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ABSTRACT

Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the

prediction of future oil production, estimation of the location of bypassed oil, and optimiza-

tion of reservoir management. But while the volume of data that can potentially provide

information on reservoir architecture and fluid distributions has increased enormously in the

past decade, it is not yet possible to make use of all the available data in an integrated

fashion. While it is relatively easy to generate plausible reservoir models that honor static

data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir

models that honor dynamic data such as transient pressures, saturations, and flow rates.

As a result, the uncertainty in reservoir properties is higher than it could be and reservoir

management can not be optimized. The goal of this project is to develop computationally

efficient automatic history matching techniques for generating geologically plausible reservoir

models which honor both static and dynamic data. Solution of this problem is necessary

for the quantification of uncertainty in future reservoir performance predictions and for the

optimization of reservoir management.

Facies (defined here as regions of relatively uniform petrophysical properties) are com-

mon features of all reservoirs. Because the flow properties of the various facies can vary

greatly, knowledge of the location of facies boundaries is of utmost importance for the pre-

diction of reservoir performance and for the optimization of reservoir management. When

the boundaries between facies are fairly well known, but flow properties are poorly known,

the average properties for all facies can be determined using traditional techniques. Tradi-

tional history matching honors dynamic data by adjusting petrophysical properties in large

areas, but in the process of adjusting the reservoir model ignores the static data and often

results in implausible reservoir models. In general, boundary locations, average permeabil-

ity and porosity, relative permeability curves, and local flow properties may all need to be

adjusted to achieve a plausible reservoir model that honors all data. In this project, we

will characterize the distribution of geologic facies as an indicator random field, making use

of the tools of geostatistics as well as the tools of inverse and probability theory for data

integration.
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EXECUTIVE SUMMARY

Bayesian statistics provides a framework for the automatic history matching of multiphase

flow production data to construct estimates or realizations of reservoir properties that are

consistent with time-lapse seismic data, production data and static data obtained from logs,

cores and geologic and geophysical interpretation. The automatic history matching pro-

cedure developed and implemented in our work requires the minimization of an objective

function which consists of the sum of a regularization term and production data mismatch

terms. The regularization term represents a geostatistical model constructed from static

data. If the number of production data is small or the number of reservoir variables to be

estimated is small, we showed in our previous DOE annual report on this project that a mod-

ified Levenberg-Marquardt algorithm or a Gauss-Newton method can be applied to minimize

the appropriate objective function. The Levenberg-Marquardt algorithm and Gauss-Newton

method, however, require the computation of individual sensitivity coefficients and this is

not computationally feasible for large scale problems where the number of production data

to be matched is greater than a few hundred and the number of reservoir variables is on the

order of a few thousand to tens of thousands. In this report, we discuss our implementation

and testing of a scaled limited memory Broyden-Fletcher-Goldfard-Shanno algorithm. Ex-

periments done to date suggest that this is a viable algorithm for large scale history matching

problems. To date, we have tested this algorithm only for the estimation of stochastic simu-

lation of rock property fields where rock property fields refer to reservoir simulator gridblock

porosities or log-permeabilities. Gridblock log-permeabilities are converted to permeabilities

when running the simulator. The reason for constructing estimates of log-permeabilities is

that the theoretical justification of our approach to automatic history matching is based on

Bayesian statistics and in this setting the permeability fields are assumed to be log-normal.

We have applied the limited memory BFGS algorithm to history match production data

for two realistic problems. The first example is a field case which pertains to the Tengiz

reservoir. This is an undersaturated reservoir produced by forty four wells. In this example,

we estimated permeability fields on a 59 × 49 × 9 upscaled reservoir simulation grid by
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conditioning the permeability field generated from a geostatistical model to pressure buildup

data by automatic history matching of buildup data. The second example considered is a

pseudo-field example based on a current model for an actual North Sea reservoir. For the

case, we simulated only one-half of the reservoir using a 39×25×10 grid. The steeply-dipping

reservoir has a significant gas cap and two gas injection wells are completed in the gas cap.

The reservoir has five producing wells. The aquifer is separated from the oil zone by a low

permeability tar mat which prevents water coning. We estimated gridblock horizontal and

vertical log-permeabilities by history matching wellbore pressure data and producing GOR

data. The two results suggest that estimation or stochastic simulation of rock property fields

by automatic history matching of production data within the Bayesian framework is feasible

for field problems.

As the limited memory BFGS optimization algorithm can deal with large amounts of data

and large models, it should prove useful for the incorporation of time-lapse seismic data into

reservoir characterization. In Chapter 5, we discuss the status of our work on incorporating

time-lapse seismic data. As time-lapse seismic data covers the areal extent of the reservoir

and is related to vertically averaged pressure and fluid saturations, it is expected that match-

ing these seismic data simultaneously with production data will reduce the uncertainty in

our estimates of the rock property fields. Applying a gradient based optimization algorithm

to condition rock property fields to seismic data requires the calculation of sensitivity of the

seismic data to the rock property fields. Here, two synthetic two-dimensional reservoir ex-

amples are considered to investigate our proposed approach for integrating seismic data; one

example, pertains to waterflooding an oil reservoir and one case pertains to a solution-gas

drive reservoir. In both cases, seismic impedance data is available at two or more times where

the distribution of phases saturations in the reservoir are quite different so useful time-lapse

impedance data can be constructed. Our results show that the change in seismic impedance

due to errors in static geologic properties such as shaliness, clay modulus and sand modulus

are relatively small compared to the change due to saturation changes. Thus, uncertainties

in mineralogy will not have a significant error on time-lapse impedance data and we should

be able to integrate time-lapse impedance data to reduce the uncertainty in rock property

fields even when the mineralogy is not accurately known. We have implemented the adjoint

procedure to calculate the sensitivity of seismic impedance to the permeability and porosity

fields. For the waterflooding example and the solution-gas drive example mentioned above,

it has been shown that the adjoint method gives accurate sensitivity coefficients. The next

step is to use this same adjoint algorithm to compute the gradient of the objective function

so that limited memory BFGS algorithm can be used to estimate rock property fields by
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history matching production data and seismic data simultaneously.

Because we will always use a reservoir simulator to calculate production data for a

given reservoir description, it is convenient to include reservoir simulator gridblock log-

permeabilities and porosities in the set of reservoir variables to be estimated by history-

matching. One should recognize, however, that the primary control on the distribution of

permeability and porosity is the facies; typically the variation of rock properties between

facies is much larger than the variation within a facies. Because of this, it may be critical

to estimate facies boundaries in the history matching process. In this work, we have de-

veloped a truncated plurigaussian model for the generation of facies maps. Unlike previous

implementations of this method, we have used intersecting lines as thresholds. With this

approach, we show that it is still possible to generate a rich variety of textures and shapes,

but the new approach should make it easier to generate approximations of the sensitivity

coefficients needed to condition reservoir models to facies distributions.
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Chapter 1

INTRODUCTION

Automatic history matching is based on minimizing an objective function which includes a

sum of squared production data mismatch terms. Typically, minimization is done based on a

derivative based optimization routine, such as the Gauss-Newton and Levenberg-Marquardt

algorithms, because algorithms which do not use derivative information converge too slowly

for practical applications. We refer to the reservoir variables to be estimated as model pa-

rameters. The model parameters typically represent reservoir simulator gridblock porosities

and permeabilities (or log-permeabilities), may also represent well skin factors, transmissibil-

ity multipliers, parameters describing relative permeability curves or parameters describing

facies boundaries. Standard implementations of the Gauss-Newton method or Levenberg-

Marquardt algorithm require calculation of sensitivity coefficients, which formally represent

the derivative of predicted production data with respect to the model parameters.

For automatic history matching problems of interest to us, the number of model pa-

rameters is greater than the number of independent production data and thus the history

matching problem does not have a unique solution. If the Gauss-Newton procedure is ap-

plied to minimize an objective function consisting of only the sum of squared production

data misfit terms, the Hessian matrix will be singular and the optimization algorithm will

be unstable. This instability problem can be avoided by adding a regularization term to the

objective function to be minimized; see Tikhonov (1963) and Parker (1994). With a proper

regularization, the Hessian matrix in the Gauss-Newton method will be real symmetric pos-

itive definite and hence nonsingular. In this work, we use a prior geostatistical model to

provide regularization. With this approach, the history matching problem is equivalent to

a Bayesian estimation problem (Gavalas et al., 1976; Tarantola, 1987; He et al., 1997; Wu

et al., 1999).

The Gauss-Newton method is popular because it converges quadratically in the neigh-
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borhood of a minimum; see, for example, Fletcher (1987). Sometimes, however, if the initial

guess in the Gauss-Newton method results in a large initial data mismatch, the Gauss-

Newton will converge to a reservoir model which represents a local minimum and does not

give an acceptable match of production data; see, Wu et al. (1999)and Li et al. (2001). For

this reason, we often apply a Levenberg-Marquardt algorithm instead of the Gauss-Newton

method if the production data misfit based on the initial reservoir model is very large.

Automatic history matching traces its roots to research conducted in the 1960’s by

Jacquard (1964), Jacquard and Jain (1965) and Jahns (1966). To the best of our knowledge,

Jacquard and Jain (1965) presented the first procedure for numerically computing sensitivity

coefficients for history matching purposes. They applied their method to the estimation of

permeability in a two-dimensional reservoir from pressure data obtained under single-phase

flow conditions. They used a combination of zonation (less than twenty distinct values) and

an algorithm conceptually similar to the Levenberg-Marquardt algorithm to provide regular-

ization. Jahns estimated transmissibility (kh/µ) values and storativity (φcth) simultaneously

by history matching single-phase flow pressure data. He used the finite difference method

to compute sensitivity coefficients and applied the Gauss-Newton method with an exact line

search to estimate the rock property fields by minimizing an objective function consisting

only of the sum of squared pressure mismatch terms. Zonation was used to provide regular-

ization. Jahns actually used a sequence of minimization steps where the number of zones,

and hence the number of parameters was increased at each minimization step. The maximum

number of parameters estimated was nine, eight zonal transmissibilities (or permeabilities)

and total storativity. The finite difference method used to compute sensitivities requires

Nm+1 runs of the simulator where Nm is the number of model parameters estimated. This

procedure would not be feasible when thousands of model parameters are estimated.

Jacquard and Jain (1965) based their procedure for computing sensitivity coefficients on

an electric-circuit analogue. Later, motivated by Jacquard and Jain’s ideas, Carter et al.

(1974) presented an elegant derivation of a method to compute sensitivity coefficients for two-

dimensional single-phase flow problems. As originally presented, the Carter et al. procedure

can be applied to compute the sensitivity of simulator gridblock pressures to all gridblock

permeabilities and porosities. If each well penetrates only a single gridblock, one can compute

the sensitivity of the wellbore pressure to model parameters from the well’s gridblock pressure

sensitivities, provided the simulator uses a formula like the one of Peaceman (1978) to relate

wellbore pressure and gridblock pressure. For two-dimensional single-phase flow problems

with pressure measurements at Nw wells, this procedure requires Nw+1 reservoir simulation

runs to compute all sensitivity coefficients regardless of the number of model parameters and
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regardless of the number of pressure data. For three-dimensional problems, the number of

simulation runs required would be equal to one plus the number of gridblocks penetrated

by wells. If the number of such gridblocks is large, the Carter et al. procedure becomes

less computationally attractive. However, He et al. (1996) have developed an approximate

three-dimensional version of the Carter et al. method which is computationally efficient.

Regardless of the number of gridblocks penetrated by wells, the He et al. method requires

only Nw + 1 reservoir simulation runs to compute the sensitivity of all well pressure data to

all gridblock permeabilities and porosities. The method is only approximate and does not

always yield accurate results if vertical flow is significant in gridblocks penetrated by wells.

It is not clear, however, whether the fact that the sensitivity coefficients are approximate

leads to significant errors in the history matching process.

For nonlinear problems, e.g., multiphase flow problems, the derivations of Carter et al.

(1974) and He et al. (1996) do not apply. Thus, we are forced to seek other alternatives. One

possible choice is the adjoint or optimal control method, introduced independently for the

single-phase history matching problem by Chen et al. (1974) and Chavent et al. (1975). (For

single-phase flow problems, Carter et al. (1982) have shown that their method is equivalent

to the adjoint method.)

Unlike the Carter et al. (1982) method, however, the adjoint method can be applied

to compute sensitivity coefficients in multiphase flow problems. Unfortunately, the proce-

dure requires Nd adjoint solutions where Nd is the number of production data to be history

matched. The sensitivities can be calculated easily once the adjoint variables have been

computed. Solving an adjoint problem is similar to solving the simulation finite difference

equations with two distinct differences: (i) to find the adjoint variables needed to computed

the sensitivity of a particular production data at the time tl, the appropriate adjoint prob-

lem is solved backward in time, from time tl to time zero; (ii) unlike the forward problem

(simulator problem), the adjoint problem is linear. At each time step in the adjoint solu-

tion, a matrix problem is solved. The coefficient matrix is independent of the production

data but the right hand side of the matrix problem is determined directly from the specific

production data. If Nd production data are uniformly spaced in time and the final time at

which we have measured production data is tL, then computing all adjoint solutions needed

to compute the sensitivities of all production data effectively requires solving a sequence of

matrix problems related to solving the adjoint problem backward in time from tL. At each

time step, the matrix problem is solved with an average of Nd/2 right-hand side vectors; see

Wu et al. (1999) for additional discussion. Even if one uses a procedure based on solving a

matrix problem with multiple right hand sides, the solution of the adjoint systems needed
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to compute sensitivities for Nd production data will not be feasible when Nd is large. If

one assumes that solving the adjoint matrix systems with an average of Nd/2 right hand

side vectors is equivalent to at least (0.1Nd)/2 simulation runs, the number of equivalent

simulation runs required is prohibitive if there are several hundred production data to be

matched. Because of this, the adjoint method traditionally has been used only in conjunction

with optimization methods which require only the gradient of the objective function, e.g.,

conjugate gradient or variable metric methods; see, for example, Wasserman et al. (1975),

Lee and Seinfeld (1987a,b), Yang and Watson (1988), Makhlouf et al. (1993). Computa-

tion of the gradient of the objective function requires only the solution of a single adjoint

system and thus requires no more computational time than one reservoir simulation run.

Unfortunately, the implementations of these methods have resulted in slow convergence. For

example, Makhlouf et al. (1993) reported that history matching a two-phase flow 450 cell

reservoir model required 6400 CPU seconds on a CRAY X-MP/48. In their work, a conjugate

gradient method was used as the optimization algorithm. For one three-phase flow problem

with 450 grid blocks, 222 iterations of the conjugate gradient algorithm were required to

obtain convergence.

Largely because of the results of Makhlouf et al. (1993), until recently, our work on auto-

matic history matching has focused on using the Gauss-Newton and Levenberg-Marquardt

algorithms instead of conjugate gradient or variable metric algorithms. Wu et al. (1999)

were the first to use the adjoint method in conjunction with the Gauss-Newton method to

perform history matching. They implemented the adjoint method to compute the sensitiv-

ity of all production data to gridblock permeabilities and porosities. In their work, they

constructed estimates and realizations of permeability and porosity fields by conditioning a

prior geostatistical model to pressure and water-oil ratio data. They considered only two-

dimensional, two-phase flow (water-oil) systems. As noted in our previous DOE annual

report on this process, we have extended the Gauss-Newton and Levenberg-Marquardt al-

gorithms in conjunction with the adjoint method for sensitivity calculation to the problem

of history matching production data for three-dimensional, three-phase flow problems. The

resulting history matching process, however, is not practically feasible for problems of inter-

est to us where both the number of data and the number of model parameters exceed a few

hundred.

Perhaps because it is simple to implement, the so-called gradient method is frequently

used to compute sensitivity coefficients needed for automatic history matching. This method

was introduced into the petroleum engineering literature by Anterion et al. (1989), but was

known earlier in the ground water hydrology literature as the sensitivity coefficient method;
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see, for example, the review of parameter identification methods by Yeh (1986). In this

procedure, the sensitivity of pressures and saturations to model parameters at the end of a

simulator time-step can be obtained by solving a matrix problem obtained by differentiating

the matrix form of the finite difference equations with respect to a model parameter, e.g., a

gridblock value of permeability or porosity. From the pressure and saturation sensitivities,

one can easily construct other sensitivity coefficients, e.g., the sensitivity of gas-oil ratio

to model parameters. The advantage of the gradient simulator method is that the matrix

problem solved to obtain these sensitivity coefficients involves the same coefficient matrix

as the one used to solve for pressures and saturations at this time step. Moreover, the

coefficient matrix does not depend on the model parameters; only the right hand side of the

matrix problem depends on the model parameters. Thus, the problem reduces to solving a

matrix problem with multiple right-hand side vectors, one right-hand side vector, for each

model parameter. The difficulty is that if we wish to estimate (or construct realizations of)

permeabilities and porosities at several thousand gridblocks, then we have several thousand

right-hand sides. The number of right-hand sides is equal to the number of model parameters

to be estimated. With the fast iterative solver developed by Killough et al. (1995), it appears

that the computational time to compute a single sensitivity coefficient is on the order of

10% of a forward simulation. For the gradient simulator to be practical, the number of

model parameters must be small. This means, if the underlying reservoir simulation problem

involves tens of thousands of gridblocks, one must reduce the number of parameters estimated

directly in the optimization algorithm by some form of reparameterization, e.g., zonation

(Jacquard and Jain, 1965) or gradzones (Bissell et al., 1994; Bissell, 1994; Tan, 1995), pilot

points (de Marsily et al., 1984; RamaRao et al., 1995; Bissell et al., 1997) or subspace

methods (Kennett and Williamson, 1988; Oldenburg et al., 1993; Reynolds et al., 1996;

Abacioglu et al., 2000).

