 wells were history matched. These pres-

sure data span the historical period from April 1991 to January 1998. We specified the
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Figure 8: Initial Horizontal Log-

Permeability for Layer 4 of Tengiz

oil production rate for each well based on monthly historical production data, and also set

a minimum bottom hole pressure of 3000 psi for all field simulation runs. In the history

matching process, we treated the initial model provided by ChevronTexaco as an uncondi-

tional realization, muc. For the unconstrained case, we applied the LBFGS to minimize the

objective function

O(m) =
1

2

[
dobs − g(m)

]T
C−1

D

[
dobs − g(m)

]
(46)

+
1

2
(m−muc)

T C−1
M (m−muc),

with the variance of pressure measurement errors set equal to 1 psi2. For the constrained

case, we modified the objective function as described previously. The model muc was used

as the initial guess in all cases.

Results of History Matching with Different Algorithms

Three different optimization algorithms were applied for this case, the basic unconstrained

LBFGS optimization algorithm, constrained LBFGS with the log-transformation algorithm

and constrained LBFGS with a penalty function. The upper bounds and lower bounds for
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Upper(ln k) Lower(ln k) Upper(ln kz) Lower(ln kz) Upper φ Lower φ

4.21 -12.01 1.52 -12.05 0.2 0.01

Table 2: Upper and Lower Bounds for Constrained Optimization, Tengiz Reservoir.

constrained optimization are listed in Table 2.

The behavior of the objective function during the history matching process for the dif-

ferent algorithms are shown in Fig. 11. The objective function stopped at a rather high level

for all algorithms but lower values were achieved with the constrained algorithms. Figs. 12

through Fig. 14 show the pressure matches obtained with the three algorithms, in these

figures, all pressure data at all wells are shown, the value on the abscissa simple represents

the data index. A comparison of pressure mismatches obtained with the different algorithms

is shown in Fig. 15. We can see that the maximum pressure mismatch is about 700 psi when

log-transformation is made before applying LBFGS, about 900 psi for the penalty function

method and 1100 psi for unconstrained LBFGS algorithm. Overall, the log-transformation

procedure results in the the lowest pressure mismatches with most pressure mismatch terms

less that 300 psi. Although these values are still higher than desired it is important to note

that the pressure data provided correspond to buildup data, but rates were provided only

on a monthly basis. Thus most buildup pressures actually correspond to periods when the

well was still flowing and we treated the pressure data as data for flowing wellbore pressure

during the history matching process.

The horizontal log-permeability, vertical log-permeability and porosity fields of layers 3

and 4 obtained with the unconstrained optimization algorithm are shown in Figs. 16 through

21. For the unconstrained case, the maximum of ln k reaches 7.0 in the third layer which is

unreasonable based on the geostatistical model. Figs. 22 through 27 pertain to conditional

realizations of the horizontal log-permeability, vertical log-permeability and porosity fields

obtained by history matching pressure data using the constrained optimization algorithm

based on the log-transformation. For constrained case, the minimum ln kz reaches its lower

bound, but nevertheless, a more reasonable log-permeability field was obtained than was

generated using the unconstrained algorithm. From careful examination of the data, we

found that if a pressure buildup datum fell in a time period where the average monthly rate

was quite high, then it was difficult to match the datum. This suggests that the conversion

of such a buildup pressure to an equivalent flowing bottomhole pressure resulted in some

pressures that were inconsistent with the flow rate data.
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constrained Algorithm.
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Figure 13: Pressure Match for Tengiz,

Transformation Method
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Penalty Function Method.
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Figure 15: Comparison of Pressure Mismatches for the Tengiz Field.

42



May 03 2003 Page 1 of 1

10 20 30 40 50

45

40

35

30

25

20

15

10

5

-2.200 -0.360 1.480 3.320 5.160 7.000

Figure 16: Log-Permeability of Layer 3 for

Tengiz, Unconstrained Algorithm.
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Figure 17: Log-Permeability of Layer 4 for

Tengiz, Unconstrained Algorithm.

May 03 2003 Page 1 of 1

10 20 30 40 50

45

40

35

30

25

20

15

10

5

-7.200 -5.780 -4.360 -2.940 -1.520 -0.100
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Figure 20: Porosity of Layer 3 for Tengiz,

Unconstrained Algorithm
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Figure 21: Porosity of Layer 4 for Tengiz,

Unconstrained Algorithm.
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Figure 22: Log-Permeability of Layer 3 for

Tengiz, Log-Transformation Algorithm.
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Tengiz, Log-Transformation Algorithm.
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Figure 26: Porosity of Layer 3 for Tengiz,

Log-Transformation Algorithm.
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TIME LAPSE SEISMIC DATA

Although inverse problems in general, and automatic history matching problems in particu-

lar, are underdetermined, results derived from small amounts of data still provide estimates

that are less than satisfying. It is clearly beneficial to make use of some type of “space-dense”

data to improve the resolution of the estimate in the gridblocks far away from well locations.

Of all usual data related to petroleum engineering, seismic data is the most promising can-

didate for improved spatial coverage. In a preliminary study (Dong and Oliver, 2002), we

have showed that seismic impedance change data directly reflects the elastic properties of

reservoir and are sensitive to permeability and porosity. We believe that seismic impedance

change data will often provide useful constraints to our history matching procedure.

Since automatic history matching can ultimately be reduced to a minimization problem

whose objective function includes both model mismatch and data mismatch parts, the choice

of an efficient optimization method is very important, especially when processing large-

scale problems. For our applications, we only consider gradient based optimization methods

because non-gradient based optimization methods require far too many iterations to be of

practical usefulness. Among those gradient based methods, some require the formation of

the Hessian matrix as well as computation of the gradient of objective function. Formation

of the Hessian is very expensive to compute in large-scale problems, so we have eliminated

them from consideration. Instead, we use methods that only require the computation of

the gradient of the objective function. According to Zhang and Reynolds (2002b), of the

methods they evaluated, the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)

method is likely to be the most successful method for large-scale history matching problems.

Thus, for our history-matching problem with both production data and seismic impedance

change data, we have only used LBFGS method for the minimization.

It is usually possible to assume that the errors in production data are uncorrelated.

Because of the way the seismic impedance data are derived, it is not possible to make the

same assumption of measurement error independence for the seismic impedance change data,

which means that the part of the CD matrix attributed to seismic impedance data will almost
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certainly not be diagonal. When we apply our method to field problems, such correlation

among seismic impedance change data will have to be carefully evaluated (Aannonsen et al.,

2002).

Automatic History Matching

The easiest way to include seismic impedance change data is to assume that one set of

data is available before production begins, and the other set is available after a period of

production. Then, for these two sets of seismic impedance data, it is necessary to compute

their derivatives with respect to primary variables and model parameters, which depends on

the relationships of impedance to saturations and pressure. In this work, we use Gassmann

(1951) and Han (1986) equations. We will summarize the Gassmann and Han equations and

their derivatives with respect to primary variables and model parameters in this report. The

impedance Z is given by

Z = ρVp =

√
ρK +

4

3
ρ2V 2

s , (47)

where, K is the bulk modulus, ρ is bulk density and Vs is shear wave velocity. All of them

can be computed by Gassman and Han equations and poro-elastic properties as

ρ = (ρoSo + ρwSw + ρgSg)φ + (1− φ)ρsolid , (48)

K = Kgrain
Kframe + Q

Kgrain + Q
, (49)

Q =
Kfluid (Kgrain −Kframe)

φ (Kgrain −Kfluid)
, (50)

log10 Kframe = log10 Kgrain − 4.25φ , (51)

Kgrain =
1

2

[
γKc + (1− γ)Ks +

KsKc

Ksγ + Kc(1− γ)

]
, (52)

1

Kfluid

=
Sw

Kw

+
Sg

Kg

+
So

Ko

, (53)

Vs = 3520.0− 4910.0φ− 1890.0γ . (54)

Using the chain rule, the derivatives of impedance with respect to pressure and saturation

are
∂Z

∂P
=

1

2

(
ρK +

4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂P
+

8

3
V 2

s ρ
∂ρ

∂P

)
, (55)

where
∂ρ

∂P
= φ

(
So

∂ρo

∂P
+ Sw

∂ρw

∂P
+ Sg

∂ρg

∂P

)
, (56)
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and
∂Z

∂Sw

=
1

2

(
ρK +

4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂Sw

+ ρ
∂K

∂Sw

+
8

3
V 2

s ρ
∂ρ

∂Sw

)
, (57)

where
∂ρ

∂Sw

= φ (ρw − ρo) , (58)

∂K

∂Sw

=

((
K2

grain −KgrainKframeφ−KgrainKframe

)
∂Kfluid

∂Sw

)
(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
)

−

(
(Kgrain −Kgrainφ−Kframe)

∂Kfluid

∂Sw

)
(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
)

×
(
K2

grainKframeφ + Kfluid

(
K2

grain −KgrainKframeφ−KgrainKframe

))(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
) , (59)

and
∂Kfluid

∂Sw

=
1

Ko
− 1

Kw(
Sw

Kw
+ 1−Sw−Sg

Ko
+ Sg

Kg

)2 , (60)

∂Z

∂Sg

=
1

2

(
ρK +

4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂Sg

+ ρ
∂K

∂Sg

+
8

3
V 2

s ρ
∂ρ

∂Sg

)
, (61)

where
∂ρ

∂Sg

= φ (ρg − ρo) , (62)

∂K

∂Sg

=

((
K2

grain −KgrainKframeφ−KgrainKframe

)
∂Kfluid

∂Sg

)
(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
)

−

(
(Kgrain −Kgrainφ−Kframe)

∂Kfluid

∂Sg

)
(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
)

×
(
K2

grainKframeφ + Kfluid

(
K2

grain −KgrainKframeφ−KgrainKframe

))(
K2

grainφ + Kfluid (Kgrain −Kgrainφ−Kframe)
) , (63)

and
∂Kfluid

∂Sg

=

1
Ko
− 1

Kg(
Sw

Kw
+ 1−Sw−Sg

Ko
+ Sg

Kg

)2 , (64)

∂Z

∂φ
=

1

2

(
ρK +

4

3
ρ2V 2

s

)−1/2

×
((

K +
8

3
ρV 2

s

)
∂ρ

∂φ
+ ρ

∂K

∂φ
+

8

3
ρ2Vs

∂Vs

∂φ

)
, (65)
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where
∂Vs

∂φ
= −4910.0 , (66)

∂ρ

∂φ
= ρo (1− Sw − Sg) + ρwSw + ρgSg − ρsolid , (67)

∂K

∂φ
=

((
K2

grain −KfluidKgrain

) (
φ∂Kframe

∂φ
+ Kframe

)
−KfluidKgrain

∂Kframe

∂φ

)
φ
(
K2

grain −KfluidKgrain

)
+ KfluidKgrain −KfluidKframe

−
(
Kframeφ

(
K2

grain −KfluidKgrain

)
+ KfluidK

2
grain −KfluidKgrainKframe

)(
φ
(
K2

grain −KfluidKgrain

)
+ KfluidKgrain −KfluidKframe

)
×

(
K2

grain −KfluidKgrain −Kfluid
∂Kframe

∂φ

)
(
φ
(
K2

grain −KfluidKgrain

)
+ KfluidKgrain −KfluidKframe

) , (68)

and
∂Kframe

∂φ
= −4.25 ln(10)Kgrain10−4.25 . (69)

There is no direct dependance between seismic impedance and permeability k, so the sen-

sitivity of seismic impedance with respect to permeability depends entirely on the indirect

effect of permeability on pressure and saturation.