When the number of model parameters and number of production data to be matched are

both large and can not be reduced by some reparameterization technique without incurring

a significant loss of information, one must seek an alternative to computing and storing the

full sensitivity coefficient matrix, G. One can write the Gauss-Newton method such that

each iteration requires the solution of an Nd ×Nd matrix problem where Nd represents the

number of production data to be matched. If this matrix problem is solved by a conjugate

gradient method (Hestenes and Stiefel, 1952; Fletcher and Reeves, 1964; Shanno, 1978a,b),

the explicit direct computation of G is not required. Each iteration requires only the product

of G times a vector and the product of the transpose of G times a vector. A procedure for

computing these matrix vector products without first computing G was introduced into the
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petroleum engineering literature by Chu et al. (2000) although the basic idea appeared earlier

in a somewhat simpler context in the geophysics literature; see Mackie and Madden (1993).

Although computation of the matrix products is relatively efficient, the conjugate gradient

method may require up to Nd iterations to obtain convergence if the matrix is poorly condi-

tioned and no good preconditioning matrix is available (see Axelsson (1994)). If Nd is large,

this would render the algorithm impractical. Although the convergence of the conjugate

gradient method can be considerably accelerated by the choice of a good preconditioner, it

is not clear that one can construct a good preconditioner since the coefficient matrix for the

matrix problem that is solved is not explicitly computed. To compute this coefficient matrix

would require the explicit computation of the full sensitivity coefficient matrix G.

One can also avoid explicit computation of all sensitivity coefficients if history matching is

done using a nonlinear optimization method, that requires only the gradient of the objective

function. As mentioned previously, Makhlouf et al. (1993) found that a nonlinear conjugate

gradient algorithm could require over two hundred iterations to converge even for a small

three-phase flow history matching problem. As each conjugate gradient iteration requires

roughly the equivalent of three reservoir simulation runs, history matching a large problem

using a nonlinear conjugate gradient method does not appear to be feasible based on the

results of Makhlouf et al. (1993). However, Makhlouf et al. (1993) did not apply precondi-

tioning. If a good preconditioning matrix can be found for nonlinear conjugate gradients, it

is conceivable that convergence could be considerably accelerated.

Quasi-Newton or variable metric methods, which are based on generating an approxima-

tion to the inverse of the Hessian matrix, require only the gradient of the objective function.

The methods differ in how they correct or update the inverse Hessian approximation at each

iteration. The rank one correction formula was first suggested by Broyden (1967). Another

formula, now called the DFP algorithm, was first suggested by Davidon in 1959 and later

presented by Fletcher and Powell (1963). The BFGS correction formula, suggested inde-

pendently by Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970), and

several variants of the BFGS formula (like the self-scaling variable metric (SSVM) by Oren

(1973), limited memory BFGS by Nocedal (1980) and Liu and Nocedal (1989)) have also

been advanced as useful variable metric methods.

The conjugate gradient method was originally proposed by Hestenes and Stiefel (1952)

for solving linear systems and extended to nonlinear optimization by Fletcher and Reeves

(1964) to obtain the Fletcher-Reeves algorithm. Later Polak (1971) proposed a different

formula to calculate the coefficient involved in the search direction update equation. Powell

(1977) presented some numerical results and theoretical reasons which indicate that the
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Polak-Ribière algorithm is superior to the Fletcher-Reeves algorithm. The efficiency of the

conjugate gradient method depends primarily on the preconditioner used.

The limited memory BFGS (LBFGS) was designed for the purpose of solving large scale

problems which involve thousands of variables. Limited memory methods originated with

the work of Shanno (1978a), and were subsequently developed and analyzed by Buckley

(1978), Nazareth (1979), Nocedal (1980), Shanno (1978b), and Buckley and Lenir (1983).

Liu and Nocedal (1989), and Nash and Nocedal (1991) tested LBFGS method with a set of

problems. They concluded that LBFGS performs better than conjugate gradient in terms

of computational efficiency, except in cases where the function evaluation is inexpensive.

Nash and Nocedal (1991) also tested a truncated-Newton method in their work. From their

comparison, none of the algorithms is clearly superior to the other.

The self-scaling variable metric (SSVM) method was used by Yang and Watson (1988)

on hypothetical water floods of both 1D and 2D reservoir models. The 1D reservoir model

consisted of 10 gridblocks with an injection well at one end and a producing well at the other

end. Sixty data from each well were used for history matching. Four cases based on this

1D reservoir model were tested. The reservoir was characterized by different parameters in

different cases. The number of model parameters varied from 9 to 19. Two other cases were

based on a quarter of a five-spot 2D model which consisted of a 10 × 10 grid. Again sixty

data from each well were history matched. The number of model parameters for these two

cases were 4 and 11 respectively. In this paper, the authors tested four different algorithms,

BFGS, SSVM, conjugate gradient and steepest descent. They concluded that (i) the self-

scaling variable metric method is significantly more efficient than the BFGS method; (ii)

the SSVM and BFGS methods are more efficient and robust than the conjugate gradient

method, except in the case where the objective function is nearly quadratic; and (iii) both

SSVM and BFGS methods perform significantly better than the steepest descent method.

Masumoto (2000) applied the SSVM method to a water-oil two phase fluid flow problem.

The author considered a 1D reservoir model with 20 gridblocks. With a fixed porosity field,

the author estimated the gridblock permeabilities. The objective function he minimized

included a pressure mismatch part and the pressure derivative mismatch part. The author did

not give any information about how many data he history matched or any assessment of the

minimization algorithm. Savioli and Grattoni (1992) compared four different minimization

algorithms: Davidon-Fletcher-Powell (DFP), Fletcher-Reeves (FR), BFGS and Levenberg-

Marquardt (LM). The authors presented two examples. In the first example, they estimated

one permeability value and one porosity value by applying these four algorithms. The second

example they considered was an oil-water two phase water flooding problem. They estimated
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the exponent used to define the relative permeability and capillary curves with a power law

function (only one adjustable parameter for each curve). They concluded that among these

four algorithms, BFGS performed best in terms of computational efficiency and stability.

Given the small number of parameters estimated, it is difficult to know whether these results

will extrapolate to large scale problems.

In this work, we explore the application of the nonlinear preconditioned conjugate gra-

dient method and variable metric (quasi-Newton) methods as optimization algorithms for

automatic history matching of production data. Our results confirm our earlier conjecture

that the limited memory BFGS (LBFGS) procedure is the most viable optimization algo-

rithm for automatic history matching of multiphase flow production data for problems where

the number of reservoir variables to be estimated and the number of data are both large.

We apply the LBFGS method to problems representative of field cases. The first example

is a true field case, where we match static pressures from pressure buildup surveys for the

Tengiz reservoir, which is an undersaturated oil reservoir. The second example is actually

a pseudo-field case in which we generated a truth case based on a reservoir model for an

actual North Sea reservoir. Using this truth case, we generated synthetic production data

(pressures and gas-oil ratios) from a forward simulation run. In generating the synthetic

data, we used well locations and wells constraints that were similar to the actual wells in

the field. Then ignoring our knowledge of the truth case, we constructed estimates of the

permeability fields by history matching the production data.

Time-lapse seismic is the process of repeating 3D seismic surveys over a producing reser-

voir to monitor changes in saturation and pressure. The potential impact on reservoir en-

gineering and reservoir management is large because time-lapse seismic may allow direct

imaging of rock properties that are closely related to vertically averaged fluid saturations

and pressure. This is much different from the current limitation of measurements of these

quantities at well locations. In general, seismic images are sensitive to the spatial variation

of two distinct types of reservoir properties (Arenas et al., 2001):

• Non-time-varying static geologic properties such as lithology, porosity, cementation,

and shale content.

• Time-varying dynamic fluid-flow properties such as fluid saturation and pore pressure.

If data were available from only one 3D seismic survey, it would not be possible to

differentiate between the effects of static features and those due to changes in saturation and

pressure. By comparing the data from 3D surveys acquired at different times in the same
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location, however, it is possible to eliminate the effects of unknown static properties to focus

on the dynamic changes in production related properties.

The simplest, most direct method of using time-lapse seismic data is to qualitatively

monitor reservoir changes due to production. In this approach, one simply identifies regions

in which the amplitude or impedance has changed with time and attributes these changes to

changes in saturation, pressure, or temperature. The first tests of this concept were carried

out by Arco in the Holt Sand fireflood from 1981 to 1983 (Hughes, 1998). Similar studies

have been reported by Cooper et al. (1999) at the Foinhaven Field and Lumley et al. (1999)

at the Meren Field in Nigeria. The primary objectives at Foinhaven were simply to map

fluid movements and to identify by-passed oil. The authors of the study concluded that the

time-lapse signal qualitatively agreed with the expected reservoir performance. At Meren,

the goal was to identify pathways of injected water, sealing faults, and compartments that

may have by-passed oil. The authors concluded that the data was successful in achieving

these objectives.

The other, more difficult, approach is to use the time-lapse data to estimate the reservoir

flow parameters, such as permeability and porosity. Advances in automatic or computer-

assisted history matching have allowed researchers to consider the integration of time-lapse

seismic data with production data. All quantitative approaches for doing this involve the

minimization of an objective function that includes the mismatch between the synthetic

changes in seismic data and the observed changes. Using optimization methods, a distri-

bution of parameters that minimize the objective function is sought. The type of seismic

data used in the objective function has varied among the researchers. Huang et al. (1997)

used amplitude difference or other seismic attributes difference while Arenas et al. (2001)

used velocity difference. Landa and Horne (1997) assumed that saturation changes could be

obtained directly from time-lapse surveys.

While a number of geophysicists (Tura and D.Lumley, 1999; Landro, 2001; Meadows,

2001) have assumed that changes in saturation and pressure can be estimated directly from

time-lapse seismic data (including offset data), it is clearly less restrictive to use all data

(including production data) in the estimation of saturation and pressure. Thus we will use

the seismic data in the objective function–not saturations and pressures.

Because the number of data and model parameters can be quite large in history matching

problems which include time-lapse seismic data, it is common to reduce the number of model

parameters by using “pilot points” (Arenas et al., 2001; van Ditzhuijzen et al., 2001) or to

divide model into zones with similar properties (Huang et al., 2001).

In studies to date, the sensitivity of time-lapse seismic data to changes in model param-
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eters has either been computed by the finite-difference method (Huang et al., 1997, 1998,

2001; van Ditzhuijzen et al., 2001) or the gradient simulator method (Landa and Horne,

1997). It is not feasible to compute sensitivity coefficients using either of these methods

when the number of model parameters is large, however. The only reasonable approach is

to use the adjoint method to integrate seismic impedance data into our objective function

and to compute the sensitivity of data to model parameters. It will also be necessary to use

more efficient optimization methods in the history matching than those used previously to

get optimum model parameters. A practical method for doing this will be outlined in this

document.

Because the variation of permeability and porosity between facies is normally much larger

than the variation within a facies, it may be important to estimate facies boundaries in the

history matching process. To do so requires a model for the generation of facies maps. The

truncated plurigaussian random field model is fairly appealing as a method for generating

facies distributions. Galli and his coworkers at the center for Geostatistics in the School of

Mines in Fontainebleau have established that it can be used to generate a remarkably wide

variety of facies textures and shapes. Besides the qualitative visual appeal of the images,

the method uses the covariance in a consistent way — unlike most indicator models. The

truncated plurigaussian model is not, however, widely applied outside of France. The reason

seems to be that it is fairly difficult to select model parameters that are consistent with a

particular image such as might be provided by a geologist. We use the term parameters to

refer to quantities such as the range, the variance, the covariance type (Gaussian, Exponen-

tial, Spherical, etc.) and the thresholds for discrimination of facies. In this work, we discuss

an implementation a truncated plurigaussian model for the generation of facies distributions

with thresholds determined by three intersecting lines. We believe it will be possible to

integrate this model into the history matching process so that the location of boundaries

between facies can be estimated by matching production data. This aspect of our research

is in its early stages.
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Chapter 2

EXPERIMENTAL

Experimental work is not applicable to the research tasks and goals of this project. Conse-

quently, no experimental work has or will be done.
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Chapter 3

HISTORY MATCHING OF

PRODUCTION DATA

3.1 Model Estimation and Simulation

Here, we define the reservoir model parameters and the a posteriori probability density

function (pdf) for these parameters. This pdf, which is conditional to production data,

defines the set of plausible reservoir descriptions. We focus on computation of the maximum

a posteriori (MAP) estimate of reservoir variables. The MAP estimate is the model which

maximizes the a posteriori pdf and is thus conveniently referred to as the most probable

model. Methods for sampling this pdf to characterize the uncertainty in model parameters

and the uncertainty in performance predictions are discussed only briefly.

3.1.1 The Prior Model.

For simplicity, the reservoir is assumed to be a rectangular parallelepiped which occupies the

region

Ω = {(x, y, z) | 0 < x < Lx, 0 < y < Ly, 0 < z < Lz}. (3.1)

The forward model is a fully-implicit finite-difference simulator based on a block centered

grid. The principle permeability directions are assumed to be aligned with the coordinate

directions so that the permeability tensor is diagonal. Fluid properties are assumed to be

known. Given two-phase oil-water and two-phase oil-gas relative permeabilities, the three-

phase oil relative permeability is constructed from Stone’s Model II; see Aziz and Settari

(1979). Wellbore constraints are handled using the equation of Peaceman (1983).
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In the current version of our inverse code, we can compute sensitivity of production data

to gridblock porosities, horizontal permeabilities, vertical permeabilities and the skin factor

at each well. However, for the specific examples considered here, we assume porosity is

known and only estimate the horizontal and vertical permeability fields. Thus we present

our equations for the case where the model parameters are simulator gridblock horizontal

log-permeabilities, vertical log-permeabilities and well skin factors. Thus, if there are N

simulator gridblocks and Nw wells, the total number of model parameters is equal to Nm =

2N +Nw. Specifically, the vector of model parameters is given by

m = [mT
k ,m

T
kz
,mT

s ]
T , (3.2)

where mk is an N -dimensional column with its jth entry equal to the horizontal permeability

for gridblock j, mkz
is an N -dimensional column with its jth entry equal to the vertical

permeability for gridblock j, and ms is an Nw dimensional column vector with its jth entry

given by the skin factor at the jth well. These reservoir parameters are modeled as random

variables, so m is a random vector. From a purely history matching point of view, we wish to

construct an estimate of m from production data (dynamic data) and static data. However,

there are an infinite number of models which will give equally reasonable matches of the data,

and it is desirable to define a procedure for generating a particular estimate or to characterize

the uncertainty in reservoir descriptions. From both the philosophical and practical points of

view (see Tarantola (1987) and Omre et al. (1993)), the most challenging part of the inverse

problem is the determination of a representative pdf for reservoir parameters. Similar to the

recent work on automatic history matching by He et al. (1997) and Wu et al. (1999), we follow

ideas that can be found in Tarantola (1987) and simply assume that a prior geostatistical

model for mr = [mT
k ,m

T
kz
]T can be constructed from static data. In our work, we assume this

prior geostatistical model can be represented by a multivariate Gaussian distribution for mr

with a given mean and covariance matrix. In practice, the prior covariance matrix for the rock

property fields can be generated from semivariograms by assuming that horizontal, vertical

permeability can be modeled as stationary random functions. In our implementation, we

make this assumption and then apply the Xu et al. (1992) screening hypothesis to generate

the prior covariance matrix for mr; see, Chu et al. (1995b). In the prior model, each well skin

factor is treated as an independent Gaussian variable with specified mean and variance. If the

skin factor was estimated by fitting pressure data with a classical well testing model solution

using nonlinear regression, then the estimate of the skin factor would be its prior mean

and its variance can be constructed directly from the same information used to construct

confidence intervals.
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The vector of prior means is given by

mprior =







mk,prior

mkz ,prior

ms,prior






. (3.3)

We let Ck denote the prior covariance matrix for mk, Ckz
denote the prior covariance for

ln(kz), Ck,kz
denote the cross covariance matrix between ln(k) and ln(kz) and let Cs denote

the Nw × Nw model covariance matrix for the vector of well skin factors. Then the prior

model covariance matrix is given by

CM =







Ck Ck,kz
O

Ck,kz
Ckz

O

O O Cs






, (3.4)

where the O’s denote null submatrices of the appropriate size. If horizontal and vertical

permeability are not correlated, then Ck,kz
is also a null matrix.