LBFGS Method

Previous studiess in TUPREP have showed that BFGS method is the most successful quasi-

Newton method for history matching. However, its drawback is that it needs to store the

Hessian matrix approximation, which will be impractical when large scale models are con-

sidered. The alternative is the limited memory BFGS (LBFGS) method of Nocedal (1980).

LBFGS method only requires storage of a few vectors and uses these vectors to implic-

itly construct Hessian matrix approximation. A detailed discussion of the application of

the LBFGS method to large scale history-matching problems can be found in Zhang and

Reynolds (2002b).

Results

To test the effect of integration of both seismic impedance change data and production data,

we used two models. One is a small synthetic model and the other one is a semi-synthetic

model created from a middle east oil field. In the following sections, we will discuss them in

detail.
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Synthetic Model

This small synthetic model has two layers. Each layer has 10×10 gridblocks with size equal to

40 ft. The vertical size of each gridblock is 30 ft. The only model parameter we adjust is log of

horizontal permeability. For vertical permeability, we use a multiplier, here equal to 0.1, and

for porosity, we fix it at the true value 0.2 in every gridblock. To compare matching results

before integration of seismic impedance change data and after such integration, we divide

each layer into three different zones. In each zone, horizontal permeability is homogeneous.

However, in each zone, the horizontal permeability has a different value. Since there are very

obvious edges among these three zones, it is easy to decide if one matching result is better

than another. If a method is performing well, such edges would presumably be clearer. Here,

we only use bottom hole pressure Pwf as production data.

The true values of ln(k) in three zones are 4.0, 4.2 and 4.6, which can be seen from

Fig. 28. The white point in lower-right corner denotes an injection well and the black one isLnkxy_True_Bottom_10by10by2_txt_s
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Figure 28: True log horizontal permeability (ln(k)) field

a production well. Both of them perforate thoroughly in two layers. This is a three-phase

problem.
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Matching Production Data Only

In each well, we use 10 pressure data to do the history matching so that totally we have

20 pressure data to adjust 200 model parameters. We use a homogeneous value, 4.0, as the

initial guess and the prior model. Final matching results are in Fig. 29 and Fig. 30. From
Match_Result_Well_Kxy_Top_txt_s
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Figure 29: Estimate of log horizontal permeability field in top layer by integration of pro-

duction data only

Fig. 29 and Fig. 30, we can see that from production data alone, it is not possible to obtain

a good estimate of the permeability field. The boundary between the blue area and the red

area is more like arc than straight line, which simply reflects the symmetry of the problem

and the area of water saturation change from the injection well in that corner.

Combination of Seismic and Production Data

In this section, we evaluate the improvement in the estimate after the integration of seismic

impedance change data. Results for the same problem can be seen in Fig. 31 and Fig. 32.

Compared to Fig. 29, Fig. 30 and Fig. 28, the permeability estimate from integration of both

seismic impedance change data and production data is better than the estimate obtained

from only using production data. Moreover, it is much closer to the true field, especially

its boundary of the homogeneous regions is much clearer. The reason for the improvement
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Figure 30: Estimate of log horizontal permeability field in bottom layer by integration of

production data only
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Figure 31: Estimate of log horizontal permeability field in top layer by integration of both

production data and seismic impedance change data
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Figure 32: Estimate of log horizontal permeability field in bottom layer by integration of

both production data and seismic impedance change data

is that the spatial density of seismic impedance change data provides more constraints in

gridblocks that are far from well locations. Obviously, seismic impedance change data makes

the possible solution space narrower and can provide much better estimates of properties,

which is what we predicted when we performed the preliminary investigation work. In

summary, adding seismic impedance change data into automatic history matching is feasible

and provides improved estimates.

Semi-Synthetic Model

Because our final goal is to apply the method to a field problem, it is important to test the

method on real field data. As an intermediate step, before application to real field data, we

are applying the method to a large “field-scale” problem rather than just using it on small

synthetic model. One possible candidate is the simulation model from a field provided by an

industry member to TUPREP. When TUPREP obtained that data, the initial aim was to

test automatic history matching method on a large scale single-phase real field problem. At

this time, we intend to investigate if seismic impedance change data can give a reasonable

estimates of properties in history matching problems. This goal requires comparison with a

true field. We used the first five layers of the reservoir created by the company geoscientists
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as the true geological model. It would presumably be unknown, except for observations at

well locations. Using a covariance estimated from the model, we created a new synthetic

model by Sequential Gaussian Simulation (SGS). A comparison of the supplied model with

our model can be seen from Table 3.

Parameters True Field Semi-Synthetic Model

True Model N/A Synthetic model

Prior Model Synthetic model with facies change Generated by SGS

Well Completion Partially perforated Fully perforated

Initial Reservoir Pressure 11950 Psi 4000 Psi

Bubble Point Pressure 3586 Psi 3586 Psi

Number of Layers 9 5

Gridblocks in Each Layer 59× 49 59× 49

Table 3: Comparison between real field and semi-synthetic model

The real field has a very high initial reservoir pressure and relatively low bubble point

pressure. Under such conditions, it remains single-phase even after a long production period.

A deep, single-phase reservoir, would not be a good candidate for 4D seismic. Thus, in order

to create a more realistic example, we changed the initial reservoir pressure to be slightly

above the bubble point pressure, to ensure that free gas will evolve soon after production

begins.

Creation of Prior Model

Sequential Gaussian Simulation was used to create the prior porosity field, which also served

as the initial guess. The prior horizontal permeability field, was generated directly from the

porosity field using a functional relationship. That correlation equation is generated from

cross plot of porosity and horizontal permeability in well locations, which can be seen in

Fig. 33. Using regression, we have the relationship as

ln kh = 2.41073− 7.3652× exp

(
− φ

0.04419

)
. (70)

The prior horizontal permeability field was computed directly from Eq. 70 once we had

simulated the porosity field. The relationship between vertical and horizontal permeability

was also estimated from a crossplot. A satisfactory relationship is provided by

kv = a× kh , (71)
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Figure 33: Correlation between porosity and log horizontal permeability in well locations

where, a is a constant multiplier. In our semi-synthetic model, we assume that a = 0.002 to

create the vertical permeability field.

To summarize, we use the true model to create observation data, here seismic impedance

change data. Then, we adjust both the prior porosity field and horizontal permeability field

to match the data from the true field. We intend to match our observation data as well

as possible. In this example, we do not use any production data, in order to assess the

constraint the seismic impedance change data provides in such large scale problems.

The true horizontal permeability field in the first four layers can be seen in Fig. 34. The

prior permeability field for the first four layers is in Fig. 35. The fifth layer of both true

permeability field and prior field can be seen in Fig. 36 and Fig. 37. Similarly, true and

prior porosity field of each layer are in Figs. 38, 39, 40 and 41. From true permeability and

porosity field, we can see that there is an obvious discontinuity in properties between the

right lower part and the left upper part of the reservoir in each layer. This is a depth effect,

higher porosities and permeabilities occur at shallower depths. Most of the wells are also

located in this area, which gives more gas after production than in the low permeability and

porosity area. This difference makes the seismic impedance change quite different in these

55



two areas, which can be seen in Fig. 42 and Fig. 43. In the left region, because of lower gas

saturation, the seismic impedance change value is low. The region on the right side has a

higher value because of higher gas saturation. Moreover, with increase of depth, reservoir

pressure becomes higher, which makes it more difficult for gas to come out, then seismic

impedance change values become smaller with depth.

History Matching

In this report, we used only the seismic impedance change data—not the change in amplitude—

and assumed that each gridblock had a seismic impedance change data so that the number

of data was as same as the number of gridblocks. We adjusted both horizontal permeability

and porosity, so the number of model parameters was twice the number of gridblocks. The

minimization required 100 iteration loops, which is the maximum number of iterations al-

lowed in our code. The square summation of data mismatch at the end of the iterations was

lower than the total number of data, which implies that the resulting model was acceptable.

The objective function behavior and data mismatch part decrease can be seen in Fig. 44(a)

and Fig. 44(b). The matching results of horizontal permeability field and porosity field can

be seen in Fig. 45, Fig. 46, Fig. 47 and Fig. 48.

From these maps, we make the following observations,

1. Seismic impedance change data provides useful constraints in history matching prob-

lem. Especially in large scale models, the use of seismic impedance change data can

decrease uncertainty. The results for both permeability and porosity include features

which are similar to the true model.

2. Estimates of the porosity field are better than the estimates for permeability. The

reason is almost certainly that seismic impedance change data is more sensitive to

porosity than to permeability.

3. From the top layer to the bottom layer, reservoir pressure increases, which means that

there less free gas evolves in the deeper layers. This decrease in gas saturation results

in smaller changes in seismic impedance in deeper layers. Thus, the results in deeper

layers were not as good as the results in top layers. This can be observed clearly from

Fig. 45 and Fig. 46.

4. The properties in the upper left region of the simulation model do not change very

much after integration of time-lapse seismic because there are almost no wells and the
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depth is greater, which makes it more difficult to have gas accumulated there. Thus,

we do not have significant seismic impedance change in that region.

Finally, we note that integration of seismic impedance change data into automatic history

matching seems to provide dramatically improved reservoir models, even when the data are

noisy. The spatial density of the data appears to compensate for the sparsity of production

data, especially in large scale models.
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Figure 34: True log horizontal permeability field in first four layers
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Figure 35: Prior log horizontal permeability field in first four layers
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Figure 36: True log horizontal permeability field in the fifth layer
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Figure 37: Prior log horizontal permeability field in the fifth layer
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Figure 38: True porosity field in first four layers
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Figure 39: Prior porosity field in first four layers
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Figure 40: True porosity field in the fifth layer
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Figure 41: Prior porosity field in the fifth layer
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Figure 42: Seismic impedance change in first four layers
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Figure 43: Seismic impedance change in the fifth layer
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Figure 44: Objective function and seismic data mismatch decrease
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Figure 45: Estimate of log horizontal permeability field in first four layers
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Figure 46: Estimate of porosity field in first four layers
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Figure 47: Estimate of log horizontal permeability field in the fifth layer
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Figure 48: Estimate of porosity field in the fifth layer
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HISTORY MATCHING OF FACIES

DISTRIBUTIONS

Background

Major improvements in the application of the truncated Gaussian method for lithofacies

simulations based on indicators were developed mostly by French scholars. By analyzing the

limitations and the potential of the truncated Gaussian method, Galli et al. (1994) found a

way to apply this method to a 3-D problem with vertical non-stationarity in the proportions

of lithofacies. They showed that this method preserved the consistency of the indicator

variograms and cross variograms. The major achievement of this paper is the introduction

of the truncated plurigaussian method, which allowed more complex neighbor relations than

the standard truncated Gaussian model. In the same period, Le Loc’h et al. (1994) showed

the flexibility of the truncated plurigaussian method by truncating two Gaussian functions.

They pointed out that even if the two underlying Gaussian functions are uncorrelated, the

resulting facies sets obtained by truncating are not independent. The correlation depends

on the construction of thresholds of lithotypes. Using uncorrelated Gaussian functions they

found that complex theoretical indicator variograms can be produced in combining various

anisotropies by choosing different Gaussian functions. They suggested that the choice of a

truncation method to the Gaussian functions should be as simple as possible to have easier

control over the problem.

Later, Le Loc’h and Galli (1997) presented an insight to implementing the algorithm

both for practical structural analysis and conditional simulations. In demonstrating the

influence of the thresholds chosen for truncation, the partition of facies was accomplished

using rectangles. But even with this relatively simple thresholding method, it is not at

all straightforward to choose appropriate thresholds. The difficulty in estimating model

parameters that will result in the desired facies distributions has restricted the practical

application of this method. An example of a truncated plurigaussian simulation conditional
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to facies data at well locations was presented with a very slow convergence. This problem was

attributed to the instability of the Gaussian covariance matrix. Lantuéjoul (2002) discusses

the problem of conditioning truncated plurigaussian models to facies observations extensively.