The prior pdf for m is then given by

πp(m) = a exp
{

− 1

2
(m−mprior)

TC−1
M (m−mprior)

}

, (3.5)

where a is the normalizing constant. Note the model which has the highest probability based

on Eq. 3.5 is m = mprior, thus it is convenient to think of mprior as the best estimate of the

model based on static data.

3.1.2 The a Posteriori Probability Density Function.

We wish to determine the conditional pdf for m given observed production data. Here, we

consider only three types of production data, wellbore pressure (pwf ), producing water-oil

ratio (WOR) and producing gas-oil ratio (GOR). The WOR and GOR data are not actually

measured directly but are constructed from rate measurements. Nevertheless, we will refer

to the values of WOR and GOR as measured or observed data. The column vector dobs,w

contains all observed WOR data that will be used as conditioning data. The column vector

dobs,g contains the set of GOR conditioning data and dobs,p contains all conditioning pressure

data. Throughout, the Nd dimensional column vector dobs includes all production data that

will be used to condition the model m. This may include one type of data, e.g., only GOR

data or multiple types of data, e.g., pressure, WOR and GOR data.

Pressure measurements errors are modeled as independent identically distributed Gaus-

sian random variables with mean zero and variance σ2p. GOR measurement errors are mod-

eled as independent identically distributed Gaussian random variables with mean zero and

17



variance σ2g . WOR ratio measurement errors are modeled by the procedure introduced by

Wu et al. (1999). In this model, the WOR measurement error depends on the magnitude of

the measurement. Specifically, the variance of a particular measurement error is defined as

Var(eWOR) = WOR2
obsεo +

1

q2o,obs
max

[

ε2wq
2
w,obs, σ

2
w,min

]

, (3.6)

where eWOR denotes the error in the “measurement” of WOR constructed from the observed

oil and water rates, qo,obs and qw,obs. Here, εm denotes the relative measurement error for the

flow rate of phasem. For example, if the relative measurement error in the oil flow rate is two

per cent, then εo = 0.02. The term σw,min is used so that we do not prescribe unrealistically

small measurement errors for the WOR when the WOR is small. To use this model, one

must specify values of εw, εo, and σw,min. The three diagonal matrices, CD,p, CD,w and CD,g,

respectively, denote the covariance matrices for pressure data measurement errors, WOR

measurement errors and GOR measurement errors. If the total number of conditioning data

is Nd, i.e., the dimension of dobs is Nd, then the overall data covariance matrix is given by

the following Nd ×Nd diagonal matrix:

CD =







CD,p O O

O CD,w O

O O CD,g






. (3.7)

We of course do not need to use all types of data as conditioning data. For example, if we

wish to history match only GOR data, then dobs = dobs,g and CD = CD,g.

For a given model m, d denotes the predicted, true or calculated data corresponding to

dobs. If m is the true reservoir from which dobs was obtained and there are no measurement

errors, then d = dobs. As d depends on the model, we write

d = g(m), (3.8)

to represent the operation of calculating d given m. In our work, Eq. 3.8 represents the

operation of running the reservoir simulator to calculate d.

Bayes’ theorem (see Tarantola (1987)) implies that the a posteriori pdf for the model

m conditional to the observed data is proportional to the product of the prior pdf and the

likelihood function for the model, and is thus given by

f(m|dobs) = a exp{−O(m)}, (3.9)

where a is the normalizing constant and

O(m) =
1

2

[

(

m−mprior

)T
C−1
M

(

m−mprior

)

+
(

g(m)− dobs
)T
C−1
D

(

g(m)− dobs
)

]

. (3.10)
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Construction of the MAP Estimate and Realizations.

The maximum a posteriori (MAP) estimate is denoted by m∞ and is defined to be the

model that maximizes the pdf of Eq. 3.9, or equivalently minimizes the objective function of

Eq. 3.10. Although gradient based methods appear to be the only feasible way to construct

a minimum of O(m), there is no guarantee that Eq. 3.10 has a unique global minimum, or

that a gradient-based optimization procedure will converge to a global minimum. In fact,

if a gradient method is applied to minimize O(m), it is important to check the results to

ensure that the method did not converge to a local minimum which yields an unacceptable

match of production data, or unreasonable reservoir properties.

If one wishes to generate multiple realizations of the model, it is necessary to sample the

conditional pdf of Eq. 3.9. The most common way to do this is to apply the method proposed

by Oliver et al. (1996) and Kitanidis (1995). In our work this method is referred to as the

randomized maximum likelihood method. To generate a realization with this procedure, we

calculate an unconditional realization muc from

muc = mprior + C
1/2
M zM , (3.11)

where zM isNm-dimensional column vector of independent standard random normal deviates.

The matrix C
1/2
M is a square root of CM and is normally chosen as C

1/2
M = L where

CM = LLT , (3.12)

is the Cholesky decomposition of CM . For large problems, generation of the Cholesky de-

composition is not feasible, and we apply sequential Gaussian co-simulation to generate an

unconditional realization of the model; see Gómez-Hernández and Journel (1992). Similarly

a realization of the data is generated from

duc = dobs + C
1/2
D zD, (3.13)

where zD is an Nd-dimensional column vector of standard random normal deviates. The

conditional realization of m is then obtained by minimizing

Or(m) =
1

2
(m−muc)

TC−1
M (m−muc) +

1

2
(d− duc)

TC−1
D (d− duc). (3.14)

It can be argued (see Zhang et al. (2001a)) that O(m) can be approximated as a chi-squared

distribution with expectation given by E(O(m)) = Nd and standard deviation given approxi-

mately by σ(O(m)) ≈
√
2Nd. Virtually all samples should be within five standard deviations

19



of the mean. Thus, if applying an optimization algorithm to minimize Eq. 3.14 gives a result

mc, we accept mc as a legitimate realization if and only if

Nd − 5
√

2Nd ≤ O(mc) ≤ Nd + 5
√

2Nd. (3.15)

Although Eq. 3.15 has proved to be reliable for single-phase flow history matching problems

and even some simple multiphase flow problems, in general we are unable to decrease the

objective function value consistent with Eq. 3.15.

We wish to be able to history match several hundred production data to generate re-

alizations of tens of thousands of model parameters. Thus computational efficiency is an

extremely important consideration. For such problems, it is not feasible to compute the

individual sensitivity coefficients required by standard implementation of the Gauss-Newton

and Levenberg-Marquardt algorithms. Thus, we are forced to focus on algorithms which

require only the gradient of the objective function. As steepest descent often exhibits poor

convergence properties (see, for example, Fletcher (1987)). The only viable algorithms in

this category appear to be variable metric (quasi-Newton) methods and preconditioned con-

jugate gradient (PCCG) methods. The efficiency of PCCG methods largely rest on finding

a good preconditioner. This, however, is not an easy task and despite significant effort we

have not been able to find a preconditioner that yields a PCCG method that is as reliable

as the quasi-Newton methods we have implemented.

The Gauss-Newton method with restricted step has often been used to minimize O(m);

see Chu et al. (1995a). However, if the initial guess for the model yields a very poor match

of the observed production data, a straightforward application of the method may converge

extremely slowly or may converge to a model which yields an unacceptable match of pro-

duction data; see Wu et al. (1999). Wu et al. (1999) overcame this problem by using an

artificially high value for the variance of data measurement errors at early iterations. Here,

we avoid this difficulty by using a form of the Levenberg-Marquardt algorithm introduced

by Bi (1999). This algorithm can be written in two different forms. The first comes from a

modification of the standard Gauss-Newton method and is given by

[

(1 + λl)C
−1
M +GT

l C
−1
D Gl

]−1

δml+1 = −
[

C−1
M (ml −mprior) +GT

l C
−1
D (g(ml)− dobs)

]

, (3.16)

ml+1 = ml + αlδm
l+1 (3.17)

where αl = 1. Here l, as either a subscript or superscript, refers to the iteration index. The

matrix Gl denotes the Nd ×M sensitivity coefficient matrix evaluated at ml. The entry in

the ith row and jth column of Gl represents the sensitivity of the ith calculated data gi to

the jth model parameter evaluated at ml, i.e., this entry is ∂gi(m
l)/∂mj, where mj is the

20



jth entry of m. If O(ml+1) < O(ml), we set λl+1 = λl/10, and if the objective function does

not decrease, we increase the Levenberg-Marquardt parameter by a factor of 10. We start

with an initial value of λ = 10, 000. For the multiphase flow problems we have considered to

date, this simple procedure works well.

3.2 Calculation of the Gradient of the Objective Func-

tion

The equations that must be solved to compute sensitivity coefficient with the adjoint method

were presented in the first annual report on this project. These results can also be found in

Li et al. (2001). Here we discuss the procedure for computing the gradient of the objective

function.

3.2.1 The Reservoir Simulator.

The simulator used is based on a fully-implicit, finite-difference formulation of the three-

phase flow, black-oil equations expressed in a x–y–z coordinate system which apply on Ω;

see Eq. 3.1. Suppose there are Nx, Ny, Nz gridblocks in the x−, y− and z− directions

respectively. Let N be the total number of gridblocks, i.e., N = Nx × Ny × Nz. At each

of the N gridblocks, three basic finite-difference equations apply. These three equations

represent the mass balance for each of the three components, i.e., oil, gas and water. In

addition, a constraint is applied at each of the Nw wells to yield Nw additional equations.

At each well at each time step, either an individual phase flow rate, the total flow rate or

the wellbore pressure may be specified as a well constraint. In the results considered in this

work, capillary pressures are assumed to be negligible. The fully-implicit, black-oil simulator

(CLASS-Chevron’s Limited Applications Simulation System) used in this work was provided

by Chevron.

For gridblock i, the primary variables that are solved for are case dependent. Table 3.1

summarizes the different cases and the unknown variables solved for in each case. In the

column entitled “Equations”, Sum denotes the total mass balance equation (i.e., the sum-

mation of the oil, gas and water equations); Oil represents the oil mass balance equation and

Gas represents the gas mass balance equation.

At each time step, we can output p, So, Sg, Sw and Rs of each individual gridblock

from CLASS. From these primary variables, we can calculate all the derivatives required

for constructing the adjoint system based on the PVT table. In addition to the gridblock
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Table 3.1: Equations and unknowns solved for in the simulator.

Phases Equations Unknowns Auxiliary equation

O-W-G
Sg > 0 Sum, Oil, Gas p, So, Sg Sw = 1− So − Sg; Rs from PVT table

Sg = 0 Sum, Oil, Gas p, So, Rs Sg = 0; Sw = 1− So − Sg

O-W Sum, Oil p, So Sw = 1− So

W-G Sum, Gas p, Sg Sw = 1− Sg

O-G
Sg > 0 Sum, Gas p, Sg So = 1− Sg; Rs from PVT table

Sg = 0 Sum, Gas p, Rs Sg = 0; So = 1− Sg

variables, the flowing wellbore pressure, pwf,l at the lth well at a specified depth is also

a primary variable. We let yn denote a column vector which contains the set of primary

variables (pressures and saturations) at time step n. At gridblock i, the finite-difference

equation for component u can be written as

fu,i(y
n+1, yn,m) = 0, (3.18)

for u = o, w, g and i = 1, . . . , N . The well constraints are represented by

fwf,l(y
n+1, yn,m) = 0, (3.19)

for l = 1, 2, . . . , Nw. For simplicity in notation, we let

fn+1u,i = fu,i(y
n+1, yn,m), (3.20)

and

fn+1wf,l = fwf,l(y
n+1, yn,m), (3.21)

then Eqs. 3.18 and 3.19 can be rewritten as

fn+1u,i = 0, (3.22)

and

fn+1wf,l = 0, (3.23)

respectively. If the flowing wellbore pressure at well l at the datum depth at time tn+1 is

specified to be equal to pn+1wf,l,0, then Eq. 3.21 is simplified to

fn+1wf,l = pn+1wf,l − pn+1wf,l,0 = 0. (3.24)
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In CLASS, the three equations that are solved at gridblock i for a three-phase flow problem

are

fn+11,i = fn+1o,i + fn+1w,i + fn+1g,i = 0 (3.25)

fn+12,i = fn+1o,i = 0 (3.26)

fn+13,i = fn+1g,i = 0 (3.27)

where i = 1, 2, · · · , N . If we use the following three equations

fn+11,i = fo,i = 0 (3.28)

fn+12,i = fn+1w,i = 0 (3.29)

fn+13,i = fn+1g,i = 0, (3.30)

instead of Eqs. 3.25 through 3.27, to construct the Jacobian matrix, then, as discussed below,

we can encounter numerical difficulties when generating the incomplete LU decomposition

of the Jacobian matrix; this LU decomposition is needed when applying the iterative solver

orthomin to solve the matrix problems involved in the Newton-Raphson procedure. As

indicated in Table 3.1, we solve for pressure in all cases, i.e., the pressures are always primary

variables. Hence, in the Jacobin matrix, the derivative of one of the three finite difference

equations at ith gridblock with respect to the pressure of the ith gridblock is always a

diagonal element. The location of this entry depends on how you order the primary variables.

If the pressure is ordered as the first primary variable in each gridblock as people usually do,

then in the Jacobian matrix, the first diagonal entry and every third diagonal after that will

be given by df1,i/dpi where i is the gridblock index. If f1,i = fo,i, then the derivative df1,i/dpi

is zero whenever oil saturation So,i is zero. Because every individual term involved in df1,i/dpi

is related to oil saturation by either relative permeability or So itself, this derivative is equal

to zero if oil saturation is equal to zero.. The subroutine we used to perform the incomplete

LU decomposition will perform the operation of dividing the row of Jacobian matrix by the

diagonal element. Therefore, if So = 0 on gridblock i as occurs in the aquifer or gas cap,

and we use individual component flow equations instead of Eqs. 3.25 through 3.27, the LU

decomposition subroutine will terminate because of division by zero.

Eq. 3.23 and Eqs. 3.25 through 3.27 represent a system of Ne equations where

Ne = 3N +Nw. (3.31)

These Ne equations are solved to obtain the values of the primary variables at time tn+1 =

tn +∆tn. For wells at which the flowing bottom-hole pressure is specified, phase flow rates
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at each well are computed by Peaceman’s equation (Peaceman, 1983). The component flow

rates from the perforated layer k of well l (at gridblock (i, j, k)) at time step n + 1 can be

evaluated as

qn+1o,i,j,k = WIi,j,k

(

kro
Boµo

)n+1

i,j,k

(pn+1i,j,k − pn+1wf,l,k), (3.32)

qn+1w,i,j,k = WIi,j,k

(

krw
Bwµw

)n+1

i,j,k

(pn+1i,j,k − pn+1wf,l,k), (3.33)

and

qn+1g,i,j,k = WIi,j,k

(

krg
Bgµg

)n+1

i,j,k

(pn+1i,j,k − pn+1wf,l,k) +Rn+1
so,i,j,kq

n+1
o,i,j,k

= WIi,j,k

(

krg
Bgµg

+Rs
kro
Boµo

)n+1

i,j,k

(pn+1i,j,k − pn+1wf,l,k).

(3.34)

The rates qn+1o,i,j,k and qn+1w,i,j,k are in units of STB/Day, and qn+1g,l,k has units of SCF/Day. Here,

layer k means the wellbore gridblock with z-direction gridblock index equal to k. The well

index term WIi,j,k is the geometry part of productivity index and it is defined by

WIi,j,k =
0.007084zk

√

kx,i,j,kky,i,j,k

ln(ro,l,k/rw,l,k) + sl,k
, (3.35)

and ro,l,k is defined

ro,l,k =
0.280734xi

√

1 +
kx,i,j,k

ky,i,j,k

(

4yj

4xi

)2

1 +
√

kx,i,j,k/ky,i,j,k
. (3.36)

Here, rw,l,k is the wellbore radius of the well l at layer k and sl,k is the skin factor for well l

at layer k.