Assuming known threshold parameters, the truncated plurigaussian simulation scheme was

able to simulate the Gaussian random fields to match given lithofacies observations. As his

simulation problem was small, the Markov chain Monte Carlo sampling method was applied

to evolve Gaussian random fields. While, once again, the great potential of the truncated

plurigaussian method in simulating lithofacies distribution was revealed, two major problems

were left unsolved and seem to be limiting the application of this method beyond France.

First is the difficulty in estimation of geostatistical parameters, i.e. the geostatiscal quantities

such as the range, the variance, the covariance type (Gaussian, Exponential, Spherical, etc.)

and the thresholds for discrimination of facies. Second, the application of the truncated

plurigausian method in practical conditional simulation problems requires more efficient

methods of sampling to deal with reservoir history matching problems.

Conditional simulation of reservoir facies distributions is of great interest of reservoir

engineers. Bi et al. (2000) and Zhang et al. (2002) approached the problem of simulating

a channel sand by simulating the location of the centerline, the width and thickness of the

channel all along the channel length. In both cases, the Levenberg-Merquardt or Gauss-

Newton methods were used for the history matching and the chain rule was used to compute

the derivative of the production data mismatch to the values of channel width for example.

They were able to do this because many of the intermediate matrices in the computation

of the sensitivities were sparse, and because the number of sensitivity coefficients to be

computed was relatively small.

In the article by Rahon et al. (1996), they considered two problems in simulating locations

of lithofacies conditional to well pressure data. In the first, they attempt to estimate the

permeability of each facies whose locations have been fixed. In the second problem, they

altered the size of facies whose permeabilities have been fixed. The gradient calculation

relating to lithofacies has been successfully implemented in an implicit single-phase fluid flow

model. Rahon et al. (1997) applied similar idea in the problem of simulating channel sand

locations. This paper parameterizes a channel by triangularization of surface with the nodes

of the triangles representing the parameters. The centerline of the channel is assumed known

and fixed and the permeability and porosity in both the channel and non-channel facies are

assumed to be known. Sensitivities of the well pressure observations with respect to the

parameters of the nodes were computed to adjust the size of the channel. Although the idea of

using gradient method to adjust parameters deciding the size of lithofacies was valuable, their
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work was limited to the kind of problems with known locations of lithofacies. Landa et al.

(2000) integrated well test, logging, and geological data to obtain a reservoir description using

gradient method. They calculate the sensitivity matrix for permeability by solving the system

n times (where n is the number of parameters or gridblocks) and assume that permeability

and porosity are perfectly correlated. Their method is computationally unaffordable for

problems with large number of model variables. The method of truncated plurigaussian

simulation is very flexible in simulating distribution of lithofacies, for instance, the location,

width and sinuosity of multi-channels. However, to obtain a satisfactory resolution in the

lithofacies map, the Gaussian random fields used need to be large. Thus the way of computing

gradients has to be more efficient.

The Geostatistical Model

We consider a truncated bi-Gaussian field for which two independent Gaussian random fields,

y1 and y2 are used to generate a facies map.

Generating Thresholds

The choice of the truncation method for the Gaussian variables is important in applying

truncated Gaussian simulation in automatic history matching to generate reservoir models

satisfying geological requirements. Our intention is to use three or more intersecting lines

as thresholds. In this report, I will focus on introducing truncated Gaussian simulation

using three threshold lines. Three randomly generated lines intersecting each other without

all passing through the same point divide the plane into 7 regions. A facies type can be

attributed to each region, so up to 7 different kinds of facies can be included in the same

plane with appropriate relative percentage. This number of facies is generally enough for

geology maps in petroleum reservoir study, but if not, another line could be added. The

three lines are thresholds for different rock properties. Given an angle θ and a distance r, a

threshold line could be described by the following equation:

y = tan(θ − π

2
)(x− r

cos θ
), (72)

i.e., the threshold line is perpendicular to the line passing through the origin with the slope

θ and intersects the line at a distance r.

Fig. 49 is an example illustrating the truncation scheme of intersecting threshold lines.

The Gaussian random field y1 has Gaussian type covariance and y2 has exponential type
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covariance. The coordinates of the threshold map (Fig. 49(c)) are y1 and y2 respectively.

Three kinds of lithotypes, A, B, and C are assigned to the seven regions in the threshold

map. Facies type at any gridblock in the field is decided by taking the y1 and y2 value of

that gridblock to the threshold map. For instance, the gridblock (20, 40) has low values for

both its y1 and y2. (They both are in areas with dark shade.) So it corresponds to the area

in threshold map assigned facies A. We can tell from the facies map (Fig. 49(d)) that the

gridblock (20, 40) was assigned facies A. Calculation of the Gaussian fields y1 and y2 will be

discussed in the later section.

Continuous Variables

We begin by considering the continuous variables. Facies are defined by the truncation of

two continuous random fields. At the basic level, the variables on the grid are independent

normal deviates with mean 0 and variance 1. These independent deviates must be converted

to correlated random fields for truncation. The parameters of the two covariance functions

(such as the ranges of the covariances for the two fields, the principal directions) are variables

in this problem.

If we partition the truncation map based on truncation lines, then the locations of the

lines are also continuous variables. We let the number of lines be denoted by Nl.

{Z11, Z12, . . . , Z1Ng} Independent normal deviates with mean 0 and variance 1.

{Z21, Z22, . . . , Z2Ng} Independent normal deviates with mean 0 and variance 1.

{a11, a12, θc1} Ranges of covariance and principal direction of anisotropy.

{a21, a22, θc2} Ranges of covariance and principal direction of anisotropy.

{(r1, θ1), . . . , (rNl
, θNl

)} Locations of truncation lines.

The variables Z1 and Z2 are assumed to be multivariate normal, so

P (Z1) ∝ exp
(
−1

2
ZT

1 Z1

)
(73)

P (Z2) ∝ exp
(
−1

2
ZT

2 Z2

)
. (74)

The prior pdfs for the ranges of the variograms (a11, a12, a21, a22) can probably also be

assumed to be normal distributions with 0 means and fairly large variance. We may want to

truncate the distributions so that only positive ranges are allowed. This same assumption

seems reasonable for the distance of the truncation lines from the origin, except that here

we use a variance of 1 so that the lines are intersected close to the origin.
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(d) Calculated facies field map.

Figure 49: Simulation of lithofacies distribution in the field by truncation of random Gaussian

fields y1 and y2 using intersecting line thresholds.

It seems quite reasonable to assume that the prior distributions for the orientation of the

partitioning lines θ1, . . . , θNl
are uniform on the interval (0, π). In this case, the probability

density is a constant and can be ignored (or, more accurately, absorbed into the overall

constant). The same is true of θc1 and θc2.

We can then define mcG to be the vector of continuous variables whose prior distribution
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is Gaussian and mcU to be the vector of continuous variables whose prior distribution is

uniform or

mcG =



Z1

Z2

a11

a12

a21

a22

r1

...

rNl


and mcU =


θ1

θ2

...

θNl

 . (75)

Discrete Variables

There will also be a few parameters or variables that are uncertain but not continuous (and

hence not differentiable). The number of partitioning lines is clearly discrete. The covariance

model (that is, Gaussian, exponential, spherical, Whittles, etc.) to be used for each of the

random fields is not continuous or even numerical. Finally, each region of the truncation

map must be assigned a facies. Like the covariance models, the facies do not take continuous

values so this is also not continuous or numerical.

Nl The number of partitioning lines.

{m1, m2} Covariance models for fields Y1 and Y2.

{F1, F2, . . . , FNr} Facies assignment for each partitioning region.

We begin by assuming that Nl = 3 and that the covariance models are known. As for

the probability for assigning a particular facies type to one of the partitioning regions: it

seems reasonable to assign equal probability prior to the incorporation of any information.

As soon as any information on relative abundance of facies is available, the probabilities will

not be equal.
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Prior Probability Density

The prior probability for facies distribution F on a grid is denoted as P (F ). We can write

P (F ) = P (F |mcG, mcU , md)P (mcG, mcU , md)

∝ P (mcG, mcU , md)

= P (mcG)P (mcU)P (md)

∝ P (mcG)P (md)

(76)

The first term on the right, the conditional probability for F given values of all the model

variables, can be ignored as the relationship is deterministic once the variables are given. We

have also assumed independence of the variables in the prior distributions, which explains

the third line of Eq. 76. The fourth line is a result of the uniform distribution for some of

the variables.

The prior joint probability density for the continuous variables can be written in a com-

pact form as

P (mcG) ∝ exp
(
−1

2
mT

cGC−1
M mcG

)
(77)

where CM is the diagonal matrix of variances. For Z1 and Z2 the variances are all equal to

1.

The Posterior Probability Density

Our goal is to generate samples from the posterior distribution, i.e., the distribution of F

conditioned to observations, dobs. Bayes’ theorem tells us that

P (mcG, mcU , md|dobs) ∝ P (dobs|mcG, mcU , md)P (mcG, mcU , md). (78)

The first term on the right, the likelihood of the model, can be approximated by the

following Gaussian expression,

P (dobs|mcG, mcU , md) ≈ A exp
[
−1

2
(F − Fobs)

T C−1
D (F − Fobs)

]
(79)

where the data or measurement error covariance matrix CD simply reflects the possibility of

error in the identification or modeling of the observed facies. Of course, the vector F − Fobs

must be defined in a reasonable way. Facies have no intrinsic numerical value and even if they

were assigned numerical values for computation, it might not be reasonable to assume that

the difference between Facies 1 and Facies 3 is larger than the difference between Facies 1 and

Facies 2. It seems reasonable, for the purpose of conditional simulation and estimation, to

assume that the facies are either the same (in which case F −Fobs = 0) or they are different

(in which case F − Fobs = 1).
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Minimization

At this stage, we assume homogeneity within facies, i.e. both the permeability and the

porosity are constant for the same kind of facies type. However, the property fields are

discontinuous at the facies boundaries. Define the difference between the facies type from

optimization and the “true” facies type as:

fi =

0 if Fi = Fobs,i

1 if Fi 6= Fobs,i

where i indicates the ith gridblock. The general objective function for minimization is

O(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs) +

1

2
(m−mpr)

T C−1
M (m−mpr). (80)

When the objective is to minimize the difference between a facies realization and a training

image, the objective function takes the form:

OF (m) =
1

2
(F (m)− Fobs)

T C−1
D (F (m)− Fobs) +

1

2
(m−mpr)

T C−1
M (m−mpr)

=
1

2
f(m)T C−1

DF f(m) +
1

2
(m−mpr)

T C−1
M (m−mpr), (81)

where f is a vector of fi for i = 1, . . . , Ng, if there were facies observation in each gridblock.

Otherwise, when the number of facies observations Nf is less than Ng, the dimensions of

f is Nf × 1. CDF is the covariance matrix of the facies observation. Assume the facies in

each gridblock are independently observed with an unbiased Gaussian error N(0, σ2
F ), the

CDF matrix is equivalent to an identity matrix multiplied by σ2
F . The variance of the error

in facies observation approaches to zero, therefore the weighting of the model mismatch is

much smaller than the data mismatch, and can be ignored from the objective function. We

would like the objective function to be as small as possible since in that case we should

have a match between the observations and the model realization. The problem is that this

function is not differentiable so we cannot use gradient-based methods to find a minimum.

One solution is to redefine the function f so that it is differentiable (only for the purpose of

computing the minimum). We do this by introducing an artificial transition region between

facies.