The complete system of equations can formally be written as

fn+1 = f(yn+1, yn,m) =







































fn+11,1

fn+1o,1

fn+1g,1

fn+11,2
...

fn+1g,N

fn+1wf,1
...

fn+1wf,Nw







































= 0, (3.37)

24



where

m = [m1,m2, · · · ,mNm
]T , (3.38)

and

yn+1 = [pn+11 , Sn+1o,1 , xn+11 , pn+12 , · · · , pn+1i , Sn+1o,i , xn+1i , · · · , xn+1N , pn+1wf,1, · · · , pn+1wf,Nw
]T , (3.39)

where

xn+1i =







Sn+1g,i for Sg,i > 0

Rn+1
s,i for Sg,i = 0

(3.40)

Eq. 3.37 is solved by the Newton-Raphson method (Aziz and Settari, 1979) which can

be written as

Jn+1,kδyn+1,k+1 = −fn+1,k (3.41)

yn+1,k+1 = yn+1,k + δyn+1,k+1, (3.42)

where k is the Newton-Raphson iteration index, n is the time step index and

Jn+1,k =
[

∇yn+1(fn+1)T
]T

yn+1,k
, (3.43)

is the Jacobian matrix evaluated at yn+1,k, which represents the kth approximation for yn+1.

The initial guess for yn+1 is chosen as the solution at the previous time step, i.e.,

yn+1,0 = yn. (3.44)

3.2.2 Adjoint Equations.

We define a general scalar function by

β = β(y1, ..., yL,m), (3.45)

where L corresponds to the last time step tL at which one wishes to compute sensitivity

coefficients. The objective is to compute the derivatives of β with respect to the model

parameters m. We obtain an adjoint functional J by adjoining Eq. 3.37 to the function β:

J = β +
L
∑

n=0

(λn+1)Tfn+1, (3.46)

where λn+1 is the vector of adjoint variables at time step n+ 1, and is given by

λn+1 =
[

λn+11 , λn+12 , . . . , λn+1Ne

]T

. (3.47)
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Taking the total differential of Eq. 3.46, and doing some simple rearranging gives

dJ = dβ +
L
∑

n=0

{

(λn+1)T [∇yn+1(fn+1)T ]Tdyn+1 + [∇m(f
n+1)T ]Tdm

}

+
L
∑

n=0

(λn+1)T [∇yn(fn+1)T ]Tdyn

= dβ +BT +
L
∑

n=1

{[(λn)T [∇yn(fn)T ]T

+ (λn+1)T [∇yn(fn+1)T ]T ]dyn + (λn)T [∇m(f
n)T ]Tdm},

(3.48)

where

BT = (λL+1)T
{

[∇yL+1(fL+1)T ]TdyL+1 + [∇m(f
L+1)T ]Tdm

}

+ (λ1)T
[

∇y0(f
1)T

]T
dy0. (3.49)

The total differential of β can be written as

dβ =
L
∑

n=1

[∇ynβ]Tdyn + [∇mβ]
Tdm. (3.50)

The initial conditions are fixed, so

dy0 = 0. (3.51)

Choosing

λL+1 = 0, (3.52)

it follows that BT = 0. Using this result and Eq. 3.50 in Eq. 3.48 and rearranging the

resulting equation gives

dJ =
L
∑

n=1

[

{

(λn)T [∇yn(fn)T ]T + (λn+1)T [∇yn(fn+1)T ]T

+ [∇ynβ]T
}

dyn
]

+
{

[∇mβ]
T +

N
∑

n=1

(λn)T [∇m(f
n)T ]T

}

dm.

(3.53)

To obtain the adjoint system, the coefficients multiplying dyn in Eq. 3.53 are set equal to

zero; i.e., we require that the adjoint variables satisfy

(λn)T [∇yn(fn)T ]T + (λn+1)T [∇yn(fn+1)T ]T + [∇ynβ]T = 0. (3.54)

Taking the transpose of Eq. 3.54, gives the adjoint system

[

∇yn(fn)T
]

λn = −
[

∇yn(fn+1)T
]

λn+1 −∇ynβ. (3.55)
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where

∇yn [fn]T =













































∂fn
1,1

∂pn
1

∂fn
w,1

∂pn
1

· · · ∂fn
g,N

∂pn
1

∂fn
wf,1

∂pn
1

· · · ∂fn
wf,Nw

∂pn
1

∂fn
1,1

∂Sn
w,1
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, (3.56)

where f1,i is given by Eq. 3.25 and
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, (3.57)

and

∇ynβ =

[

∂β

∂pn1
,
∂β

∂Snw,1
,
∂β

∂Sng,1
,
∂β

∂pn2
, · · · , ∂β

∂Sng,N
,

∂β

∂pnwf,1
, · · · , ∂β

∂pnwf,Nw

]T

. (3.58)

Note that when we set up the adjoint system, we use the water equation fw, instead of

the oil equation fo as in CLASS, as the second equation in order to use the previous code

developed by Ruijian Li without modifying it too much. Our results indicate that using fw

instead of fo as the second equation does not affect the accuracy of the adjoint solutions.

When we construct the adjoint system, the entries of the y vector are always p, So, Sg and

pwf , i.e.,

y = [p1, So,1, Sg,1, p2, · · · , pi, So,i, Sg,i, · · · , Sg,N , pwf,1, · · · , pwf,Nw
], (3.59)
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whereas in the forward simulator, Eq. 3.39 is used. Our results indicate that this does not

affect the accuracy of the adjoint solutions.

Eq. 3.55 with initial condition 3.52 is solved backwards in time for n = L,L − 1, . . . , 1.

Note that the forward simulation equation is solved forward in time. Also note that the

coefficients in Eq. 3.55 are independent of the adjoint variable λ, which means that the

adjoint equation is linear. Therefore, solving the adjoint system is cheaper in terms of

the computation cost than solving the forward simulation equation which is nonlinear. In

the above equations, ∇yn(fn)T and ∇yn(fn+1)T are Ne × Ne matrices, and ∇ynβ is an Ne-

dimensional column vector.

The matrix given by Eq. 3.57 is a diagonal band matrix which is only related to the

accumulation terms in the reservoir simulation equations. Note that the coefficient matrix

(∇yn(fn)T ) (Eq. 3.56) in the adjoint system is simply the transpose of the Jacobian matrix

of Eq. 3.43 evaluated at yn when the equations and primary variables used to construct

adjoint system are the same as used in the forward equations. As the adjoint system is

solved backwards in time, information needed in these matrices (Eqs. 3.56 and 3.57) must be

saved from the forward simulation run. In our code, we write all these primary variables to

disk to save memory. For details on these equations for computing the derivatives ∇yn(fn)T ,

∇yn(fn+1)T , and ∇ynβ in the adjoint equation, Eq. 3.55, see Li (2001).

As a summary, the adjoint system has the following properties:

(i) the adjoint system is solved backward in time;

(ii) the adjoint system is linear;

(iii) the coefficient matrix in the adjoint system is the transpose of the Jacobian matrix

used for solving the forward equations only if the adjoint system is fully consistent with

the forward equation, i.e., in each gridblock the same equations and primary variables

are used to construct the adjoint system and the flow equation system.

Considering J as a function of m , we can write its total differential as

dJ = (∇mJ)
Tdm. (3.60)

By comparing Eq. 3.53 and Eq. 3.60, it follows that the desired sensitivity coefficients for

J , or equivalently, β, are given by

∇mJ = ∇mβ +
L
∑

n=1

[∇m(f
n)T ](λn), (3.61)
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where
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, (3.62)

and

∇mβ =

[

∂β

∂m1

,
∂β

∂m2

, · · · , ∂β

∂mNm

]T

. (3.63)

The matrix ∇m[f
n]T is an Nm×Ne sparse matrix and ∇mβ is an Nm-dimensional column

vector. In Eq. 3.61, the gradient ∇mβ involves the partial derivatives of β with respect to the

model parameters. If the jth model parameter does not explicitly appear in the expression

for β, then ∂β/∂mj = 0. For example, if β = pnwf , then we set ∇mβ = 0 in Eq. 3.61.

To apply a conjugate gradient (Makhlouf et al., 1993) or variable metric method (Yang

and Watson, 1988), we need only compute the gradient of the objective function and this

can be done by setting β = O(m) in the adjoint procedure. In this case, one only needs

to solve the adjoint system Eq. 3.55 once and substitute the resulting adjoint solutions to

Eq. 3.61 to obtain the gradient.

To apply the adjoint method to calculate the sensitivity of the variable β to model param-

etersm, one needs to solve the adjoint system equation Eq. 3.55 to obtain the adjoint variable

λ, and then use Eq. 3.61 to calculate sensitivity coefficients. If we consider permeabilities

(kx, ky and kz) and porosities (φ) in each individual gridblock, i.e.,

mkx
= kx = [ kx,1, kx,2, · · · , kx,N ]T , (3.64)

mky
= ky = [ ky,1, ky,2, · · · , ky,N ]T , (3.65)

mkz
= kz = [ kz,1, kz,2, · · · , kz,N ]T , (3.66)

and

mφ = φ = [ φ1, φ2, · · · , φN ]T , (3.67)

then from Eq. 3.61, the equations to calculate the derivatives with respect to kx, ky, kz and

φ are given by

∇kx
J = ∇kx

β +
L
∑

n=1

[∇kx
(fn)T ](λn), (3.68)

∇ky
J = ∇ky

β +
L
∑

n=1

[∇ky
(fn)T ](λn), (3.69)
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∇kz
J = ∇kz

β +
L
∑

n=1

[∇kz
(fn)T ](λn), (3.70)

and

∇φJ = ∇φβ +
L
∑

n=1

[∇φ(f
n)T ](λn), (3.71)

where β is pwf , GOR, WOR at some specified time step L, the whole data mismatch part of

the objective function Od(m) or any other terms for which we wish to calculate sensitivities.

In order to calculate the gradient of the objective function, we consider β as the whole

data mismatch part of the objective function, i.e.,

β = Od(m) =
1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs), (3.72)

or in the case of stochastic simulation of m,

β = Od(m) =
1

2
(g(m)− duc)

TC−1
D (g(m)− duc). (3.73)

Thus, we have

∇ynβ = ∇yn{1
2
(g(m)− dobs)

TC−1
D (g(m)− dobs)}

=
[

∇yn(g(m)− dobs)
T
]

C−1
D (g(m)− dobs)

= ∇yn [g(m)]TC−1
D (g(m)− dobs).

(3.74)

In the case of β given by Eq. 3.73, the dobs in Eq. 3.74 should be replaced by duc. The matrix

∇yn [g(m)]T is an Ne ×Nd matrix and defined as

∇yn [g(m)]T =
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. (3.75)

The entries of vector g(m) represent production data. The vector may contain entries like

pwf , GOR and WOR or any combination of these three kinds of production data. Details
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for calculating each entry of matrix ∇yn [g(m)]T can be found in Li (2001). It turns out

many columns of this matrix are zero. Only the columns corresponding to data that are

measured at time n are nonzero. After we evaluate the matrix ∇yn [g(m)]T , we multiply

C−1
D (g(m)−dobs) by this matrix to obtain ∇ynβ. Once we have ∇ynβ, we can apply Eq. 3.55

to compute the adjoint variables.

To apply Eq. 3.61 to compute the derivatives, we need to evaluate ∇mβ first. The vector

∇mβ is given by

∇mβ = ∇mOd(m)

= ∇m

{1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)

}

=
[

∇m(g(m)− dobs)
T
]

C−1
D (g(m)− dobs)

= ∇m[g(m)]TC−1
D (g(m)− dobs).

(3.76)

In the case of β given by Eq. 3.73, the dobs in Eq. 3.76 should be replaced by duc. The matrix

∇m[g(m)]T is an Nm ×Nd matrix and defined as

∇m[g(m)]T =
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. (3.77)

The vector g(m) is the calculated production data vector. For the history matching problems

considered here, an entry of g will correspond to pwf , GOR or WOR. The formulas for

calculation of elements in the matrix∇m[g(m)]T can be found in Li (2001). After we compute

∇mβ, we can use Eq. 3.61 to compute the derivatives of the objective function with respect

to model parameters, i.e., the gradient of the objective function.

3.3 Application of Conjugate Gradient and Quasi-Newton

Methods

Here, we explore the conjugate gradient and quasi-Newton (variable metric) methods. The

advantage of these methods is that they require only the computation of the gradient of the

objective function with respect to the model parameters. The sensitivity coefficient matrix

G is not needed. Our results suggest that these methods can lead to considerable reductions

in computer time and memory required for large scale history matching problems.
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3.3.1 Nonlinear Conjugate Gradient Method

Nonlinear conjugate gradient method which is usually used to minimize non-quadratic func-

tion can “be evolved” from the linear conjugate gradient method which is normally used to

solve a linear equation system. In this section, we focus on the application of the nonlinear

conjugate gradient method to our history matching problem.

In the conjugate gradient method, the search direction is given by

dk+1 = −M−1
k gk + βkdk, (3.78)

where k is the iteration index, gk represents the gradient of the objective function, Mk is

called the preconditioning matrix which is an approximation to the Hessian matrix Hk and

βk is obtained by the Polak-Ribière formula given by

βk =
rTk+1(M

−1
k+1rk+1 −M−1

k rk)

rTkM
−1
k rk

, (3.79)

where rk = −gk. As discussed later, the step size can be obtained by a line search. If we

choose the preconditioning matrix Mk to be identity matrix I, then Eq. 3.78 reduces to the

standard conjugate gradient method without preconditioning.

It is well known that the nonlinear conjugate gradient method can be applied to minimize

non-quadratic objective functions; see, Fletcher and Reeves (1964). Although the method

has been applied for the history matching of production data (see, for example, Makhlouf

et al. (1993)), its slow rate of convergence has precluded its use in large scale history matching

problems. The success of the conjugate gradient method for nonlinear optimization depends

on whether we are able to construct a good preconditioner. A good preconditioning matrix

at the kth iteration is a matrix Mk which is a good approximation to the Hessian Hk so that

M−1
k Hk ≈ I. (3.80)

For our problem, the Hessian at the kth iteration is given by

Hk = C−1
M +GT

kC
−1
D Gk, (3.81)

An optional preconditioner for the conjugate gradient method would be

Mk = Hk, (3.82)

but the conjugate gradient method requires solving the matrix problem

Mkd̃k = −gk, (3.83)
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to form search direction dk+1 using Eq. 3.78. If Mk = Hk, Eq. 3.83 requires the same

computational effort as the direct application of Gauss-Newton method and does not improve

computational efficiency. If we choose Mk = C−1
M , however, then Eq. 3.83 becomes

d̃k = −CMgk, (3.84)

and the calculation of d̃k which is the first term in Eq. 3.78 requires only multiplication of

gk by the prior covariance matrix CM . Kalita (2000) considered the problem of conditioning

a gas reservoir model to well test pressure data by automatic history matching. Both the

Gauss-Newton method and the conjugate gradient method with C−1
M as the preconditioner

were used to minimize the relevant objective function (Eq. 3.10 or Eq. 3.14). Kalita’s results

indicate that the conjugate gradient method was not always more efficient than the Gauss-

Newton method. Moreover, in most cases, the conjugate gradient method converged to a

value of the objective function which was significantly higher than the converged value of

the objective function obtained by the Gauss-Newton method.

In the preconditioned conjugate gradient method, the preconditioning matrix Mk is used

only in equations like Eq. 3.83. Thus, it is preferable to estimate M−1
k directly instead of

estimating Mk. We would like M−1
k to be an approximation to the inverse Hessian. This

suggests that H̃−1
k constructed from quasi-Newton might be a good candidate for a precondi-

tioner. Quasi-Newton method will be discussed in the next section. The difficulty with this

procedure is that we can only approximate the quasi-Newton H̃−1
k using information in the

conjugate gradient algorithm. Our work indicated that the preconditioner constructed by

this scheme works better than C−1
M for some cases, for example, in the gas reservoir examples

shown by Zhang et al. (2001b); and works worse than C−1
M for some cases, for example, in the

three-phase example presented later. The reason is that the iterates generated by the quasi-

Newton method are different from the iterates generated by the conjugate gradient method.

The search direction for the conjugate gradient algorithm is given by Eq. 3.78 whereas it is

given by Eq. 3.87 in the quasi-Newton method. Different search directions generate different

iterates and in turn different yk’s and sk’s which are used to construct Hessian inverse ap-

proximation matrix H̃−1
k . Therefore, the inverse Hessian approximation generated within the

conjugate gradient algorithm will not be the same as the one generated in a quasi-Newton

method. In particular, the “inverse Hessian approximation” generated with the conjugate

gradient procedure may not have the property that the inverse Hessian approximation will be

equal to the true inverse Hessian at the Nth iteration for a N -dimensional quadratic function

given that the line search is exact; see Oren and Luenberger (1974) and Oren (1974b).
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3.3.2 Quasi-Newton Methods

The search direction in the Newton’s method can be written as

dk+1 = −H−1
k gk, (3.85)

where Hk and gk, respectively, denote the second derivative (Hessian matrix) and the first

derivative (gradient) of the objective function evaluated at mk and k is the iteration in-

dex. With O(m) given by either Eq. 3.10 or Eq. 3.14, the Gauss-Newton Hessian matrix is

estimated by

Hk = C−1
M +GT

kC
−1
D Gk, (3.86)

where Gk is the sensitivity matrix evaluated at mk. As noted before, if both the number of

model parameters and the number of data are large, the evaluation of Gk is computationally

expensive. In quasi-Newton methods, H−1
k is approximated by a symmetric positive definite

matrix H̃−1
k which is corrected or updated from iteration to iteration. With this Hessian

inverse approximation matrix, the search direction can be written as

dk+1 = −H̃−1
k gk. (3.87)

Because the matrix H̃−1
k takes the place of H−1

k in Eq. 3.85, the method with search direction

given by Eq. 3.87 is called a quasi-Newton method. This method is also called a variable

metric method.

In a quasi-Newton method, the key issue is how to generate the approximation to the

inverse Hessian matrix. Different quasi-Newton methods use different formulas to calculate

H̃−1
k+1 from H̃−1

k . All updating formulas satisfy the quasi-Newton condition given by

H̃−1
k+1yk = sk, (3.88)

where

yk = gk+1 − gk, (3.89)

and

sk = mk+1 −mk. (3.90)

Various possible updating formulas honor this quasi-Newton condition. The Broyden family

equation is given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sTk yk
− H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

+ θkvkv
T
k , (3.91)
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where θk ∈ [0, 1] and

vk = (yTk H̃
−1
k yk)

1/2
( sk
sTk yk

− H̃−1
k yk

yTk H̃
−1
k yk

)

. (3.92)

Given that the line search is exact and the initial Hessian inverse approximation is real sym-

metric positive definite, the Hessian inverse approximation generated by Eq. 3.91 is guar-

anteed to be symmetric positive definite; see details in Zhang (2002). In our procedure, we

use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) correction equation proposed by Broy-

den (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970) independently, which is a

special case of Broyden family obtained by setting θk = 1 in Eq. 3.91. The BFGS update

equation is given by

H̃−1
k+1 = H̃−1

k +
sks

T
k

sTk yk
− H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

+ vkv
T
k . (3.93)

The limited memory BFGS (LBFGS), which uses a limited number of previous vectors

(yk’s and sk’s) to construct the inverse Hessian approximation at each iteration, is an ap-

propriate method for large scale problems where it is not feasible to explicitly store and

compute the full matrix H̃−1
k . In our work, the algorithm proposed by Nocedal (1980) was

implemented and applied. In order to derive the limited memory BFGS, the normal BFGS

formula Eq. 3.93 can be written as

H̃−1
k+1 = V T

k H̃
−1
k Vk + ρksks

T
k , (3.94)

where ρk = 1/yTk sk and Vk = I − ρkyks
T
k . Nocedal (1980) suggested a procedure where only

the L previous vectors are used when constructing the new H̃−1
k+1. When k < L, the update

equation is still given by Eq. 3.94 which can be rewritten as

H̃−1
k+1 =V

T
k V

T
k−1 · · ·V T

0 H̃
−1
0 V0 · · ·Vk−1Vk

+ V T
k · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k .

(3.95)

For k + 1 > L the update equation is

H̃−1
k+1 =V

T
k V

T
k−1 · · ·V T

k−L+1H̃
−1
0 Vk−L+1 · · ·Vk−1Vk

+ V T
k · · ·V T

k−L+2ρk−L+1sk−L+1s
T
k−L+1V1 · · ·Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k .

(3.96)
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Unless the dimension of H̃−1
k is small, direct application of Eqs. 3.95 and 3.96, which in-

volve matrix products, is inefficient. Instead, we form the product H̃−1
k gk, which is used to

construct the search direction, directly by using the algorithm proposed by Nocedal (1980).

The calculation of H̃−1
k gk only involves vector products instead of matrix products. Because

only the L most recent vectors from the set of sk and yk are used to construct H̃−1
k+1, this

algorithm is called the limited memory BFGS method.

The BFGS or LBFGS algorithm we used to minimize O(m) (Eq. 3.10 or Eq. 3.14) is

given below.

Step 1 Initialization

(a)Provide an initial guess, m0, of the model, calculate the objective function corre-

sponding to m0 and evaluate the gradient of the objective function at m0, i.e., compute

g0;

(b)provide an initial Hessian inverse approximation H̃−1
0 (e.g., CM in our examples),

set the initial iteration index k=0.

Step 2 Calculate the search direction dk = −H̃−1
k gk and check whether it is a downhill di-

rection, i.e., check to see if dTk gk < 0. If dk is not a downhill search direction, set

dk = −H̃−1
0 gk.

Step 3 Calculate the step size αk by a line search procedure as discussed later.

Step 4 Update the model to mc = mk + αkdk.

Step 5 Calculate the objective function based on mc.

Step 6 Determine if the Wolfe conditions (discussed later) are satisfied; if they are satisfied,

then set mk+1 = mc and go to step 7, otherwise do

(a) fit a quadratic and find a step size by minimizing this quadratic, then go to step 4;

(b) if a quadratic fit has already been done, cut the step size by a specified factor (in

our examples we cut the step size by a factor of 10) and go to step 4. All computations

we have done suggest this case does not occur very often.

Step 7 Determine if the stopping criteria are satisfied. If satisfied, then stop; otherwise go to

step 8.

Step 8 Calculate sk = mk+1 −mk = αkdk and yk = gk+1 − gk. Apply Eq. 3.93 or Eqs. 3.95

and 3.96 to update the inverse Hessian approximation H̃−1
k+1. Set k = k + 1 and then

go to step 2.
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Scaling

The scaling is obtained by multiplying the old H̃−1
k by a factor γk and then substituting

γkH̃
−1
k instead of H̃−1

k itself into the update equation (e.g., Eq. 3.91) to calculate H̃−1
k+1; see

Oren (1973), Oren and Luenberger (1974), Oren (1974b) and Shanno (1970). If we do so,

Eq. 3.91 becomes

H̃−1
k+1 = γkH̃

−1
k +

sks
T
k

sTk yk
− γkH̃

−1
k yky

T
k γkH̃

−1
k

yTk γkH̃
−1
k yk

+ θkγkvkv
T
k , (3.97)

and this equation can be further simplified to

H̃−1
k+1 =

(

H̃−1
k − H̃−1

k yky
T
k H̃

−1
k

yTk H̃
−1
k yk

+ θkvkv
T
k

)

γk +
sks

T
k

sTk yk
, (3.98)

where vk is given by Eq. 3.92 and is the same one used in Eqs. 3.91 and 3.93.

For BFGS and LBFGS, scaling can have a significant effect on the rate of convergence.

The self-scaling variable metric (SSVM) method developed by Oren and Luenberger (1974)

and Oren (1974b) is motivated by the desire to choose a scalar γk−1 so that the condition

number of Rk = H
1/2
k H̃−1

k H
1/2
k is as close to one as possible. If H̃−1

k is identical to the inverse

of the true Hessian, Hk, then this condition number is equal to one. For a quadratic objective

function, these authors provide theoretical conditions and a method for computing γk that

insure that (i) λmin ≤ 1 ≤ λmax where λmin and λmax, respectively, denote the minimum and

maximum eigenvalues of Rk; and (ii) the condition number of Rk+1 is less than or equal to

the condition number of Rk. A quasi-Newton method which satisfies these two conditions is

referred to as a self-scaling variable metric method.

Let

τk =
sTk H̃ksk
sTk yk

, (3.99)

and

σk =
sTk yk

yTk H̃
−1
k yk

. (3.100)

By applying the fact that

sk = αkdk = −αkH̃−1
k gk, (3.101)

and using the fact that H̃−1
k is real symmetric, Eq. 3.99 can be rewritten as

τk =
sTk H̃ksk
sTk yk

(3.102)

= −αk
gTk sk
sTk yk

(3.103)

=
sTk gk

gTk H̃
−1
k yk

. (3.104)
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In general the motivation for using the last two formulae to calculate τk is to avoid calculating

the inverse of H̃−1
k .

There are many options we can choose to perform scaling. Oren and Spedicato (1976)

proposed an optimal condition which minimizes the upper bound of the condition number

of H̃−1
k+1 by proper selection of θk and γk. This condition is given by

θk =
akbk − a2kγk
bkckγk − a2kγk

(3.105)

where θk is the parameter used in Broyden family update equation, Eq. 3.91, ak = sTk yk,

bk = sTk H̃ksk and ck = yTk H̃
−1
k yk. With these definitions, there is still freedom to select

scaling factors. In the same paper, Oren proposed four similar switching rules based on his

earlier published paper (Oren (1974a)). One of the switching rules for choosing γk and θk in

Eq. 3.98 is

if τk ≤ 1, choose γk = τk and θk = 0;

if σk ≥ 1, choose γk = σk and θk = 1;

if σk ≤ 1 ≤ τk, choose γk = 1 and θk =
1− σk
τk − σk

.

Some examples (see Zhang et al. (2001b)) show that when we use θ = θk not equal to 1 in

Eq. 3.98, the convergence rate is almost always slower than the case where we use θk = 1.

Therefore, we consider only the case where θk = 1; this choice corresponds to the BFGS

algorithm. Setting θk = 1 in Eq. 3.105 and solving for γ = γk, we obtain the optimal scaling

factor for BFGS which is given by

γk =
ak
ck

=
sTk yk

yTk H̃
−1
k yk

= σk, (3.106)

where σk is given by Eq. 3.100. Shanno and Phua (1978) and Yang andWatson (1988) use this

scaling factor and only scale the initial matrix, H̃−1
0 , in their work. In our implementation,

we modify Oren’s switching rule to







γk = τk, if τk ≤ 1;

γk = σk, otherwise
(3.107)

and always use θk = 1. Note that using switching rule Eq. 3.107 for choosing the scaling

factor still guarantees the condition number of matrix Rk = H
1/2
k H̃−1

k H
1/2
k monotonously

decreases at least for quadratic functions.
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The scaled version BFGS algorithm is similar to the standard BFGS algorithm given

previously. The only difference is in step 8. For the scaled BFGS algorithm, step 8 is

replaced by

Step 8 Calculate sk = mk+1 −mk = αkdk and yk = gk+1 − gk. Calculate τk by Eq. 3.104 and

determine whether τk is less than one. If it is, then set γk = τk. Otherwise, calculate

σk using Eq. 3.100 and set γk = σk. Apply Eq. 3.98 to update the inverse Hessian

approximation H̃−1
k+1. Set k = k + 1 and go to step 2.

This step 8 is given for the case where the inverse Hessian approximation is scaled at each

iteration. For the case where only initial scaling is done, set γk = 1 for k > 0 in this step.

For the LBFGS algorithm with initial scaling, we just replace H̃−1
0 in Eqs. 3.95 and 3.96 by

γ0H̃
−1
0 in computing H̃−1

1 and use γk = 1 at all subsequent iterations. For the LBFGS with

all scaling, we replace H̃−1
0 in Eqs. 3.95 and 3.96 by γkH̃

−1
0 in computing H̃−1

k+1. The efficient

LBFGS method given by Nocedal (1980) avoid formation of H̃−1
k for k ≥ 1, only H̃−1

k gk is

calculated at each iteration. However, H̃−1
0 must be provided as the initial approximation

to the inverse Hessian. Based on these considerations, we tried implementing Eq. 3.100 with

H̃−1
k replaced by H̃−1

0 , then we have

σ̃k =
sTk yk

yTk H̃
−1
0 yk

. (3.108)

The H̃−1
k and H̃k in Eqs. 3.102 and 3.104 are replaced by H̃−1

0 and H̃0 respectively. The

resulting three equations for τk are no longer equivalent except at the first iteration. By

using H̃−1
0 in place of H̃−1

k and H̃0 in place of H̃k in Eqs. 3.102 and 3.104, we obtain

τ̃1k =
sTk H̃0sk
sTk yk

(3.109)

τ̃3k =
sTk gk

gTk H̃
−1
0 yk

(3.110)

respectively. However, Eq. 3.103 can be applied exactly in all cases. To simplify the notation,

we let

τ̃2k ≡ τk = −αk
gTk sk
sTk yk

. (3.111)

More details about the scaling schemes we used and how they affect the convergence are

given in the example sections.
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3.3.3 Convergence Criteria

In our results, the following stopping criteria are used to terminate the algorithm:

1.
| Ok+1 −Ok |
Ok + 10−14

< ε1 (3.112)

and
‖ mk+1 −mk ‖2
‖ mk ‖2 +10−14

< ε2 (3.113)

where k denotes the iteration index and ‖ · ‖2 denotes the l2 norm of a vector. Both

conditions must be satisfied to terminate the iteration. If we use only Eq. 3.112 as the

convergence criterion, the algorithm may converge prematurely especially when the

objective function decreases very slowly at the early iterations. Because at the early

iteration, the objective function is relatively big such that Eq. 3.112 becomes easier to

be satisfied.

2. Specify a maximum allowable iteration number. If the number of iterations exceeds the

specified number, we force the iteration to stop. In our examples, we usually specify

the maximum number of iterations as 100. Note that reaching the maximum number

of iterations does not imply that the algorithm has converged.

3.3.4 Line Search

In our implementation of conjugate gradient and quasi-Newton methods, the line search is

performed using one iteration of the Newton-Raphson method followed by a quadratic fit if

necessary. We do not do an exact line search, but terminate the line search when the Wolfe

conditions are satisfied; see, for example, Fletcher (1987). The Wolfe conditions are used to

ensure that step sizes are not too small and that the reduction in the objective function is

not negligible. In addition, the Wolfe conditions are side conditions for the exact line search;

see Kolda et al. (1998). At each iteration, we perform one Newton-Raphson iteration to find

a step size. Then we check whether this step satisfies the Wolfe conditions. If it does, we

accept this step. Otherwise we find an optimum step size by fitting a quadratic, as discussed

in the next section, and then check whether the new step satisfies the Wolfe conditions.

If it does, we accept this new step. Otherwise, we check whether the objective function

increases or decreases. If it increases, we cut the step size by a factor of 10. If it decreases,

we accept this new step size no matter whether the Wolfe conditions are satisfied or not.

Our experience shows that for most of the iterations, the step size generated by one Newton-

Raphson iteration satisfies the Wolfe conditions and virtually all the step sizes satisfy the
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Wolfe conditions after the quadratic fit. One may argue that we should perform a sequence of

quadratic fits or a sequence of cubic fits after one quadratic fit instead of cutting the step size

after one quadratic fit. Our limited experience shows that the Wolfe conditions may never

be satisfied during the sequence of quadratic or cubic fits. If this situation happens, then we

are in a “dead loop” and the iteration never terminates. Because of this, we implemented

the simple scheme of reducing the step size by a factor of ten whenever the situation arise

that the Wolfe conditions are not satisfied after the quadratic fit. Sometimes, however, this

procedure leads to a false convergence. Thus, whenever we obtain convergence as a result

of reducing the step size by a factor of 10, we check the objective function value. If the

objective function value is still so big, then we restart the algorithm manually.

A line search is used to find the step size α at the kth iteration such that

f(α) = O(mk + αdk), (3.114)

is minimized along the search direction dk. The minimizer can be found by setting the

derivative of the function f(α) equal to zero, i.e.,

h(α) ≡ f ′(α) =
dO(mk + αdk)

dα
=
(

∇O(mk + αdk)
)T
dk = 0. (3.115)

This equation can be solved by using the Newton-Raphson algorithm which is given by

αj+1 = αj −
h(αj)

h′(αj)
, (3.116)

where j denotes the index of the Newton-Raphson iteration and the first derivative of h can

be evaluated by

h′(α) =
dh(α)

dα
= dTk∇

[

(

∇O(mk + αdk)
)T
]

dk = dTkH(mk + αdk)dk. (3.117)

In an exact line search, the Newton-Raphson iteration is stopped when a convergence crite-

rion is satisfied. The exact line search is very expensive due to the evaluation of the term

dTkH(mk + αdk)dk which requires at least one simulation run. In our procedure, we use an

inexact line search. Specifically, we do only one Newton-Raphson iteration as mentioned

previously. To perform one Newton-Raphson iteration, we set α0 = 0 and then Eq. 3.116

gives

α1 = −
(

∇O(mk)
)T
dk

dTkH(mk)dk
. (3.118)

Eq. 3.118 involves the Hessian matrix which can be approximated. The Hessian for the

objective function given by Eq. 3.10 is given by

Hk = GT
kC

−1
D Gk + C−1

M . (3.119)
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So

dTkHkdk = dTk (G
T
kC

−1
D Gk + C−1

M )dk

= dTk (G
T
kC

−1
D Gk)dk + dTkC

−1
M dk

= (Gkdk)
TC−1

D (Gkdk) + dTkC
−1
M dk.

(3.120)

In this equation, we do not need to compute the sensitivity coefficient matrix G directly.

We only need to calculate Gdk which can be done by using a finite-difference approximation

as shown next. It could also be calculated using one run of the gradient simulator method.