Exploration on Optimization of Threshold Lines

The gradient of the facies mismatch to model parameters has shown that the parameters

deciding threshold lines have much greater sensitivity terms than those deciding random
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Figure 50: The reduction of the objective function with LM iterations.

Gaussian fields, which indicates that adjustment on θ’s and r’s mostly controls the optimiza-

tion process. So here I take the first step towards a complete optimization of all parameters

– fix the two Gaussian random fields as the “true” and leave the threshold parameters as

the only set of variables to be optimized. Another purpose of leaving Gaussian random field

fixed is to be able to test the validity of the gradient of the objective function about thresh-

old parameters. By fixing the Gaussian random fields, the optimization problem becomes

fairly small (with only 6 variable parameters) and it is affordable to calculate inverse of

Hessian directly, such that the Levenberg-Marquardt(LM) algorithm could be used instead

of LBFGS.

The optimization problem was applied on a fine grid field of 128× 128. Prior experience

with this research has proven that coarse grid such as 10× 10 would make the optimization

rather tough. The objective function is the squared difference between the facies realization

map and a given training image with facies observations at each grid. A set of threshold

lines was generated randomly as a prior model, which was a pure guess and contains no

prior knowledge about the truth. By truncating the “true” Gaussian random fields with

this prior threshold model, the objective function and a search direction were calculated.

After 10 steps of LM iterations, the objective function was reduced from the prior 7383 to

68. The total number of gridblocks is 128× 128 = 16384, and it is reasonable to accept the

convergence when less than 1% of the total gridblocks have different facies type to the truth.

The reduction of the objective function with LM iterations is shown in Fig. 50. In

Fig. 51, the threshold model after the tenth step and its corresponding facies distribution

were compared with the truth case. The data mismatch of 68 is small enough that the

difference between the calculated and the truth could be hardly recognized. Three set of

threshold lines, the random prior, the posterior and the true are put together in Fig. 52. A

slight mismatch of the posterior threshold and the truth could be observed and the lines in

the posterior model have been shifted far from their prior location.
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(a) The true threshold map. (b) The true facies field.

(c) Calculated threshold map. (d) Calculated facies field.

Figure 51: The comparison of an optimized estimation after 10 LM iterations with the “true”

threshold map and facies field.
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(a) The prior threshold model. (b) Comparison between calculated and
the truth.

Figure 52: Comparison of the prior, the posterior and the true threshold map. Solid lines

are stochastic model estimations and dashed lines are the truth.

A more realistic test problem, in which neither the parameters of the threshold lines or the

variables on the grid are known, was used to test the ability to create conditional realizations

on large grids, and to explore the pdf of threshold line parameters. A 2-D training image of

128× 128 points with known facies was used as data for conditioning. The model variables

were defined on an augmented grid whose dimensions were 192× 192. Because two of these

grids are need for truncation there are approximately 73,000 variables and 16,000 data in

the problem.

Three threshold lines were used for truncation and three lithotypes were assigned to the

threshold map. Both Y1 and Y2 have isotropic Gaussian type covariance with range of 90 ft.

Fig. 53 shows the facies distribution from the initial guess of model parameters. The initial

facies mismatch is 12525, i.e. 76% of the gridblocks have wrong facies types compared to

the training image [Fig. 54 (left)].

This problem is far too large for Levenberg-Marquardt, so the limited memory version of

the BFGS algorithm (Nocedal, 1980) was used for the minimization of the objective function

because it requires storage of only a set of vectors instead of the whole inverse Hessian matrix.

The inverse Hessian is iteratively updated based on computations of the gradient, for which

we used an adjoint method with automatic code generation (Corliss et al., 2001).

Fig. 53 (right) shows the gradient of the objective function with respect to Y1. The gradi-

ent of the objective function to Y1 clearly reflects the regions of high sensitivity. Comparing

the right and left sub-figures in Fig. 53, we may conclude that the mismatch function is most

sensitive to changes in the values of the random variables that are near facies boundaries.

The width of the region of sensitivity depends on the width of the transition region and its

79



Figure 53: The initial facies map (left) and the gradient of the objective function with respect

to the field evaluated at the initial map (right).

Figure 54: Comparison of the facies map generated from the minimization of the objective

function (right) with the training image (left).

choice affects the rate of convergence. Finally the training image is shown together with the

final facies map in Fig. 54. The facies in 95.6% of the gridblocks in the final result matched

the facies in the training image.

We repeated the minimization procedure 200 times; each time we started with uncon-

ditional realizations of the parameters describing locations of the threshold lines and un-

conditional realizations of the random variables on the grid. The Randomized Maximum

Likelihood (RML) method was used for the sampling, as it seems to do a relatively good

job of sampling for this type of problem (see Liu and Oliver (2003)). In approximately

half of the cases the resulting value of the objective function seemed satisfactory (less than

2000). Fig. 55 summarizes the distribution of realizations of the orientations of the first two

threshold lines.

Although the orientation of the threshold lines were sampled randomly from a uniform
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Figure 55: Comparison of the estimated pdf (squares) for θ1 (left) and θ2 (right) to the prior

pdf (triangles). The width of the gray bars indicates the variability due to limited sample

size of 109 ordered sets of 3 orientations from a uniform distribution. 10% are higher and

10% are lower.

distribution, the facies were assigned in a non-random and non-uniform manner. As a re-

sult, it was necessary to apply and ordering to the threshold lines with θ1 < θ2 < θ3. Once

this is done, the distributions of orientations are no longer uniform. It would be unlikely,

for example, for the smallest of the three angles (θ1) to be close to π, and this is seen in

Fig. 55. From the two plots, it is not apparent that the estimate of the posterior distri-

bution for θ1 or θ2 (indicated by the black squares) is significantly different from the prior

distribution(indicated by the black triangles). If there had been rotational symmetry to the

threshold plots, we would have expected the orientations to cluster along lines in crossplots

of variables. Crossplots of θ1 and θ2 failed, however, to show any obvious patterns. In order

to honor the proportions of facies correctly, there must be some fairly strong constraints

on relationships among the threshold line parameters, but they are not obvious from the

conditional realizations. It would be easy, however, to use the realizations generated in this

procedure in a Monte Carlo method.

History Matching to Production Data

Practically the hard data of facies observations in a formation layer are only available at

well bores with coring operations. The training image from geologists provides expected

facies distribution pattern and features. PDF of the geostatistical parameters, such as the

ones deciding truncation lines and the ones deciding the covariance of the Gaussian fields.

These geostatistical parameters are then used in a Bayesian scheme for simulation of facies

conditional to logs or production data.

When the PDF of the geostatistical parameters are known, realizations of facies map can
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be generated by minimizing the objective function with respect to the random field Z1 and

Z2. The objective function in this case is:

O(m) =
1

2
[P (m)− Pobs]

T C−1
P [P (m)− Pobs] +

1

2
[F (m)− Fobs]

T C−1
F [F (m)− Fobs]

+
1

2
(m−mpr)

T C−1
M (m−mpr)

=
1

2
[d(m)− dobs]

T C−1
D [d(m)− dobs] +

1

2
(m−mpr)

T C−1
M (m−mpr), (82)

where Pobs is the observed production data, such as the bottom whole pressure, the WOR

and GOR, and the production rate. P (m) is the simulated production data. Fobs is the facies

observation at a few cored locations. Both CP and CF are diagonal covariance matrix of the

data observations, the facies observation is very accurate so its variance is much smaller than

that of production data. The mismatch to the hard data dominates the matching before it

becomes small enough, so that the facies type at well locations are forced strongly to honor

the facies observations. The production data and the hard data can be combined as dobs.

The gradient of the objective function O(m) with respect to the model parameters is:

g = ∇mO(m)

= GP (m)T C−1
P [P (m)− Pobs] + GF (m)T C−1

F [F (m)− Fobs] + C−1
M (m−mpr)

= gP + gF + gm

= ∇mOd(m) +∇mOm(m). (83)

When the geostatistical model has been decided, generating a facies realization that matches

the production data and logging data is to optimize the random field Z1 and Z2. The gradient

of the data mismatch with respect to Z1 can be derived by chain rule as:

∇Z1Od(m) = ∇Z1 [OP (m) + OF (m)]

= L1 · [∇Y1K(m) · ∇KOP (m) +∇Y1φ(m) · ∇φOP (m) +∇Y1OF (m)]. (84)

The terms ∇KOP (m) and ∇φOP (m) are the production data mismatch with respect to the

property fields, which are obtained by adjoint method in the history matching program.

∇Y1K(m) and ∇Y1φ(m) are diagonal matrices with the diagonal elements:

∂Ki(m)

∂Y1,i

=
dKi

ddl

∂dl

∂Y1,i

, (85)

∂φi(m)

∂Y1,i

=
dφi

ddl

∂dl

∂Y1,i

. (86)
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dl is the distance of (Y1,i, Y2,i) to the closest threshold line, which is computed in Eq. 87.

d(~v, ~u) = |~u| − ~u · ~v
|~u|

=
tan(θ − π

2
)x− y − tan(θ − π

2
) r

cos θ√
1 + tan2(θ − π

2
)

= sin(θ − π

2
)x− cos(θ − π

2
)y + r. (87)

The property fields K and φ are regarded homogenous within a facies region, but the

values are discontinuous across the facies boundaries. To compute the gradient of the prop-

erty fields with respect to the Gaussian fields, the property fields have to be differentiable.

As the facies observations are only available at a few cored locations, it is not possible to tell

whether the facies type corresponds to (Y1,i, Y2,i) is correct. Therefore the transition zone of

the permeability and porosity values is made in both sides along the closest threshold line

to point (Y1,i, Y2,i). If the property fields in the transition zone were defined by the square

root of the distance to the threshold line as:

K(dl) =

K1+K2

2
+ Sign(dl)

K2−K1

2

√
|dl|
ε

for |dl| ≤ ε

0 for |dl| > ε,
(88)

and K1 and K2 are permeability values assigned to each facies, then the gradient dKi

ddl
goes

to infinite when the distance to the threshold line approaches to zero. Therefore linear

interpolation was chosen for the transition zone of the property fields. Let the width of the

transition zone on each side of the threshold line be ε, the permeability along the direction

perpendicular to a threshold line is:

K(dl) =

K1 − 1
2
(K1 −K2)(1− |dl|

ε
) for |dl| ≤ ε

0 for |dl| > ε,
(89)

where K1 is the assigned facies permeability at the same side of the threshold line with

(Y1,i, Y2,i), and K2 is the assigned permeability on the other side. ε is the absolute distance

to the threshold line. In Fig. 56, the permeability at point B can be computed by Eq. 89,

and KA should be computed by:

KA = K2 −
1

2
(K2 −K1)(1−

|dl,a|
ε

), (90)

as A is on the same side with K2.
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Figure 56: The gradient of the permeability is derived from this linear interpolation model.

K1 and K2 are permeability values assigned to two adjacent regions in the threshold map.

Point O is the cross-section with the threshold line, which is also the middle point of the

transition zone in this 1-D plot.

The gradient dKi

d|dl|
in the linear interpolation case is:

dKi

d|dl|
=

K1−K2

2ε
for |dl| ≤ ε

0 for |dl| > ε.
(91)

Substituting Eq. 91 into Eq. 85, the gradient of the permeability at the ith grid with respect

to Y1 at the ith grid is:

∂Ki(m)

∂Y1,i

=
dKi

d|dl|
d|dl|
ddl

∂dl

∂Y1,i

= Sign(dl)
K1 −K2

2ε
sin(θl −

π

2
). (92)

Similarly,

∂φi(m)

∂Y1,i

=
dφi

d|dl|
d|dl|
ddl

∂dl

∂Y1,i

= Sign(dl)
φ1 − φ2

2ε
sin(θl −

π

2
). (93)

The third term of ∇Z1Od(m) is the gradient of facies mismatch about Z1. The com-

putation of ∇Y1OF (m) is similar with the case where a training image is given. OF is the

squared difference between the simulated facies and facies observations. When the simulated

and the observed facies are the same type, fi = Fi(m) − Fobs,i = 0, otherwise fi = 1. As

∇Y1OF (m) = GF,Y1(m)T C−1
F f , the key is computing the sensitivity matrix GF,Y1 , which is

an NF ×Ng sparse matrix with maximum one non-zero element in each row. The non-zero

elements are the sensitivities of the facies difference f at the facies observation locations with

respect to Y1 at the corresponding grid. Because the logical process of deciding the values of
dfi

dY1,i
is beyond the description capacity of equations, the following pseudo code is provided.
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DO l = 1, Nl

d(l) =
tan(θl − π

2
)Y1,i − Y2,i − tan(θl − π

2
) rl

cos θl√
1 + tan2(θl − π

2
)

= sin(θl −
π

2
)Y1,i − cos(θl −

π

2
)Y2,i + rl

END DO.

dl = min(d)

IF Fi = Fobs,i THEN
dfi

dY1,i
= 0

ELSE

IF |dl| > ε THEN
dfi

dY1,i
= 0

ELSE

IF (Fab,i = Fobs,i) THEN

dfi

dY1,i

=
dl

|dl|
1

2
√

ε|dl|
sin(θl −

π

2
)

ELSE
dfi

dY1,i
= 0

END IF

END IF

END IF

Fab,i is the facies type on the other side of the closest threshold line. When the

facies at grid i decided by (Y1,i, Y2,i) does not match the facies observation at that

location, but the other side of the threshold line has the correct facies type, i.e.

Fab,i = Fobs,i, there exists a transition zone on the side of the threshold line that is

closer to (Y1,i, Y2,i).

The non-zero terms in ∇Y1OF (m) = GF,Y1(m)T C−1
F f is:

∂OF (m)

∂Y1,i

=
dl

|dl|
1

2σ2
F ε

sin(θl −
π

2
). (94)

Similarly, the gradient of the squared data mismatch with respect to Z2 is:

∇Z2Od(m) = ∇Z2 [OP (m) + OF (m)]

= L2 · [∇Y2K(m) · ∇KOP (m) +∇Y2φ(m) · ∇φOP (m) +∇Y2OF (m)]. (95)
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∇Y2K(m) and ∇Y2φ(m) are Ng ×Ng diagonal matrices with diagonal elements:

∂Ki(m)

∂Y2,i

=
dKi

d|dl|
d|dl|
ddl

∂dl

∂Y2,i

= Sign(dl)
K1 −K2

2ε
sin(θl −

π

2
). (96)

∂φi(m)

∂Y2,i

=
dφi

d|dl|
d|dl|
ddl

∂dl

∂Y2,i

= Sign(dl)
φ1 − φ2

2ε
sin(θl −

π

2
). (97)

∇Y2OF (m) is a very sparse vector with a maximum of NF non-zero elements. The non-zero

elements are decided very similarly with those in ∇Y1OF (m).

∂OF (m)

∂Y2,i

=
dl

|dl|
1

2σ2
F ε

sin(θl −
π

2
). (98)

Generate Initial Model

The initial model for history matching of production data need to honor the facies observa-

tions. Knowing the geological and geostatistical model, the initial model Z1 and Z2 can be

generated in the following procedure.

1. Generate two multivariate Gaussian deviates Z1 and Z2 from N(0, I).

2. Simulate the facies map from Z1 and Z2 and check whether the simulated facies at

observation locations match the facies observation.

3. For simulated facies that do not honor the facies observation, generate new random

variables in patches of appropriate size (30 × 30 in this application) and replace the

patches to the variables centered at the observation locations that do not match.

4. Run the simulation again and check the matching of the facies observation. If there

is mismatch, repeat step 3. If not, output the random fields Z1, Z2 as a set of initial

model.

Twelve initial models are generated and the initial facies maps are shown in Fig. 57.

As the assignment of facies to the seven regions in the threshold map is ad hoc and non-

differentiable at this stage, the true facies arrangement is assumed to be known as a part

of the geostatistical model. The history matching process then uses the true threshold map
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Figure 57: Initial facies maps that honors the facies observations.
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Figure 58: The true facies map and the true threshold map with the Gaussian variables

(Y1, Y2) at each facies observation of the true facies map.

to do the truncation. One potential problem with fixing the threshold map and the facies

assignment is that the grids with Gaussian random variables far from threshold lines may be

difficult to be modified to the correct facies. To make this point clear, the true threshold map

is shown in Fig. 58 with the pairs of Gaussian variables (Y1, Y2) at the observation locations

of the true facies map. The regions in the threshold map are assigned three types of facies:

F = 1, 2, or 3. Both the facies observations with facies F = 1 can be close to facies 2 and 3

in the true facies map. An initial map can be very possibly generated matching the facies

observations, but with the pairs of Gaussian variables in a different region of the threshold

map. For instance, if either of the two pairs of (Y1, Y2) giving facies 1 is in the top region

where Y2 has large positive value, the observation location will be hardly adjacent to facies

2, as it is not likely for that point to move around the corner with the facies 3 region and get

down to the lower facies 1 region. When there are production data at that facies observation

location, it may never lead to converge because the facies around the well is incorrect.

Therefore the initial model should honor the regions at facies observation locations to

make the convergence easier. The procedures for generating the initial models that not only

match the facies observations, but match the regions of the facies observations are shown as

following:

1. Generate two multivariate Gaussian deviates Z1 and Z2 from N(0, I).

2. Simulate the facies map from Z1 and Z2, then check whether the pairs of the Gaussian

variables (Y1, Y2) at observation locations are in the correct region.

3. For Gaussian pairs at observation locations that are not in the correct region in the

threshold map, generate new random variables in patches of appropriate size (30× 30
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in this application) and replace the patches to the variables centered at the observation

locations that do not match.

4. Run the simulation again and check the matching of the Gaussian variable region. If

there is mismatch, repeat step 3. If not, output the random fields Z1, Z2 as a set of

initial model.

Investigation on Convergence

The convergence of the objective function is largely dependent on the transition zone width.

Each grid has two Gaussian variables (Y1, Y2), and it has non-zero gradients of the objective

function with respect to both Gaussian variables only if it is in the transition zone. When the

transition zone is wide, grids that are far within facies regions respond to the perturbation

to model parameters Z1 and Z2. The advantage of wide transition zone might be that the

modifications to more grids can be made in each iteration. However, as the transition is just

made to compute the gradient and the objective function does not consider the transition

zone, gradients from a narrower width should provide a more accurate adjustment direction.

Fig. 59 shows the objective function along the search direction in the first optimization

iteration. The top row is with the transition width of 0.2, and the bottom row is 1. The two

figures in the left column include points with non-zero facies mismatch at facies observations.

As all the five facies observations are at well locations, the facies mismatch caused great

production data mismatch at well locations. Therefore the objective function jumped by a

factor of 20.

The reduction of the objective function before the facies alternation is small relative to

its scale when the facies at well locations are different with observation. Therefore the data

points look flat. To have a close look at the trend of the objective function with respect

to the step size along the search direction, the flat parts are plotted out as shown in the

right column of Fig. 59. Comparing the two figures with the transition width of 0.2 and

1 respectively, the reduction of the objective function is greater for the case with wider

transition width.

When the proposed model does not satisfy both Wolfe conditions at the same time, a

quadratic fit will be made to reduce the objective function by optimizing the step size. The

quadratic function is in the form of:

q(α) = aα2 + bα + c, (99)
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Figure 59: All the four figures are the objective function along the first search direction.

The transition zone width in the first row is 0.2, in the second row is 1.0. The figures on the

right column are amplifications of the flat region in the figures on the left column.
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Figure 60: A schematic plot of the quadratic fit to an objective function curve with the

typical shape for this minimization problem. The quadratic fit gives a higher objective

function value than that from the Newton-Raphson iteration.

where the coefficients a, b, and c are computed as:

a =
f(mk + α̂kdk)− f ′(mk)α̂k − f(mk)

α̂2
k

,

b = f ′(mk),

c = f(mk). (100)

The step size α̂k is computed from the Newton-Raphson iteration right before the quadratic

fit. dk is the search direction along which we try to find a minimum of the objective function.

mk is the current model from which the search direction is computed. f(mk) is the objective

function at the current model mk. f ′(mk) is the gradient of the objective function about

model parameters at mk.

Both curves of the objective function with different transition zone width are nearly linear

before the abrupt jump. Fig. 60 is a schematic plot showing the typical shape of the objective

function along the search direction for this type of minimization problem. Point A represents

the starting model mk, and B is the temporary model by Newton-Raphson search. Although

the objective function has been reduced from point A to point B, the change in the model

parameters might not be large enough to satisfy the second Wolfe condition. Therefore a

quadratic fit is made through point A and B. The step size corresponding to point C is at

the minimum point in the quadratic fit function q(α), but gives a higher objective function

than both point A and B. In this case, the new model at point C should be discarded.

The process of optimization is fairly complicated. A flow chart is provided to give a

better illustration of the structure of the code.
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Figure 61: Flow chart for the automatic history matching process.
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Constrained Optimization

There are two types of data available in this history matching problem. One type is the

production data, the other type is the facies observation data, which is regarded as hard

data. The process of optimizing the model to match the production data is pretty much

similar with common automatic history matching problems. The hard data in our problem,

however, is not the same type as the model parameters. The hard data are the facies

observations, and the underlying model parameters Z1 and Z2 have to be constrained to the

facies observations while matching the production data.

There are two aspects to consider on matching the facies observations. One is in gener-

ating initial models, which have been discussed in one of the previous sections. The other is

in maintaining the facies type at observation locations in the process of optimization.

In line search for the optimized step size, we take one Newton-Raphson iteration as:

α1 = −(∇O(mk))
T dk

dT
k H(mk)dk

, (101)

where the computation of the denominator dT
k H(mk)dk requires the term Gkdk. Gkdk is

computed in this project by finite difference method:

Gdk = ‖dk‖
dO(mk)

dα

≈ ‖dk‖
O(mk + εdk)−O(mk)

ε‖dk‖

=
O(mk + εdk)−O(mk)

ε
, (102)

where ε is a small constant chosen based on the infinite norm of dk:

ε =
10−3

‖dk‖∞
. (103)

The model mk + εdk may not match the facies observation, which makes it meaningless and

impractical to compute the objective function knowing it will be discarded. Therefore we

first check the facies mismatch for the model mk + εdk, if it is non-zero, then the ε is cut

back: ε = ε/10, otherwise, the model is put into the simulator to compute the objective

function O(mk + εdk).

After the step size is computed from the line search, again we check the facies mismatch

for the model mk + α1dk. If it is non-zero, then α1 = α1/10, otherwise, the new model

mk + α1dk is put into the simulator to compute the objective function O(mk + α1dk).
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Figure 62: The initial facies map and the final facies map after convergence. The objective

function reduced to 1% of the original objective function at the final model.

A Case Study

An initial model has been generated matching the regions of facies observations. The initial

facies map is shown on the left of Fig. 62. After 13 LBFGS iterations, the objective function

reduced to 1% of the initial value. The facies map for the converged model is shown on the

right of Fig. 62. The production data is from the true case shown in Fig. 54.