The method given below was originally implemented by Kalita (2000). The elements of the

sensitivity coefficient matrix can be written as

Gi,j =
∂gi
∂mj

, (3.121)

where i = 1, · · · , Nd and j = 1, · · · , Nm. The directional derivative is

( dg

dα

)

α=0
=
(dg(m+ αdk)

dα

)

α=0
. (3.122)

Let u = dk/ ‖ dk ‖. So we have

(dgi
dα

)

α=0
= [∇gi(m)]Tu

=
1

‖ dk ‖
[∇gi(m)]Tdk. (3.123)

The ith component of Gdk is given by

[

Gdk
]

i
=

Nm
∑

j=1

∂gi
∂mj

dk,j

= [∇gi(m)]Tdk, (3.124)

where dk,j denotes the jth component of the vector dk. Substituting Eq. 3.123 into Eq. 3.124,

we obtain

Gdk =‖ dk ‖
( dg

dα

)

α=0

≈‖ dk ‖
g(m+ εdk)− g(m)

ε ‖ dk ‖

=
g(m+ εdk)− g(m)

ε
,

(3.125)

where ε is a small number. We choose ε based on the infinity norm of dk such that ε satisfies

ε ‖ dk ‖∞= 10−3. Note that calculating Gdk needs one additional simulation run. Once we
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have Gdk, it is straight forward to calculate dTkHkdk using Eq. 3.120 and then Eq. 3.118 can

be applied to calculate the step size. Application of Eq. 3.120 requires evaluating C−1
M dk. In

our code, we provide two ways to calculate this term. One way is to solve a matrix problem

CMx = dk (3.126)

for x = C−1
M dk using either LU decomposition or preconditioned conjugate gradient method

(both of them are available in our code). The other way is to approximate C−1
M by using

stencil method; see Skjervheim (2002) or Oliver (1998).

Fig. 3.1 presents plots of O(mk + αdk) (circles) and f ′(α) = [∇O(mk + αdk)]
Tdk (dia-

monds) versus α. The cross shows f ′(α1) where α1 was computed by Eq. 3.118. Note f ′(α1)

is close to zero and α1 is close to the point (α = 3.765) where O(mk + αdk) is minimum.

This result illustrates our observation that one iteration of the Newton-Raphson algorithm

usually yields a sufficient accurate line search so that the Wolfe conditions are satisfied.

Fig. 3.1: Illustration of Newton-Raphson.

As mentioned above, instead of doing an exact line search, we generate a sequence of

iterate approximations to α that minimizes f(α) and terminate the iterations when the

Wolfe conditions are satisfied. As discussed below, the Wolfe conditions were formulated to

ensure that step sizes are not too small and that there is a non-negligible reduction in the

objective function at each iteration. In addition, the Wolfe conditions are the side conditions

for quadratic termination for linear problems in practice; see Kolda et al. (1998).
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3.3.5 Wolfe Conditions

Following Fletcher (1987), let ᾱk denote the smallest positive value of α for which O(mk +

αdk) = O(mk). Negligible reductions in the value of the objective function can occur either

if αk → ᾱk or αk → 0; see Fig. 3.2. Goldstein (1965) conditions can be used to avoid

the occurrence of these negligible reductions. Again we let f(α) denote O(mk + αdk), so

f(0) = O(mk). The Goldstein conditions are

f(α) ≤ f(0) + αρf ′(0), (3.127)

to exclude the right-hand side extreme of [0, ᾱk], and

f(α) ≥ f(0) + α(1− ρ)f ′(0) (3.128)

to exclude the left-hand side extreme of [0, ᾱk], where ρ ∈ (0, 1
2
) is a fixed parameter. In our

examples, we choose ρ = 0.0001. Eq. 3.127 is often also referred to as a Wolfe condition. In

Figs. 3.2 and 3.3, the line labeled ρf ′(0) goes through f(0) and its slope is equal to ρf ′(0);

the line labeled f ′(0) goes through f(0) and has slope equal to f ′(0). Eq. 3.127 can be

rewritten as
f(α)− f(0)

α
≤ ρf ′(0). (3.129)

From Eq. 3.129, we can see that if the step size satisfies this condition then the line through

(0, f(0)) and (α, f(α)) in Fig. 3.2 must be below the line with slope of ρf ′(0). Similarly,

Eq. 3.128 can be rewritten as

f(α)− f(0)

α
≥ (1− ρ)f ′(0). (3.130)

If the step size satisfies this condition then the line through (0, f(0)) and (α, f(α)) must be

above the line labeled (1− ρ)f ′(0) in Fig. 3.3. Hence, if the step size satisfies both Eq. 3.127

and Eq. 3.128, then the line through (0, f(0)) and (α, f(α)) must fall between the line with

slope of ρf ′(0) and the line with slope of (1− ρ)f ′(0).

Applying the fact that f ′(0) = gTk dk where gk = ∇O(mk), Eq. 3.127 can be rewritten as

fk − fk+1 ≥ −αρgTk dk. (3.131)

When f(α) is non-quadratic, the second Goldstein condition (Eq. 3.128) may exclude the

minimum point of f(α); see Fig. 3.3. Wolfe (1969) replaced Eq. 3.128 by a new condition

which is given by

f ′(α) ≥ ηf ′(0), (3.132)
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Fig. 3.2: Illustration of the Goldstein or the first Wolfe condition.

α

)(αf

0 α

)0(f

)0(f ′

)0( f ′ρ

α

)0()1(  f ′−ρ

Fig. 3.3: Illustration of the second Goldstein condition.

where η < 1. Eq. 3.132 can be rewritten as

gTk+1dk ≥ ηgTk dk, (3.133)

which is called Wolfe’s condition. In practice, Eq. 3.133 is often replaced by

| gTk+1dk |≤ η | gTk dk | . (3.134)
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which is called the strong Wolfe condition. The reason for using Eq. 3.134 instead of Eq. 3.133

is given below, also see Fletcher (1987) for details. In our examples we use η = 0.25. In

Fig. 3.4, the top dashed line shows a situation where Eq. 3.133 is satisfied but the strong

Wolfe condition Eq. 3.134 is not satisfied. This dashed line, which intersects the objective

function curve at the point (α̃, f(α̃)), falls below the line with slope of ρf ′(0). At the point

(α̃, f(α̃)) where this dashed line intersects the objective function, the slope of the objective

function which is gTk+1dk is greater than −ηf ′(0). With mk+1 = mk + α̃dk, Eq. 3.133 is

satisfied, due to the fact that f ′(α̃) is positive whereas f ′(0) is negative. However, the strong

Wolfe condition (Eq. 3.134) is not satisfied at α = α̃, because the value of f ′(α̃) > ηf ′(0).

To satisfy the strong Wolfe condition, we have to move the dashed line toward the minimum

until it falls below the dot dashed line which intersects the objective function curve at the

point at which the derivative is equal to −ηf ′(0). We use η = 0.25 in our work. So the

strong Wolfe condition is more restrictive. The first condition (Eq. 3.131) ensures that the

objective function is reduced sufficiently, and the second condition (Eq. 3.134) prevents the

steps from being too small. As is standard, we simply refer to Eqs. 3.131 and 3.134 as the

Wolfe conditions.
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Fig. 3.4: Illustration of the strong Wolfe condition.

3.3.6 Quadratic Fit

Suppose at iteration k, we perform one Newton-Raphson iteration and find a step size α̂k for

the current search direction dk. With this step size, we calculate a new objective function
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value O(mk + α̂kdk) = f(m̂k+1) and check the Wolfe conditions. If the Wolfe conditions are

not satisfied, we fit the function f(α) = O(mk + αdk) with a quadratic function given by

q(α) = aα2 + bα + c. (3.135)

With the known values of q(0) = f(mk), q
′(0) = f ′(mk) and q(α̂k) = f(mk + α̂kdk), we find

a =
f(mk + α̂kdk)− f ′(mk)α̂k − f(mk)

α̂2k
,

b = f ′(mk),

c = f(mk).

Minimizing q gives

αk = −
f ′(mk)α̂

2
k

2[f(mk + α̂kdk)− f ′(mk)α̂k − f(mk)]
, (3.136)

which is used as the new step size. Based on our experience, the quadratic fit almost always

results in a decrease in the objective function. Even though it rarely happens, however,

a quadratic fit may yield a model at which the objective function value is bigger than the

value of the objective function corresponding to the model obtained by one Newton-Raphson

iteration. Such a situation is depicted in Fig. 3.5 where the quadratic approximation to the

true objective function is inaccurate near the minimum. In this figure, point A corresponds

to mk; point B corresponds to mk + α̃dk obtained after the Newton-Raphson iteration and

point C corresponds to mk + αkdk which is obtained after quadratic fit. We see that the

value of the objective function at point C obtained from the quadratic fit is larger than the

value of the objective function at point B obtained by one Newton-Raphson iteration.

3.4 Evaluation of Computational Efficiency

Here, we assess the computational efficiency of GN (Gauss-Newton), LM (Levenberg-Mar-

quardt), PCG (preconditioned conjugate gradient), BFGS and LBFGS. In the evaluation of

computational efficiency, we count only the number of adjoint solutions and the number of

reservoir simulation runs required by each method. Moreover, we count one adjoint solution

over the total time interval of a simulation run as one equivalent simulation run although

in our examples, one adjoint solution typically takes less than one half of the time of a

simulation run. We do not keep track of the computational effort incurred when a proposed

model update is rejected because it results in a violation of the Wolfe conditions.
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Fig. 3.5: Illustration of quadratic fit.

In GN and LM, if the data are evenly distributed in the time domain, the computational

cost of calculating sensitivity of all data to all model parameters requires Nd/2 adjoint

solutions which we count as being equivalent to Nd/2 simulation runs. GN and LM require

one additional simulation run to calculate the new value of the objective function. So a total

of Nd/2 + 1 simulation runs are needed to accomplish one GN or LM iteration.

In LBFGS and PCG, the total computational cost of implementing one iteration is equiv-

alent to 3 simulation runs, which include one equivalent simulation run for calculating the

gradient of the objective function by using the adjoint method, one simulation run for cal-

culating the step size when using Newton-Raphson iteration (only one iteration of Newton-

Raphson is done in our implementation) and another simulation run for calculating the

objective function. Thus, LBFGS and PCG are (Nd/2+ 1)/3 times faster than GN and LM

for each iteration. For example, if we have 1000 data, LBFGS and PCG will be roughly

167 times faster than GN or LM per iteration. In terms of the total time, if GN or LM

require n
GN

iterations to converge on average, while LBFGS or PCG need n
BFGS

iterations

to converge on average, then LBFGS or PCG will be l times faster than GN or LM where

l =
n

GN

n
BFGS

(Nd/2 + 1)/3

=
n

GN

n
BFGS

× Nd/2 + 1

3
. (3.137)

Although BFGS requires more time than LBFGS and PCG to perform the matrix operations

involved in the update equation, it is the memory requirement that makes the standard BFGS

method inferior to LBFGS and PCG for large scale problems. Hence, the “standard” BFGS

48



refers to using Eq. 3.93 and storing H̃−1
k . We could of course implement BFGS in exactly

the same way as LBFGS in which case we do not explicitly compute or store H̃−1
k .

3.5 Comparison of Memory Requirements

For large scale problems, the memory required by an optimization algorithm is a key issue

that needs to be considered. Because we are only concerned with the difference between

algorithms, we only consider the memory used by the optimization algorithm itself. Table 3.2

gives a rough estimate of the number of double precision real numbers used by each algorithm

when applied to minimize the objective function of Eq. 3.10 or Eq. 3.14. Recall that Nd is

the number of production data, Nm is the number of model parameters, and L is the number

of previous vectors used in the LBFGS algorithm. For convenience, we use one memory unit

to stand for the memory occupied by one double precision real number. Recall the dimension

of mk, mk+1, δmk+1, s, dk, gk, gk+1, mprior and ∇mO is Nm, the dimension of a sensitivity

coefficient matrix G is Nd × Nm and the dimension of CM is Nm × Nm. In the GN or LM

method, (4+ 2Nd)×Nm (mk, mk+1, δm, mprior, sensitivity coefficient matrix G and CMG
T )

memory units are used. In CG, 8 × Nm (8 × Nm: mk, mk+1, δmk+1, sk, dk, gk+1, mprior,

∇mO) memory units are used. For PCG, in addition to the memory required for the standard

conjugate gradient, memory is required to store the preconditioner. In BFGS (10+Nm)×Nm

(10×Nm: mk, mk+1, δmk+1, dk, gk, gk+1, mprior, vk, H̃
−1
k yk, yk; Nm×Nm: H̃

−1
k ) memory units

are used. In LBFGS, (7 + 2× L)×Nm (7×Nm: mk, mk+1, δmk+1, gk, dk, mprior, diagonal

inverse Hessian approximation; 2×L×Nm: yk and sk for k = 1, 2, · · · , L) memory units are

used. From the results of Table 3.2, we see that the full-memory version of BFGS uses the

most memory which is on the order of N 2
m, the standard conjugate gradient method uses the

least memory which is on the order of Nm and Gauss-Newton or Levenberg-Marquardt and

limited memory BFGS have intermediate memory requirements. For large scale problems in

which the number of data and the number of model parameters are both large, the memory

used by limited memory BFGS depends on the number of previous vectors (denoted by L in

Table 3.2) used to construct the Hessian inverse approximation update; L must be specified

by the user. Fig. 3.6 shows a snapshot of the panel which monitors the memory usage history

and the CPU usage history when the LBFGS algorithm was applied to do a history match

for a 2D problem presented in the next section. In the right bottom black window, the curve

shows the memory usage. The period of high memory usage corresponds to a simulation run

and the lower memory period corresponds to solving an adjoint system.

49



Table 3.2: Memory used by each algorithm.

No. of DP real numbers

GN/LM (4 + 2×Nd)×Nm

CG 8×Nm

PCG 8×Nm + memory for preconditioner

BFGS (10 +Nm)×Nm

LBFGS (7 + 2L)×Nm

Fig. 3.6: Memory and CPU usage history of the computer.

3.6 Two-Dimensional Three-Phase Synthetic Example

A 2D three-phase history matching problem was considered in this example. We use a 15×15

grid with ∆x = ∆y = 40 ft and ∆z = 30 ft. We consider a very small problem so we can

easily apply all optimization algorithms. The porosity for the true model is homogeneous

and equal to 0.22. Permeability is isotropic and uniform in three different zones; see Fig. 3.7.

The values of ln(k) in the lower left zone, lower right zone and the upper half zone are equal

to 4.0, 4.6 and 4.2 with k in md, respectively. Four producers and one water injection well

are completed in the reservoir. The well locations are indicated by the white squares in

Fig. 3.7. All producers start producing at time zero at a constant total flow rate of 200

STB/Day and produce for 300 days. The production constraint is the minimum bottom-

hole pressure which is set to 50 psi and the economic limit is the maximum WOR which
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is set to 49 STB/STB. When the bottom-hole pressure of a well decreases below 50 psi,

then the well will be produced at a constant bottom-hole pressure equal to 50 psi. If the

WOR exceeds 49, then the well will be shut in. For all examples considered in this section,

the production constraint and economic limit are never reached. Bottom-hole pressure data

from all five wells, GOR and WOR from all four producers are used as the conditioning

data to estimate the gridblock permeabilities, i.e., the porosity is fixed at its true values. A

total of 364 data (28 for each type of data at each producing well and 28 pressure data at

the water injection well) are history matched. We assume pressure measurement errors to

be independent, identically-distributed, normal random variables with mean equal to zero

and variance equal to 1 psi2. GOR measurement errors were modeled similarly except the

variance was set equal to 25 (SCF/STB)2. Following Wu (1999), the variance of WOR

measurement errors was specified by

Var[eWOR] = WOR2
obsε

2
o +

1

q2o,obs
σ2qw,obs

, (3.138)

where

ε2m =
Var[qm,obs − qm]

q2m,obs
, (3.139)

for m = o, w and

σqw,obs = max[εwqw,obs, σ
min
qw,obs]. (3.140)

Here, qm,obs, m = o, w denotes the observed rate of phase m. In this example, we choose

σmin
qw, obs

=2.0 STB/Day, εo=0.001 and εw=0.02. The variances for different data are used to

form the data covariance matrix CD. The isotropic spherical variogram with the range equal

to 240 ft in all three directions and the variance for ln(k) equal to 1 was used to construct the

model covariance matrix, CM . The objective function given in Eq. 3.10 was minimized; i.e.,

we generated the maximum a posteriori (MAP) estimate by history matching the production

data.

3.6.1 Comparison of the Optimization Algorithms

For the examples considered in this subsection, we did not add any noise to the true data

generated by running the simulator with the true model as input. Our focus is on the

investigation of the computational efficiency of different optimization algorithms.

The iterative solver (see Zhang (2002)) was applied to solve the adjoint equations in-

volved in the computation of the sensitivity coefficient matrix and the computation of the

gradient of the objective function. For the comparison purpose, the Levenberg-Marquardt
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Fig. 3.7: Permeability field for the true model.