The intermediate results for computing the gradient of the squared data mismatch OD

with respect to model parameters Z1 and Z2 are shown in Fig. 63. The gradient of squared

data mismatch with respect to the permeability and the porosity fields are computed with

the adjoint method. Then the chain rule is applied to compute the gradient of the squared

data mismatch with respect to each of the Gaussian fields. As well4 at the upper right corner

is surrounded by facies 3, which has very high permeability, the sensitivity of rock properties

to production data is relatively small.

The final matching of production data for each well is shown in Fig. 64. The production

data for well 2 has the best matching, mostly because the gradient is large at that low

permeability region. The final simulated data from well 4 is further away from the observation

data, in comparison with the simulated data from the initial model. The reason might be

that the gradient around well 4 is relatively small than those around other wells, thus the

facies modification close to well 4 is dominated by the gradients from other wells. If the

objective function can be further reduced, the gradients from the data mismatch at well 4

will finally dominate and the facies can be improved around well 4 towards reductions of

data mismatch of well 4.
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Figure 63: The gradient of the objective function with respect to intermediate parameters.

The first row are output from the normal adjoint computation. The second row is the

gradient of the objective function with respect to each of the two Gaussian fields Y1 and Y2.
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Figure 64: Comparison of the production data from the initial and the final model with the

observation data.
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RESULTS ON ESTIMATION OF

RELATIVE PERMEABILITY

CURVES

Generation of Estimates

For the synthetic examples presented here, the reservoir is assumed to be a rectangular par-

allelepiped and the permeability field is assumed to be isotropic. The forward model used

to calculate production data is a fully-implicit finite-difference simulator based on a block

centered grid. Additional information on the simulator can be found in Li et al. (2001a) The

model parameters to be estimated include the gridblock log-permeabilities and the param-

eters involved in the power law expressions for the relative permeability curves. All other

rock and fluid properties are assumed to be known. Log-permeabilities, instead of absolute

permeabilities, are used as parameters because it is assumed that absolute permeability is

log-normal.

Throughout, m denotes the vector of model parameters (gridblock log-permeabilities and

parameters defining relative permeability curves). In the Bayesian approach used here, m

is considered to be random vector. We assume that m has a prior multivariate Gaussian

distribution with covariance matrix CM and prior mean mprior. It is assumed that the model

parameters defining the relative permeability functions are not correlated with each other or

with the gridblock log-permeabilities. In practice, the prior means and covariance function

for log-permeability will be obtained from a geostatistical model constructed from static

data, e.g. well log, core and seismic data but not production data. The prior covariance

matrix and prior means for relative permeability parameters could be constructed from lab-

oratory measurements of relative permeability curves, from lab data for analogue reservoirs,

or relative permeability correlations.

All observed production data that will be history matched are stored in the vector dobs.
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The associated calculated or predicted production data corresponding to a given model m

is represented by the relation

d = g(m). (104)

In this work, Eq. 104 represents the operation of running the simulator with given values of

the model parameters to compute the production data d. In the history matching process,

we wish to determine m such that d is in agreement with dobs. In general, measurement and

modeling errors preclude the possibility of finding a model m so that d and dobs are in exact

agreement.

Production data measurement errors are assumed to be independent, random variables

with mean zero and prescribed variance so that the data covariance matrix, denoted by CD, is

diagonal. The variances of all pressure measurement errors are assumed to be identical, i.e.,

the pressure measurement error is independent of time and independent of the magnitude

of pressure. Similarly, the variance of the gas-oil ratio measurement errors is assumed to be

constant.

The “measured” WOR is not actually measured directly, but is constructed from mea-

sured oil and water rates. Using basic statistical principles for constructing the variance of

the ratio of two random variables, Wu et al.Wu et al. (1999) showed that the variance of the

WOR measurement error can be approximated by

Var(eWOR) = WOR2
obs

(
ε2
o + ε2

w

)
, (105)

where ε2
m denotes the variance of the measurement error of qm (flow rate of phase m) divided

by the observed value of qm. (For example, εo = 0.01 corresponds to setting the standard

deviation of the measured oil rate equal to one per cent of the measured oil rate.) As the

observed water-oil ratio (WORobs) approaches zero, however, Eq. 105 indicates that the

variance of the measurement error also approaches zero, and this is unrealistic because very

small values of the water rate, and hence very small values of the WOR, will not be measured

accurately. Thus, it makes practical sense to specify a minimum possible value of Var(eWOR);

we use the following formula:

Var(eWOR) = WOR2
obsε

2
o +

1

q2
o,obs

max
[
ε2
wq2

w,obs, σ2
w,min

]
, (106)

where for the examples considered in this work, we set σw,min = 0.32 std m3/d (2 STB/D) .

Note that if ε2
wqw,obs ≥ 2, then Eq. 106 reduces to Eq. 105.

Under the assumptions delineated above, the maximum a posteriori estimate of model

parameters can be obtained by minimizing the following objective function Tarantola (1987);
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Wu et al. (1999); Li et al. (2001a)

O(m) =
1

2

[(
m−mprior

)T
C−1

M

(
m−mprior

)
+
(
g(m)− dobs

)T
C−1

D

(
g(m)− dobs

)]
. (107)

In the examples, considered here, the modified Levenberg-Marquardt algorithm originally

presented in Bi (1999) is applied to minimize O(m) with the Li et al. (2001b) implementation

of the adjoint method used to calculate sensitivity coefficients.

Relative Permeability Models

Throughout, Swc denotes irreducible water saturation, Sgc denotes critical gas saturation,

Sorg denotes the residual oil saturation for a two-phase, gas-oil system and Sorw denotes

residual oil saturation for a two-phase, water-oil system. As is common, we define oil relative

permeability under three-phase flow conditions as a combination of the two sets of two-phase

relative permeability functions. In the simulator, and hence in the examples presented, the

historically popular Stone’sStone (1973) Model II is applied. The form of this model applied

here is the modification that is described in Aziz and SettariAziz and Settari (1979). Our

results, however, indicate this model has a peculiar characteristic that is troublesome.

As the examples presented are synthetic, simple analytical formulas are used for the

relative permeability functions. Letting

Sw,max = 1− Sorw, (108)

the water relative permeability function is given by

krw =


0 if Sw ≤ Swc,

krwcw

(
Sw−Swc

1−Sorw−Swc

)nrw

if Swc ≤ Sw ≤ Sw,max

krwcw if Sw ≥ Sw,max.

(109)

The endpoint relative permeability, krwcw, represents the maximum value of water relative

permeability that can be obtained. The corresponding oil relative permeability function for

a two-phase oil-water system is given by

krow =


krocw if Sw ≤ Swc,

krocw

(
1−Sorw−Sw

1−Sorw−Swc

)nrow

if Swc ≤ Sw ≤ Sw,max

0 if Sw ≥ Sw,max.

(110)
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We let krog denote the oil relative permeability for a two-phase flow oil-gas system. In

the Stone Model II, it is assumed that the two-phase oil-gas relative permeabilities depend

only on gas saturation and are measured in the presence of irreducible water saturation.

Thus the endpoint values of oil relative permeability for a two-phase oil-water system and a

two-phase oil-gas system are identical, i.e.,

krog(Sg = 0) = krow(Sw = Swc) = krocw. (111)

The gas relative permeability function used in this work is given by

krg =


0 if Sg ≤ Sgc,

krgcw

(
Sg−Sgc

1−Sorg−Swc−Sgc

)nrg

if Sgc ≤ Sg ≤ Sg,max

krgcw if Sg ≥ Sg,max,

(112)

where

Sg,max = 1− Sorg − Swc. (113)

Note krgcw denotes the maximum value of gas relative permeability and occurs when Sw = Swc

and So = Sorg. The oil relative permeability function for a two-phase oil-gas system is given

by

krog =


krocw if Sg ≤ Sgc,

krocw

(
1−Sorg−Swc−Sg

1−Sorg−Swc−Sgc

)nrog

if Sgc ≤ Sg ≤ Sg,max

0 if Sg ≥ Sg,max.

(114)

Equations 112 and 114 indicate that oil and gas relative permeabilities are a function of only

Sg for a two-phase oil-gas system, whereas, the two-phase oil and water relative permeabilities

depend only on water saturation.

The water and gas relative permeabilities of Eqs. 109 and 112 apply regardless of the

number of phases present. If all three phases are mobile, the oil relative permeability function

is given by

kro = krocw

([ krow

krocw

+ krw

][ krog

krocw

+ krg

]
−
[
krw + krg

])
. (115)

Equation 115 represents the modification of Stone’s Model II as presented in Aziz and Set-

tariAziz and Settari (1979). This equation gives oil relative permeability as a function of

Sw and Sg and applies for any values of saturations, subject to the proviso that kro is set

equal to zero whenever the formula predicts a negative value. If Sg = 0, it is easy to show

that Eq. 115 reduces to the oil relative permeability function of the two-phase oil-water sys-

tem and if Sw = Swc, then Eq. 115 reduces to the oil relative permeability function for the

two-phase oil-gas system.
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We also assume residual oil saturations, critical gas saturation and irreducible water

saturation are known. Thus, in the general three-phase flow case, estimation of relative

permeability curves requires estimation of the components of the vector

mrel =
[
krwcw, krocw, nrw, nrow, krgcw, nrg, nrog

]T
. (116)

In general the components of the model m include gridblock log-pemeabilities and the com-

ponents of mrel. If absolute permeability is assumed to be known, then m = mrel.

Comments on Estimation of Relative Permeabilities

The standard black-oil equations for three-phase flow involve only the product of absolute and

relative permeability, i.e., kkrm for m = o, w, g. Suppose we are given the true permeability

field and true relative permeabilities as one plausible set of model parameters which match

production data. If we generate a second set of model parameters by multiplying the absolute

permeability field by any positive constant a and dividing the true relative permeabilities

by a, then effective permeabilities as functions of saturations for the resulting set of model

parameters will be identical to the true model. Moreover, the two models will predict

identical production data when input into a reservoir simulator. Thus, it is clear that there

is an infinite set of model parameters that will result in the same predictions of reservoir

performance. In terms of the inverse problem of interest here, this means that we can

not expect to generate accurate estimates of absolute and relative permeability by history

matching observed production data. Any such estimate will have an infinite uncertainty

attached to them unless the uncertainty is constrained by a prior model or by imposing a

constraints on the permissible values of absolute permeability and relative permeabilities.

For the two sets of two-phase relative permeability curves, the effective permeabilities as

functions of saturations do not change as long as kkrocw, kkrgcw and kkrwcw are held constant.

Thus, under two-phase flow conditions, production data will not allow one to construct a

reliable estimate of k and the endpoint relative permeabilities. Quite interestingly, the

modified Stone’s Model II three-phase oil relative permeability function has the strange

characteristic that it is not possible to keep all three effective permeabilities constant if k is

varied. To see this, we multiply Eq. 115 by absolute permeability and rearrange the resulting

equation to obtain

kkro = kkrocw

([ kkrow

kkrocw

+
kkrw

k

][ kkrog

kkrocw

+
kkrg

k

]
−
[kkrw

k
+

kkrg

k

])
. (117)
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If kkrocw, kkrwcw and kkrgcw are held constant as k is varied, then all two-phase effective

permeability functions remain unchanged, but Eq. 117 indicates that the three phase effec-

tive oil permeability function kkro varies with k. Thus, changes in the absolute permeability

field will result in changes in predicted production data if three phases are mobile. Also

note that if kkrocw is held constant as k is varied, then both two phase flow effective oil

permeabilities, kkrow and kkrog will be unchanged, but the three-phase flow effective per-

meability function kkro will change unless effective gas and/or effective water permeability

are altered. Thus, under three-phase flow conditioned it is not possible to alter absolute

permeability while keeping all effective permeabilities constant. This means that changes

in absolute permeability will result in changes in predicted reservoir performance. Thus,

unlike the two-phase flow case, it may be possible to obtain reasonable estimates of both

absolute permeability and relative permeability functions from three-phase flow production

data. This result, however, is simply a peculiarity of Stone’s Model II. For example, if one

used the Dietrich and Bonder (1976) modification of Stone’s model, then it is possible to

obtain identical effective permeabilities under three-phase flow conditions for two different

absolute permeability fields. The Dietrich-Bonder model, however, has other disadvantages;

see Aziz and Settari (1979).

History Matching Examples

We consider two synthetic, two-dimensional three-phase flow problems. In the first example,

the reservoir consists of three zones of uniform absolute permeability. In this case, we con-

sider the estimation of relative permeability model parameters when absolute permeability is

known and then consider the simultaneous estimation of absolute and relative permeabilities.

In the second example, the true permeability field is an unconditional realization generated

from a prior geostatistical model. In this case we generate a realization, rather than an esti-

mate, of absolute and relative permeabilities. The information given in the following three

paragraphs applies to all examples presented.

The reservoir simulation grid is 15 × 15 × 1. The grid is uniform with areal dimensions

given by ∆x = ∆y = 12.2 m (40 ft) and ∆z = 9.1 m (30 ft). Throughout, gridblock (i, j)

refers to the gridblock centered at (xi, yj, z1). A water injection well (referred to as Well 5) is

completed in gridblock (8, 8). Water is injected through this well at a constant rate of 87.4

std m3/d (550 STB/D) for all times. Producing wells are located in gridblocks (3, 3) (Well

1), (13, 3) (Well 2), (13, 13) (Well 3) and (3, 13) (Well 4). Each of these wells is produced at

a constant total fluid rate of 34.98 m3/d (220 RB/D). The synthetic production data used
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to generate estimates is generated by running the reservoir simulator with the true model.

Observed production data corresponds to the pressure, water-oil ratio and producing gas-oil

ratio output from the simulator at thirty days intervals, i.e., at t = 30, 60, . . . , 300 days at

each producing well. At the water injection well, the flowing wellbore pressure at these times

is also recorded. Thus, 130 data points are available for estimating the model parameters

by automatic history matching. In the examples, we consider the effect of using only one

type of data. Initial reservoir pressure is 31, 026 kPa (4500 psi) and initial bubble-point

pressure is 30, 454 kPa (4417 psi) so pressure in gridblocks containing producing wells drop

below bubble-point pressure very shortly after the beginning of production. For all examples

considered water breaks through at all the producing wells prior to the end of the 300 day

production period. After water breaks through at a well, all three phases are mobile in the

well’s gridblock.

Throughout, the natural logarithm of absolute permeability is simply referred to as log-

permeability and denoted by ln(k). To generate the prior model, we assumed that log-

permeability is a stationary Gaussian random function with the associated covariance func-

tion defined from an isotropic spherical variogram (Journel and Huijbregts, 1978). The range

of the variogram is equal to 73.2 m (240 feet) and its sill is equal to 0.5. Thus the correlation

range of ln(k) is 73.2 m and the variance is 0.5. In all examples, the prior mean for ln(k) is

set equal to 4.0, so all elements of the vector mprior (see Eq. 2) which correspond to gridblock

log-permeabilities are set equal to 4.0. Relative permeabilities are represented by power law

expressions. In all cases Swc = 0.2, Sgc = 0.05, Sorg = 0.1 and Sorw = 0.2. Throughout,

porosity is assumed to be homogeneous with φ = 0.22.

For the examples considered here, the variance of the pressure measurement error is set

equal to 47.5 kPa2 ( 1 psi2), the variance of the GOR measurement error is set equal to

0.79 (std m3)/(std m3) (25 (scf/STB)2). The WOR measurement error is defined by Eq. 106

with εo = 0.01, εw = 0.02 and σw,min = 0.32 std m3/d. These values were used to construct

the data covariance matrix CD. In the examples presented, however, no noise was added

to the data generated from the simulation runs, that is dobs was set equal to the vector of

production data output from the simulator.

Example 1a.

In this case, the true reservoir model is not generated from an unconditional realization of the

prior model, but is prescribed as a three zone reservoir as shown in Fig. 65. In all gridblocks

contained within the lower left zone, ln(k) = 3.7, at all gridblocks in the lower right zone,

ln(k) = 4.3 and in all gridblocks in the upper half ln(k) = 3.9. The prior variances and prior
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means for the parameters which characterize the power law relative permeability curves are

defined in Table 4.

First we consider the case where the true log-permeability field is fixed at its true value

and attempt only to estimate the model parameters defining the power law relative per-

meability curves. We consider the three cases where we construct the estimate of model

parameters by history matching only one type of data (pressure, gas-oil-ratio, or water-oil

ratio) and the case where we history match all 130 data to construct the estimate. The

results of these four history matches are summarized in Table 5. In this and similar tables

presented later, a column labeled true contains the true values of the parameters, a column

labeled pwf contains estimates of parameters obtained by history matching only pressure

data, a column labeled GOR contains estimates of parameters obtained by history matching

only producing gas-oil ratio data, a column labeled WOR contains estimates obtained by

history matching only water-oil ratio data, and a column labeled “All” contains estimates

obtained by history matching all observed data, pressure, GOR and WOR.

The results of Table 5 indicate that the estimates of the relative permeability parameters

are in extremely close agreement with the true values when we history match all available

data, only pressure data, or only GOR data. The estimates obtained by history matching

only the WOR data are significantly less accurate. Fig. 66 shows the estimated two-phase gas

and oil relative curves obtained by history matching only pressure data compared with the

true relative permeability curves and the initial guesses for the relative permeability curves.

In this and similar figures, the true relative permeability curves are shown as solid curves

with no data points on them and the initial guesses for relative permeability curves used

in the automatic history matching procedure are shown as curves through triangular data

points. The estimated relative permeability curves are always represented in our results as

open circular data points and open square data points. We did not draw the complete relative

permeability curves through these open data points as it makes the figures too cluttered. The

initial guesses for relative permeability curves are generated using the prior values of mr, the

model parameters that characterize the relative permeability curves. Note the initial guesses

for relative permeability curves are far from the truth. As can be deduced from the results of

Table 5, the relative permeability curves estimated by history matching only GOR data are

also very close to the true case. Factors that contribute to the excellent estimates obtained

for this example include the following: (i) the observed and predicted data are generated

from the same simulator with identical spatial grids and time steps, so no modeling error

(Tarantola, 1987) occurs; (ii) the observed production data that are history matched are

not corrupted by measurement error, i.e. the observed production data are identical to data
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obtained from the simulator run based on the true model; (iii) all rock and fluid properties

except relative permeability parameters are known, so only the seven relative permeability

model parameters are adjusted during the matching process (fewer model parameters tend to

yield less uncertain estimates); (iv) the saturation ranges that occur during the 300 day time

frame spanned by the production data vary significantly; gas saturation varies from 0.0 to

almost 0.25 at producing well gridblocks and water saturation varies from about 0.2 to over

0.5 at producing well gridblocks and increases up to 0.8 at the injection well gridblock. Thus,

production data is influenced by the values of relative permeabilities over large saturation

ranges.

The results of Table 5 indicate that history matching either wellbore pressure data or

producing GOR data yields good estimates of the parameters krwcw and nrw which define

the water relative permeability function. As pressure data at producing wells are quite

sensitive to changes in total mobility (Thompson and Reynolds, 1997), it is not completely

surprising that one can obtain reasonable estimates of water relative permeability model

parameters even if we history match only pressure data corresponding to times prior to water

breakthrough. It is not clear why the information content of the GOR data is sufficient to

resolve the parameters defining the oil and water relative permeability curves for the two-

phase water-oil system. But, as shown next, an improved understanding of these results can

be obtained by considering dimensionless sensitivity coefficients.

As discussed in Zhang et al. (2002), dimensionless sensitivity coefficients provide a relative

measure of how different data affect estimates of model parameters, and the uncertainty in

these estimates. Here, the dimensional sensitivity of data di to model parameter mj is given

by

si,j =
∂di

∂mj

σmj

σdi

, (118)

where σ2
mj

denotes the prior variance for model parameter mj and σ2
di

denotes the variance

of the measurement error for the ith observed data. In essence, data corresponding to

higher values of dimensionless sensitivity are expected to result in better estimates of model

parameters, i.e., if si,j > sk,j, then history matching data dobs,i is expected to give a better

estimate of model parameter mj than is obtained by history matching data dobs,j; see Zhang

et al. (2002) for additional discussion.

Fig. 67 shows the dimensionless sensitivity of the flowing bottom hole pressure at well 1

to the seven parameters defining the two sets of relative permeability curves as a function of

time, and Fig. 68 presents a similar plot for the GOR dimensionless sensitivity coefficients.

The results of Fig. 67 show that pressure is slightly sensitive to the water relative permeability

parameters (nrw, krwcw), even at times prior to breakthrough which occurs at about 200 days.
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In fact up to 180 days, the dimensionless sensitivity of pressure to krwcw is roughly equal

to the dimensionless sensitivity of pressure to the corresponding gas relative permeability

parameter, krgcw. On the other hand, the results of Fig. 68 indicates that prior to 180 days,

the GOR is almost insensitive to the water relative permeability parameters, but becomes

very sensitive to these parameters after breakthrough. This indicates that the GOR data

obtained after water breakthrough is primarily responsible for the good estimate of the water

relative permeability curve (see Table 5) obtained by history matching GOR data.

To check the preceding supposition, we repeated the history match using only data up to

150 days. The results are shown in Table 6. Note in this case, history matching only GOR

data gives relatively poor estimates of the parameters nrw and knrwc, which define the water

relative permeability curve. In fact, as expected, the results indicate that the estimates of

these two parameters are essentially equal to their prior means. Matching only pressure data,

however, gives good estimates of all relative permeability model parameters, although the

estimates are not as accurate as those obtained by matching pressure data up to 300 days; see

Table 5. Also note that the results of Table 6 indicate that the best estimates are obtained

by matching both GOR and pressure data. In particular, the estimate of krgcw obtained by

matching both pressure and GOR data is superior to that obtained by matching only one

type of data. The dimensionless sensitivity of both GOR and pressure to this endpoint gas

relative permeability are both fairly small, but the information content of the two sets of

data is different because pressure is strongly influenced by the total mobility, but the GOR

involves gas mobility divided by oil mobility. Because the information content for the two

data types is different, history matching both pressure and GOR data yields an improved

estimate of krwcw.

From the results of Figs. 67 and 68, one should note that both the dimensionless sen-

sitivity of pressure to nrg and the dimensionless sensitivity of GOR to nrg are relatively

large in magnitude. Thus, these dimensionless sensitivities suggest that nrg should be ac-

curately resolved by matching either pressure or GOR data. The results of Table 6 confirm

this expectation. Note, however, that the GOR is much less sensitive to the gas relative

permeability endpoint value krgcw, and prior to water breakthrough, the sensitivity of GOR

to krgcw is very roughly equal to the negative of the sensitivity of GOR to the krocw, the

end-point oil relative permeability in the two-phase gas-oil system. (The difference in sign

of these sensitivities is expected because the GOR involves krg/krog at times prior to water

breakthrough.) Thus, even though the GOR data resolves nrg accurately, the estimates of

the other parameters in the two-phase oil relatively permeability curves are not very accurate

even though the corresponding estimates of krg/krog are quite close to the true ratio at values
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of gas saturations that occur during the first 150 days of production. On the other hand,

the results of Fig. 67 indicate that pressure is highly sensitive to krocw, nrg and nrog, three

out of the four parameters that define the two- phase oil-gas relative permeability curves.