(LM), Broyden-Fletcher-Goldfarb-Shanno (BFGS), limited memory BFGS (LBFGS), con-

jugate gradient with CM as the preconditioner (CM-PCG) and conjugate gradient with

preconditioner generated from limited memory BFGS (LBFGS-PCG) were used to minimize

the objective function involved in the history matching procedure. In some cases, GN fails

to converge to a legitimate model; see Li (2001). Thus, GN is not compared with the other

algorithms. For these algorithms, a uniform value of 4 for ln(k) was used as the initial guess.

In Levenberg-Marquardt, the initial damping factor was chosen as 105. When the objec-

tive function increases, the damping factor was simply multiplied by a factor of 10; whereas,

when the objective function decreases, the damping factor was simply divided by a factor

of 10. Levenberg-Marquardt (LM) converged to 13.343 in 9 iterations. The curve through

the circles in Fig. 3.8 shows the behavior of the objective function during the LM itera-

tions. Fig. 3.9(b) shows the final model (i.e., the permeability field) obtained by Levenberg-

Marquardt, which is very similar to the true model which is reproduced in Fig. 3.9(a).

The BFGS method we used is the standard Broyden-Fletcher-Goldfarb-Shanno method

with initial scaling. In other words, γk = 1 for all k > 0 was used when applying Eq. 3.98 to

update the inverse Hessian approximation. The initial scaling factor γ0 was obtained by

γ0 = σ0 =
sT0 y0

yT0 H̃
−1
0 yT0

, (3.141)

where H̃−1
0 is equal to CM . BFGS converged to 13.448 in 97 iterations. The curve through

the diamonds in Fig. 3.8 shows the behavior of the objective function. Fig. 3.9(c) shows
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Fig. 3.8: Behavior of the objective function.

the final model obtained by the BFGS. We can see that the final model obtained by BFGS

is very similar to the final model obtained by the Levenberg-Marquardt method (compare

Figs. 3.9(c) and 3.9(b)).

In limited memory BFGS, we scaled the inverse Hessian approximation at each iteration.

Following Oren (1974a), and the results of our comparative studies, the scaling factors were

chosen by the following scheme

γk = τ̃1k if τ̃1k < 1.0, (3.142)

γk = σ̃k otherwise. (3.143)

The diagonal of CM was chosen as the initial inverse Hessian approximation. The 30 most

recent vectors (i.e., sk’s and yk’s) were used to construct the inverse Hessian approximation at

each iteration, i.e, L = 30. Limited memory BFGS converged to 13.685 in 40 iterations. The

curve through the stars in Fig. 3.8 shows the behavior of the objective function. Fig. 3.9(d)

shows the final model obtained by the limited memory BFGS, which captures the main

characteristics of the true model, but is somewhat rougher than the true model and the

MAP estimate obtained with LM.

The two preconditioned conjugate gradient methods discussed earlier were implemented

and applied to this history matching problem. In one method, the full C−1
M was used as the

preconditioner (we call this method CM-PCG); whereas in the other method, we used an

estimated quasi-Newton preconditioner (we call this method LBFGS-PCG). Both algorithms

were terminated at 100 iterations, because this was the maximum number of iterations

53



& ' ( )+* ),& ),'

),'

),&

)�*

(

'

&

(a) True

- . / 0�1 0,- 0,.

0,.

0,-

0�1

/

.

-

(b) LM

2 3 4 5�6 5,2 5,3

5 3

5 2

5+6

4

3

2

(c) BFGS

7 8 9 : 7+; 7,8 7 <

7,<

7,8

7�;

:

9

8

7

(d) LBFGS

= > ? @�A @,= @,>

@,>

@,=

@�A

?

>

=

(e) CM-PCG

B C D E B"F B,G

B,G

B F

E

D

C

B

(f) LBFGS-PCG

Fig. 3.9: Final model obtained by different optimization algorithms.

allowed. However, the convergence criteria of Eqs. 3.112 and 3.113 were not satisfied at

the 100th iteration of either method. CM-PCG “converged” to a model corresponding to

an objective function value equal to 28.851 in 100 iterations. The curve through the plus

signs in Fig. 3.8 shows the behavior of the objective function. Fig. 3.9(e) shows the final

model obtained by the CM-PCG. LBFGS-PCG “converged” to a model corresponding to

an objective function value equal to 35.187 in 100 iterations. The curve through the crosses

in Fig. 3.8 shows the behavior of the objective function. Fig. 3.9(f) shows the final model

obtained by the LBFGS-PCG. Note the MAP estimates obtained with the preconditioned

CG method are inferior to those obtained by LM and BFGS.

In the quasi-Newton methods, the Hessian inverse approximation is constructed based

on the quasi-Newton search direction. The theory guarantees that for a positive definite

quadratic function the Hessian inverse approximation becomes the true Hessian inverse at

the nth iteration where n is the number of model parameters for the quadratic problem

with exact line search. However, in LBFGS-PCG the Hessian inverse approximation is con-

structed based on the preconditioned conjugate gradient search direction, which is no longer
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the quasi-Newton Hessian inverse approximation. When we use the conjugate gradient search

direction to find a new model, and based on this new model, construct the Hessian inverse

approximation as a preconditioner, it is not clear how good this preconditioner is. For the

single-phase gas example presented in the first annual report on this project, this precondi-

tioner results in faster convergence than is obtained by simply using C−1
M as a preconditioner;

in the current example, however, convergence is slower.

The final objective function value at convergence and the number of iterations required

to converge for different algorithms are summarized in Table 3.3. In the “Scaling Scheme”

column, “Initial Scaling” means that only the initial Hessian inverse approximation is scaled

by a factor γ0. In other words, we choose a sequence γk such that γk = 1 for all k > 0.

“All Scaling” means that the inverse Hessian approximation H̃−1
k was scaled by γk at each

iteration for the case when BFGS was applied and the initial inverse Hessian approximation

H̃−1
0 was scaled by γk at each iteration for the case where limited memory BFGS was applied.

“N/A” means not available. FCM-LBFGS stands for the LBFGS algorithm in which the

initial Hessian inverse approximation is chosen as the full CM matrix instead of just the

diagonal of CM ; see the discussion presented later.

Algorithms Scaling Scheme Objective Function No. of Iterations

LM N/A 13.343 9

BFGS Initial Scaling 13.448 99

LBFGS All Scaling 13.685 40

CM-PCG N/A 28.851 100

LBFGS-PCG All Scaling 35.187 100

FCM-LBFGS All Scaling 13.992 33

Table 3.3: Comparison of different minimization algorithms.

Based on Eq. 3.137 and the number of iterations required (see Table 3.3), LBFGS and

FCM-LBFGS, respectively, are 13.7 and 16.6 times faster than Levenberg-Marquardt overall.

Table 3.4 shows the CPU time in seconds used by different algorithms. Based on the real

CPU time, LBFGS and FCM-LBFGS, respectively, are 10.5 and 11.1 times faster than

Levenberg-Marquardt overall. The column labeled “Scaling Scheme” has the same meaning

as in Table 3.3.
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Algorithms Scaling Scheme CPU time (seconds)

LM N/A 2930

BFGS Initial Scaling 923

LBFGS All Scaling 279

CM-PCG N/A 887

LBFGS-PCG All Scaling 904

FCM-LBFGS All Scaling 263

Table 3.4: Comparison of the CPU time used by different minimization algorithms.

3.6.2 Effect of Preconditioning Matrix on Conjugate Gradient

Methods

Fig. 3.10 shows the behavior of the objective function obtained by the conjugate gradient

without preconditioning (triangles) and the preconditioned conjugate gradient with C−1
M as

the preconditioner (circles). We can see clearly that the preconditioned conjugate gradient

is slightly better than conjugate gradient without preconditioning. Fig. 3.11 shows the final

model (a) obtained by the conjugate gradient method without preconditioning compared to

the true model (c) and the model (b) obtained using C−1
M as a preconditioner. We can see

that the MAP estimate obtained from CG without preconditioning is far rougher than the

model obtained by the CM-PCG. We can conclude that the prior covariance matrix CM not

only acts as a preconditioning matrix but also provides smoothness for the model.

3.6.3 BFGS Scaling Scheme

The BFGS result of the preceding section was obtained by only scaling the initial Hessian

inverse approximation H̃−1
0 . If we consider the fact that the Hessian matrix changes iteration

by iteration for the nonlinear problem, it seems that we should scale the matrix at every

iteration based on the new information; see Oren and Luenberger (1974) or Oren (1974b).

According to Oren and Spedicato (1976), the optimal scaling factor which minimizes the

upper bound of the condition number of H̃−1
k+1 at the kth iteration should be

γk = σk ≡
sTk yk

yTk H̃
−1
k yk

. (3.144)

The new Hessian inverse approximation H̃−1
k+1 was calculated by using Eq. 3.98 with γk given

by Eq. 3.144. With this all-scaling scheme, BFGS converged to 16.1989 in 66 iterations;
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Fig. 3.10: Behavior of the objective function obtained by CG and CM-PCG.
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Fig. 3.11: Final model obtained by conjugate gradient without preconditioning.

see the curve through circles in Fig. 3.12. The curve through the plus signs in Fig. 3.12

shows the behavior of objective function iteration by iteration for BFGS with initial scaling

scheme. This case was presented previously. Although it appears that the all-scaling scheme

is better than just initial scaling in terms of the number of iterations required to converge, at

the 66th iteration, the objective function value for the two schemes are very close. Yet, the

convergence criteria of Eqs. 3.112 and 3.113 were satisfied for all-scaling BFGS but not for

the initial scaling BFGS at the 66th iteration. The diamonds shown in Fig. 3.12 represent the

objective function values obtained by BFGS without any scaling at each iteration. Clearly,

BFGS without scaling is much worse than initial scaling and all-scaling. As presented pre-

57



viously, scaling does help to improve the convergence rate of BFGS for this three-phase

problem. The MAP estimate obtained with the all scaling BFGS is shown in Fig. 3.13 and

is very similar to the MAP estimate obtained by applying BFGS with initial scaling (see

Fig. 3.9(c)).

Fig. 3.12: Behavior of the objective function for BFGS with different scaling schemes.
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Fig. 3.13: Final model obtained by BFGS with scaling at all iterations; γk = σk.
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Fig. 3.14: Behavior of the objective function for BFGS with different schemes for scaling at

all iterations.

Based on Oren and Spedicato (1976), σk is the optimal scaling factor for γk if the BFGS

algorithm (θk = 1) or one of its variants is applied; see Eq. 3.106. Our experiments discussed

later, however, indicate that γk = τk (Eq. 3.99) is superior to γk = σk (Eq. 3.100) for LBFGS;

also see Zhang et al. (2001b). Here, we investigate the convergence behavior of BFGS with

the scaling factor equal to τk. The behavior of the objective function obtained by BFGS

with γk = τk is shown by the curve through stars in Fig. 3.14. The curve through circles in

the same figure is obtained by the BFGS with γk = σk. Even though γk = σk is the optimal

scaling factor based on Oren’s theory, it turns out γk = τk is not worse than γk = σk. The

curve through plus signs in this same figure is obtained by the BFGS with the modified Oren

scaling scheme, i.e., γk = τk if τk < 1.0; otherwise γk = σk. There is not much difference

between these three scaling schemes in terms of the objective function at convergence.

3.6.4 LBFGS Scaling Scheme

As shown in Oren (1974b), τ̃k calculated by Eq. 3.109 or Eq. 3.110 is an approximation to

the correct τk which is given by Eq. 3.99. In our implementation of LBFGS, we only form

the product of H̃−1
k gk which is used to generate the search direction. We never form H̃−1

k or

H̃k explicitly. Therefore, we cannot obtain τk using the exact form of Eqs. 3.102 and 3.104

and cannot obtain σk using the exact form of Eq. 3.100. Thus, we have to use Eq. 3.109 or

Eq. 3.110 to approximate τk and use Eq. 3.108 to approximate σk. The scaling factor was
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chosen as follows:

γk = τ̃k if τ̃k < 1, (3.145)

γk = σ̃k otherwise, (3.146)

where τ̃k can be obtained by either Eq. 3.109, Eq. 3.110 or Eq. 3.111 and σ̃k is obtained by

Eq. 3.108.

Fig. 3.15 shows the behavior of the objective functions during the LBFGS iterations

when different formulas are applied to calculate τ̃k. The diamonds represent the objective

function obtained by using Eq. 3.110 to calculate τ̃k. The circles represent the objective

function obtained by using Eq. 3.111 to calculate τ̃k. The curve through stars represents

the objective function obtained by using Eq. 3.109 to calculate τ̃k. The triangles represent

the objective function obtained by setting γk = σ̃k at every iteration where σ̃k is calculated

from Eq. 3.108. This scaling option was used by Liu and Nocedal (1989). Shanno and

Phua (1978) suggested using σ̃k and only scaling the initial matrix. From these curves, we

can see that the curve through the stars in which the τ̃k is calculated by the Eq. 3.109 is

the best. The three other scaling factors give roughly the same convergence results as each

other. Note that the curve through the circles in which τ̃k = τk is calculated by Eq. 3.111

requires the most iterations to converge. Note that Eq. 3.111 gives the correct value for τk.

This is somewhat surprising in that it indicates that using an approximation for τk, which

is defined by Eq. 3.99, gives better convergence results than using the correct value of τk. It

turns out that when we use Eq. 3.109 and Eq. 3.110 to calculate τ̃k, the value of τ̃k is always

less than 1 which implies that the scaling factor always takes the value of τ̃k. When we use

Eq. 3.111 to calculate τ̃k, which is the correct τk, it is less than 1 at some iterations and is

bigger than 1 at other iterations. So whenever τ̃k > 1, γk takes the value of σ̃k which is also

an approximation. So these four options are all approximations. Based on the example just

presented and the gas example presented in the first annual report on this project, Eq. 3.109

is the best approximation. Based on the paper published by Oren and Spedicato (1976),

the optimal scaling factor γk should always take the value of σk for the BFGS method. It

is not clear how to form σk accurately at every iteration without forming H̃−1
k explicitly.

Moreover, our result presented previously (see Fig. 3.14) indicates that σk might not be the

optimal scaling factor. For almost all examples that we have considered using either BFGS

or LBFGS, γk = τ̃k gives as good or better convergence results than are obtained using

γk = σ̃k.

Fig. 3.16 shows the behavior of the objective function when LBFGS was applied without

scaling, with initial scaling and with all-scaling based on Eqs. 3.145 and 3.146 where τ̃k is
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Fig. 3.15: Behavior of the objective function for LBFGS with different scaling factors.

Fig. 3.16: Comparison of the behavior of the objective function for different scaling schemes.

calculated by Eq. 3.109. In this figure, the circles represent the objective function values

obtained by LBFGS with all-scaling, the plus signs represent the objective function value

obtained by LBFGS with initial scaling and diamonds represent the objective function ob-
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tained by LBFGS without any scaling. As in BFGS, we can see clearly that LBFGS with

all-scaling is better than just initial scaling and initial scaling is better than no scaling.

3.6.5 Sensitivity to the Number of Previous Vectors

Here we investigate how the convergence rate is affected by the number of previous vectors

used in constructing the Hessian update in the LBFGS algorithm. Fig. 3.17 shows the

behavior of the objective function obtained by using a different number of previous vectors

to construct the new approximate inverse Hessian. In all cases, the all-scaling scheme with

scaling factor given by Eq. 3.109 was applied. Table 3.5 lists the number of iterations required

for convergence and the value of the objective function at convergence when using a different

number of previous vectors to construct the Hessian inverse updates. L denotes the number

of previous vectors. We can see that when we use too few (10 in this example) previous

vectors to construct Hessian inverse updates, more iterations are required for convergence

and the value of the objective function is higher than when L = 20, 30 or 50. When L equals

20, 30 or 50, there is not too much difference in terms of the number of iterations required to

obtain convergence, but L = 20 gives a higher value of the objective function at convergence.

Fig. 3.17: The effect of the number of previous vectors used to construct the new Hessian

inverse approximation on the performance of LBFGS.

62



L Objective Function No. of Iterations

10 20.922 90

20 18.555 43

30 13.685 40

50 12.512 46

Table 3.5: Sensitivity to the number of previous vectors.

3.6.6 Improvement of the Smoothness of the Model

From the results of Figs. 3.9(c) and 3.9(d), we see that the final model obtained by LBFGS

is somewhat rougher than the true model and the MAP estimate obtained with BFGS. It

turns out this is caused by the fact that only the diagonal of CM was used as the initial

Hessian inverse approximation. When we form the search direction, i.e., the product of

the H̃−1
k and the gradient of the objective function gk, we need to perform the operation

of multiplying a vector by the initial Hessian inverse approximation. If we use the full

CM instead of just the diagonal elements of CM as H̃−1
0 , we obtain a smoother result.