Thus, history matching pressure should resolve these three parameters well. Pressure is

somewhat less sensitive to the gas relative permeability endpoint krgcw, and the results of

Table 6 indicate that a poorer estimate of this parameter is obtained by history matching

pressure.

Example 1b.

Next, the assumption that the true ln(k) field was known was removed. In this case, ln(k) at

each gridblock and the relative permeability parameters were estimated simultaneously by

history matching various combinations of production data. The estimated log-permeability

field obtained by history matching only pressure data is shown in Fig. 69. The corresponding

results obtained by history matching wellbore pressure, gas-oil ratio and water-oil ratio are

shown in Fig. 70. Matching all the data results in a more accurate estimate of the absolute

permeability field than is obtained by matching only pressure data. In particular, matching

only pressure results in several values of gridblock ln(k)’s in the lower right quadrant and the

upper center which are higher than the true values. Matching all data yields values somewhat

closer to the truth. The over estimates of log-permeabilities are balanced by under estimates

of the endpoint relative permeabilities, which are shown in Table 7. In this case, it looks like

pressure data is effectively resolving effective permeabilities but not absolute permeability

and relative permeabilities individually, which might cause one to question our discussion of

Stone’s model for three-phase relative permeabilities. Note, however, that when we condition

to all data, we obtain good estimates of both log-permeability and the relative permeability

parameters; see Fig. 70, Table 7, and Figs. 71 and 72. Fig. 71 shows the two-phase oil-gas

relative permeability curves obtained by matching only pressure data, and Fig. 72 shows the

improved results obtained by matching all data (wellbore pressures, producing WOR and

producing GOR). As can be deduced from the results of Table 7, results of similar accuracy

were obtained for the two-phase water-oil relative permeability curves. Although we did

not show data matches for the examples considered, in all cases, we obtained excellent data

matches. In fact, the matches were of similar quality to the ones that will be shown for the

next example.
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Example 2

In this example, an unconditional realization of log-permeability generated from the prior

model is used as the true log-permeability field. The prior mean for ln(k) is still 4.0, and

the prior means for relative permeability model parameters are shown in Table 8. In this

case, we generate a realization of the model instead of the maximum a posteriori estimate.

The randomized maximum likelihood method (Kitanidis, 1995; Oliver et al., 1996) is applied

to generate a realization. To generate a realization with this procedure, we replace mprior

by muc (an unconditional realization of m generated from the prior model) and replace dobs

by a realization of the data duc (i.e., add noise) in Eq. 2 and then minimize the modified

objective function. The unconditional realization muc is used as the initial guess when history

matching duc.

Table 8 shows the realization of relative permeability model parameters obtained by

history matching pressure, GOR and WOR. Figs. 73 and 74 present plots of the resulting

realization of the relative permeability curves compared with the true curves and the initial

guesses for the relative permeability curves. Fig. 75 shows the unconditional realization of

the log-permeability field which was used as the initial guess in the randomized maximum

likelihood method and Fig. 76 shows the realization of the log-permeability field estimated by

history matching production data. Note the history matching process has radically altered

the unconditional realization in the interwell region. This alteration is necessary to obtain

a good match to the production data. Fig. 77 shows the producing gas-oil ratio predicted

at well 1 based on the initial guess for model parameters (solid diamond data points) and

the GOR data (solid triangular data points). The continuous curve represents the GOR

predicted from the model obtained by history-matching. Note the initial model results in a

GOR much lower than the observed GOR at late times. GOR history matches of the same

quality were obtained at other wells. Fig. 78 shows the water-oil-ratio data and the data

predicted from the model obtained by history matching. Note that good history matches of

WOR were obtained at all four producing wells.

Remarks

It is important to note that data can directly provide information only on the part of the

relative curves that correspond to phase saturations that exist within the reservoir. Since

a power law functional form is used to represent all relative permeability curves, with each

curve described by only two parameters, resolving relative permeabilities corresponding to

low saturations accurately is essentially equivalent to resolving the complete curve accurately.
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This explains why accurate estimates of relative permeability curves were obtained even

though maximum gas saturation was less than 0.25. If the gas relative permeability function

were modeled as a B-spline, the portion of the gas relative permeability curve corresponding

to high gas saturations would not be resolved accurately by the available production data.

For example, if the reservoir pressure remains above bubble-point pressure, the estimate of

gas relative permeability model parameters would be determined by the prior model and

would not be improved by matching production data.

Even though, arguments have been presented in favor of the Stone model (see, for exam-

ple, Aziz and SettariAziz and Settari (1979)), Stone’s model II leads to unsettling results.

Namely, under two-phase flow conditions, one can not estimate accurately both absolute

permeability and the coefficients in the power law relative permeabilities. An infinite set of

values of absolute permeabilities and relative permeability coefficients will produce exactly

the same production data when input to the simulator. We have shown, however, that this

does not occur under three-phase flow conditions when Stone’s Model II is used. In this

case, reasonable estimates of both absolute and relative permeability functions can some-

times be obtained. Although a mathematical argument supporting this conclusion has been

presented, we can provide no cogent physical explanation of why this should be the case,

and believe a critical re-examination of Stone’s Model II may be warranted.

When the objective is to estimate absolute permeability fields by history matching of

production data, Li et al.Li et al. (2001a) have shown that the information content of pressure

data is higher than the information content of GOR and both of these data types generally

have more information content than WOR data. The results presented here suggest that

this is also true when estimating absolute and relative permeabilities simultaneously.

True Mean Var

nrw 1.90 2.17 1.0

krwcw 0.40 0.58 0.04

nrg 2.40 2.14 1.0

krgcw 0.90 0.49 0.04

nrow 2.60 2.05 1.0

nrog 1.70 1.74 1.0

krocw 0.80 0.49 0.04

Table 4: Prior means and variances of relative permeability model parameters.
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True pwf GOR WOR All

nrw 1.90 1.91 1.91 1.95 1.90

krwcw 0.40 0.40 0.39 0.34 0.40

nrg 2.40 2.38 2.40 2.32 2.40

krgcw 0.90 0.86 0.87 0.54 0.90

nrow 2.60 2.61 2.61 2.66 2.60

nrog 1.70 1.69 1.73 1.75 1.70

krocw 0.80 0.80 0.79 0.68 0.80

Table 5: True and estimated relative permeability parameters; absolute permeability known.

True pwf GOR pwf + GOR

nrw 1.90 1.96 2.17 1.91

krwcw 0.40 0.41 0.55 0.40

nrg 2.40 2.34 2.34 2.39

krgcw 0.90 0.79 0.60 0.89

nrow 2.60 2.63 2.78 2.61

nrog 1.70 1.66 1.93 1.69

krocw 0.80 0.80 0.65 0.80

Table 6: True and estimated relative permeability parameters; absolute permeability known;

match of data up to 150 days.
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True pwf All

nrw 1.90 1.91 1.91

krwcw 0.40 0.35 0.39

nrg 2.40 2.36 2.40

krgcw 0.90 0.72 0.87

nrow 2.60 2.68 2.62

nrog 1.70 1.64 1.70

krocw 0.80 0.71 0.78

Table 7: True and estimated relative permeability parameters; ln(k) estimated simultane-

ously; Example 1b.

True Mean All

nrw 1.90 2.3 1.84

krwcw 0.40 0.5 0.40

nrg 2.40 2.1 2.40

krgcw 0.90 0.8 0.96

nrow 2.60 2.3 2.59

nrog 1.70 2.1 1.69

krocw 0.80 0.6 0.84

Table 8: True and estimated relative permeability parameters; ln(k) estimated simultane-

ously; heterogeneous reservoir example 2.
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Figure 65: Three-zone reservoir, true model; Examples 1a and 1b.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
t r u e
i n i t i a l
k r g ,  p w f
k r o g ,  p w f

s g

k rg & 
k rog

Figure 66: Prior, true and estimated gas-oil relative permeabilities, ln(k)

known; Ex. 1a.
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Figure 67: Dimensionless sensitivity of well 1 pressure to relative permeability

model parameters; three-zone reservoir.
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Figure 68: Dimensionless sensitivity of well 1 GOR to relative permeability

model parameters; three-zone reservoir.
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Figure 69: Log-permeability estimated from history match of pressure; Ex. 1b.
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Figure 70: Log-permeability estimated from history match of pressure, GOR

and WOR; Ex. 1b.
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Figure 71: Prior, true and estimated gas-oil relative permeabilities, history

match pwf ; Ex. 1b.
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Figure 72: Prior, true and estimated gas-oil relative permeabilities, history

match pwf , GOR and WOR; Ex. 1b. 115
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Figure 73: Prior, true and estimated gas-oil relative permeabilities, history

match pwf , GOR and WOR; Ex. 2.
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Figure 74: Prior, true and estimated water-oil relative permeabilities, history

match pwf , GOR and WOR; Ex. 2. 116
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Figure 75: Unconditional realization of log-permeability.

1 8 15

15

8

1

1.5 2.5 3.5 4.5 5.5 6.5

Figure 76: Conditional Realization of log-permeability.
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Figure 77: GOR data, GOR predicted with initial model and GOR predicted

with history matched model.
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Figure 78: WOR data and history matched WOR.
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CONCLUSIONS

The constrained limited memory BFGS algorithm based on log-transformation of model pa-

rameters can be used to alleviate undershooting and overshooting problems when estimating

rock property fields by history matching production data.

As illustrated by our consideration of the Tengiz field example, the limited memory

BFGS provides a feasible algorithm for realistic history matching problems. This example,

illustrates, however, that when data are inconsistent, even a robust optimization algorithm

can yield unrealistic estimates of rock property fields.

The limited memory BFGS algorithm was effective for history matching changes in acous-

tic impedance data for a synthetic solution-gas drive reservoir based on an example from

the middle east. Results obtained using a combination of seismic and production data were

more accurate than those obtained from either seismic or production data alone.

In many reservoirs knowledge of the location of geologic facies and their boundaries are

critical to the problem of prediction of production. We have completed the early investigation

of the problem of estimating geostatistical parameters for a truncated plurigaussian model,

that will make it honor a training image. We have also demonstrated the feasibility of

adjusting the locations of boundaries automatically to honor production data.

We have shown that it is feasible to construct reasonable estimates or realizations of the

relative permeability curves and log-permeability fields by history matching production data

obtained under three-phase flow conditions. The results assume a prior model is available

for absolute permeability and the parameters that characterize the relative permeability

functions. Although the results indicate that reasonably good estimates of model parameters

may be obtainable by history matching only pressure data, history matching pressure, gas-oil

ratio and water-oil ratio data together gives better results.
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FUTURE WORK

In the future, we intend to consider the following aspects.

• Develop and implement code so that different zones or layers of the reservoir can have a

different geostatistical model. In particular, this will allow the means for permeabilities

and porosity to vary with depth.

• Test and an improved line search algorithm to improve the convergence performance

of the limited memory BFGS algorithm.

• Redo the Tengiz field example using a variable weighting on data mismatch terms to

account for the inconsistency between monthly rate data and pressure data.

• Apply our history matching procedure to the well known PUNQS3 example.

• Quantify the measurement and modelling error of time-lapse impedance data. This is

important because an estimate of these errors is needed to time the objective function

Os which includes the seismic data misfit terms.

• Test the history-matching code for estimating rock property fields from time-lapse

seismic data from a field in the Gulf of Mexico.

• Develop a method to estimate the probability density function (pdf) for the model

parameters which define the plurigaussian model for facies so that this pdf is consistent

with cross section maps provided by geologists.

• Refine the procedure for incorporating production data to estimate the location of

boundaries between geologic facies as part of the history matching process.
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