Fig. 3.18(a) shows the MAP estimate obtained by LBFGS using the full CM as the initial

Hessian inverse approximation compared with using only the diagonal of CM , DCM-LBFGS.

Using H̃−1
0 = CM gives improved results, i.e., gives a MAP estimate much closer to the

truth than is obtained with H̃−1
0 =diag[CM ]. With H̃−1

0 = CM , the LBFGS converged in

33 iterations and the value of the objective function at convergence was equal to 13.992.

For this case, Fig. 3.19 indicates again that convergence is fastest when Eq. 3.109 is used to

calculate the scaling factor. This method is labeled as FCM-LBFGS in Table 3.3.

3.6.7 Effect of Data Noise

In this subsection we consider the case where the observed data were obtained by adding noise

to the true data. With this data set, we repeated the example in the previous subsection using

LBFGS with the full CM as the initial Hessian inverse approximation. The objective function

evaluated based on Eq. 3.10 is reduced from 900,728 to 309 in 35 iterations. For the case

where data are noisy, the approximate results of Tarantola suggest that the expected value

of the objective function is Nd/2 = 182 with standard deviation equal to
√

Nd/2 = 13.5.

Thus, the expectation plus five standard deviations equals 249 which is somewhat smaller

than the 309. Although the value of the objective function does not satisfy the criterion

given by Eq. 3.15, one should recall that the criterion assumed data is a linear function
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Fig. 3.18: Final model obtained by LBFGS with full CM (a) and diagonal CM (b) as the

initial Hessian inverse approximation, compared with the true model (c).

Fig. 3.19: Behavior of the objective function; full CM as the initial Hessian inverse approxi-

mation; different scaling factor options.

of the model, which is not the case. Recall that when using the true data without noise

the objective function converged to 13.992 in 33 iterations. The behavior of the objective

function for both cases (solid circles for the true data case and the circles for the case where

the data with noise) are shown in Fig. 3.20. The model obtained by history matching data

with noise (observed data) is shown in Fig. 3.21(a). We can see that even though the model

obtained by history matching data with noise captures the main structure of the true model,

it is worse than the model obtained by history matching the true data.
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Fig. 3.20: Behavior of the objective function; full CM as the initial Hessian inverse approxi-

mation; data with noise and without noise.
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Fig. 3.21: Final model obtained by LBFGS with full CM as the initial Hessian inverse

approximation by history matching data with noise (a) and true data (b).

3.7 Three-Dimensional Three-Phase Example

Here, we consider a three-dimensional three-phase history matching problem. We use a

40× 40× 6 grid with ∆x = ∆y = 100 ft and ∆z = 30 ft. The porosity for the true model is

homogeneous and equal to 0.22. The true permeability field is an unconditional realization
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generated by Gaussian co-simulation. An isotropic spherical variogram with the range in all

directions equal to 600 ft was used to generate unconditional realizations. The variance for

ln(k) is 1 and the mean for ln(k) is 4.5. One layer of the true permeability field is shown

in Fig. 3.22. Fig. 3.22 (b) is the interpolation plot of (a). The interpolation plots make it

easier to compare the permeability structure. The initial pressure is 4500 psi and the bubble

point pressure is 4417 psi. The formation volume factor (FVF) and the viscosity for oil,

water and gas at the bubble point pressure are given in Table 3.6. The capillary pressure

is assumed to be negligible. The water-oil and oil-gas two-phase relative permeability are

given in Fig. 3.23 (a) and (b), respectively. Stone’s model II is used to calculate three-

phase oil relative permeability; see Aziz and Settari (1979). Six producers and four water

injection wells are completed in the reservoir. The producers and the injectors, respectively,

are indicated by black squares and white squares, respectively, in Fig. 3.22 (a). All producers

start producing at time 0. We will history match synthetic data generated from running the

CLASS simulator up to 500 days using the truth case as input. The injectors start to inject

water at 30 days and stop at 500 days. The well operating conditions are summarized in

Table 3.7. The wells are operating with the target first. Whenever the constraint is violated

at a particular well, then the constraint will be switched to be the target for the corresponding

well. When the economic limits are violated at a particular well, then the corresponding well

will shut in. In this table, the keyword MAXVOL means maximum total rate in STB/Day;

MAXWATINJ means the maximum water injection rate in STB/Day; MINBHP means the

minimum bottom-hole pressure in psi and MAXWOR means the maximum water-oil ratio

in STB/STB.

Bo (RB/STB) 1.748

µo (cp) 0.486

Bg (RB/MSCF) 0.75

µg (cp) 0.0284

Bw (RB/STB) 1.006

µw (cp) 0.012

Table 3.6: Fluid properties at bubble point pressure.

As in the example presented in the previous section, the production target is a constant

total flow rate for the producers and constant water injection rate for injection wells. The

production constraints for the producers are the minimum bottom-hole pressure which is set

to 50 psi and the maximum WOR which is set to 49 STB/STB. If the bottom-hole pressure
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Fig. 3.22: The layer 1 log-permeability field of the true model.

(a) Water-Oil (b) Oil-Gas

Fig. 3.23: The relative permeability curve used in this example.

of a well decreases below 50 psi, then thereafter, the well will be produced at a constant

bottom-hole pressure equal to 50 psi. When the WOR is bigger than 49 STB/STB, then the

corresponding well will be shut in. For this example, the production constraint and economic

limit are never reached, so all wells are produced at their target rate.
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Well No. Targets Constraints Economic Limits

MAXVOL MAXWATINJ MINBHP MAXWOR

(STB/Day) (STB/Day) (psi) (STB/STB)

1 4000 - 50 49

2 10000 - 50 49

3 4000 - 50 49

4 15000 - 50 49

5 8000 - 50 49

6 8000 - 50 49

7 - 6000 - -

8 - 10000 - -

9 - 8000 - -

10 - 8000 - -

Table 3.7: Well operating targets, constraints and economic limits.

3.7.1 Conditioning to True Data

In this subsection, we consider the case where the true data are history matched. Bottom-

hole pressure from all ten wells, GOR and WOR from all six producers are used as the

conditioning data to estimate the gridblock permeabilities only, i.e., the porosity is fixed

at its true values. There are a total of 880 conditioning production data which are history

matched. (40 for each type at each producing well and 40 pressure data at the water injection

wells.) The variance used for all the measurement errors are the same as used in the 2D

three-phase flow example. The variances for different data are used to form the diagonal data

covariance matrix CD. The objective function given in Eq. 3.14 was minimized, except we

used dobs instead of duc and dobs is equal to the true data with no noise added. Although we

did not add noise to the data, we refer to the resulting realization as a conditional realization.

The unconditional realization was generated by Gaussian co-simulation. Two layers of

the unconditional realization of the log-permeability fields are shown in Fig. 3.24 (a) and

Fig. 3.25 (a), respectively. Optimization was done with the LBFGS algorithm using scaling

at all iterations. Eq. 3.109 was used to generate the kth scaling factor. The objective

function was reduced from 312,164,623 to 649 in 70 iterations. The objective function value

was calculated based on the Eq. 3.14 with duc replaced by the true data without noise. The

behavior of the objective function is shown in Fig. 3.26.
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Fig. 3.24: The log-permeability field for layer 1 generated by Gaussian co-simulation (a), by

history matching production data (b) and the true model(c).
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Fig. 3.25: The log-permeability field for layer 4 generated by Gaussian co-simulation (a), by

history matching production data (b) and the true model(c).

Fig. 3.27 shows the pressure match for two injectors (well 7 and well 8). In this figure

and in similar figures, the line through circles represents the observed data; the line through

the plus signs represents the calculated data based on the conditional realization obtained

by history matching the production data and the line through the diamonds represents the

calculated data based on the initial model, muc, before history matching. In Fig. 3.27 (a),

the pressure data generated from the initial model falls below the observed data during the

injection period, whereas in Fig. 3.27 (b), the pressure data generated using the initial model

is greater than the observed pressure data. For both wells, the pressure data are matched

very well. Fig. 3.28 (a) and (b) show the pressure data match for well 4 and the WOR match

at the same well which is the only well at which water has broken through. We can see that

at this well, both the pressure and the WOR are matched very well. Fig. 3.29 shows the
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Fig. 3.26: Behavior of the objective function for the big model.

gas-oil ratio data match for two producers (well 3 and well 4). We can see that we obtained

a very good GOR match for both wells. We obtained matches of comparable quality to these

shown in Figs. 3.27 through 3.29 at all wells.

(a) well 7, injector (b) well 8, injector

Fig. 3.27: Pressure match at two water injection wells.

Two layers of the final permeability fields are shown in Fig. 3.24 (b) and Fig. 3.25 (b) and
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(a) Pressure (b) WOR

Fig. 3.28: Pressure and WOR match at well 4.

(a) well 3 (b) well 4

Fig. 3.29: GOR match from two wells.

the corresponding two layers from the true model are shown in Fig. 3.24 (c) and Fig. 3.25

(c), respectively. The corresponding unconditional permeability distribution is shown in (a)

in these two figures. The conditional realization is close to the truth, in fact much closer

than would normally be expected. This occurs because of the long correlation length in the

vertical direction.
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3.7.2 Conditioning to Observed Data with Noise Added

In this section, the objective function given by Eq. 3.14 is minimized. So the unconditional

data were generated using Eq. 3.13. The objective function value is reduced from 313,023,514

to 5471 in 45 iterations. The squares in Fig. 3.30 show the behavior of the objective function

when Eq. 3.14 is minimized. The circles in this figure show the behavior of the objective

function when the true data without noise were used in Eq. 3.14. We can see that the

objective function value at convergence is much bigger when unconditional data were used

than when true data were used. Fig. 3.31 (a) shows the first layer of the model obtained

by minimizing the objective function given by Eq. 3.14. Figs. 3.32 and 3.33 show results

comparable to those shown in Figs. 3.28 and 3.29. Note although the match of data is not

as close as in the case without noise in the data, we still obtain a reasonable match.

Fig. 3.30: Behavior of the objective function when unconditional data were used.
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Fig. 3.31: The log-permeability field for layers 1 generated by history matching duc (a), by

history matching true data (b) and the true model(c).

(a) Pressure (b) WOR

Fig. 3.32: Pressure and WOR match at well 4, duc.
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(a) well 3 (b) well 4

Fig. 3.33: GOR match from two wells, duc.
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Chapter 4

HISTORY MATCHING, RESULTS

AND DISCUSSION

4.0.3 Introduction

In this subsection, we consider matching production data for two field cases. The first

case is a true field case, where we match static pressures from pressure buildup surveys for

the Tengiz reservoir, which is an undersaturated oil reservoir. The second example case is

actually a pseudo-field case. Based on known geologic information for a specific North Sea

reservoir, we constructed a true reservoir model. Using this model, we generated synthetic

production data (pressures and gas-oil ratios) from a forward simulation run. In generating

the synthetic data, we used well locations and wells constraints that were similar to the

actual wells in the field.

For both examples, production data were history matched using the limited memory

BFGS algorithm described in the previous chapter to minimize the appropriate objective

function.

4.1 Tengiz

We consider history matching buildup data from the Tengiz reservoir which is located in

the Pri-Caspian Basin. Tengiz is a carbonate reservoir which was formed during Devonian

and Carboniferous time. Figure 4.1 shows that the central or “platform” portion of the

reservoir is relativly flat with localized structural highs on the south and eastern edges. The

platform is bounded by faults or lithologic breaks and surrounded by gently sloping “flanks”

of carbonate debris; see Chambers (1997) and He and Chambers (1999) for additional details

75



on the geology.
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Fig. 4.1: A 3D plot of the Tengiz field.

Tengiz is an undersaturated oil reservoir produced by 44 wells. With very rare exception,

all flowing bottomhole pressures have been maintained above bubble point pressure, which

is equal to 3586 psi. Initial reservoir pressure is 11950 psi at a datum of 14765 ft subsea.

Current average reservoir pressure remains more than twice the bubble point pressure, and

consequently, the oil flows as a single phase in the reservoir.

Our history match of static pressure data from pressure buildup surveys is based on an

upscaled reservoir model of Tengiz. The upscaled reservoir model of Tengiz was created by

removing most of the sloping flanks near the outer edges of the reservoir and upscaling the

remainder of the reservoir to a 59× 49× 9 grid. In the upscaled model, the gridblock sizes

in the x and y directions are almost uniform with values between 815 and 825 ft. Gridblock

sizes in the z direction are non-uniform with values varying between 15 and 150 ft. Figure 4.2

shows a contour map of the top of the reservoir with well locations.

The initial permeability and porosity field are from a geostatistical model, generated by

Chevron geoscientists. The cross plot of the permeability versus porosity in Figure 4.3 shows

an overall least square regression trend of increasing porosity with increasing permeability.

The porosity varies from less than 2 percent to over 14, while permeability varies from less

than 0.01 md to over 9 md.

The main problem we encounter in history matching is that the measured pressures

available correspond to buildup pressures. However, from an examination of the oil rate
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Fig. 4.2: A contour plot of the upscaled model with the well locations.
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Fig. 4.3: Cross plot of porosity to permeability.

data provided, we found in most cases that the buildup pressure data at a well correspond

to periods when the monthly rate data indicate that the well is still flowing i.e., the actual
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shutin time is less than one month, see, for example Figure 4.4. The reason of this behavior

is that the input monthly data contain oil-rates for each well, which are averaged over a

period of approximately 30 days. A short buildup period during this 30 days period will

have a small influence of the total average oil-rate value. In Figure 4.4 and similar figures,

the stars denote observed pressure data, i.e., the data we wish to history match; the oil

rate versus time is represented by a dot-dashed curve at the bottom of the figure; the solid

curve represents the flowing bottom hole pressure predicted from the simulator using the

initial reservoir description based on static data; the dashed curve represents the bottomhole

pressure predicted from a history matched model using the original geostatistical model, and

the dotted curves represent bottomhole pressure predicted from a history matched model

with a modified geostatistical model. The modified geostatistical model was obtained by

increasing the correlation length in the vertical direction of the log-permeability field. This

aspect is discussed in more detail later.

Fig. 4.4: Bottomhole pressure and oil rate of Well T-4. Located in gridblock (54,23).

4.1.1 History Matching

He and Chambers (1999) have previously history matched pressure data from the Tengiz

reservoir. Their history matching procedure, however, is quite different from the one used in

this work. In their results, they conditioned the permeability field in the neighborhood of a

well to well-test pressure data by estimating a single permeability multiplier. The multipliers

for each well were then interpolated to the whole field. The final model was obtained by
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applying the multiplier field to the initial permeability field generated from the geostatistical

model. In our work, we match all measured pressure data simultaneously, and adjust log-

permeability in each grid cell individually during the history matching process without using

large-scale permeability multipliers.

In the history matching problem, we used the scaled LBFGS algorithm discussed in the

previous chapter to estimate the horizontal log-permeability. Porosity values were held fixed

in the history matching problem. We fixed vertical permeability equal to ten percent of hor-

izontal permeability. Well skin factors were fixed at each well based on values obtained from

well tests. A total of 104 buildup pressures from 40 wells were used in the history match-

ing procedure; buildup pressures were obtained at some time during the period from April

1991 to January 1998. In this history matching procedure, we specified the oil rate for each

well based on historical data. The covariance matrix for the prior model for horizontal log-

permeability was generated from a spherical variogram with ranges in x, y and z directions,

respectively, equal to 6560, 4920 and 165 ft. The variance of horizontal log-permeability was

equal to 0.225. After doing a history match based on this geostatistical model, we tried a

second history match based on using a modified geostatistical model in which we increased

the correlation length (variogram range) to 730 ft in the z direction . We did this experiment

to investigate the effect of this range on the convergence properties of the algorithm. With

the original variogram model, the vertical dimension of some simulation gridblocks was al-

most as large as the vertical range (165 ft) which is the same order as the correlation length

in the z direction. In this situation, we expect that the horizontal log-permeability model

will exhibit little correlation in the z-direction. In the history matching process, we set the

variance of pressure measurement errors equal to 1 psi2.

Figures 4.4 through 4.13 shows the field oil rate (dot-dashed curve) at the bottom of

each figure, the observed buildup pressures (stars), the bottomhole pressures predicted from

the initial reservoir model (solid curve), the bottomhole pressure predicted from the condi-

tional realization obtained from history matching with short correlation length in z direction

(dashed curve) and the bottomhole pressure predicted from the conditional realization with

long correlation length in z direction (dotted curve), for wells T-4, T-6, T-15, T-16, T-44,

T-102, T-104, T-106, T-120 and T-121. Note the conditional realizations obtained by history

matching predict pressures in reasonable agreement with the observed pressures.

Note that, in most cases, the initial model of Tengiz predicts wellbore pressures lower

than the measured pressure data, and in instances, these predicted pressures are hundreds

of psi below the corresponding measured pressure data. In such situations, we expect that

permeability will need to be increased in the neighborhood of a well to obtain a history
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Fig. 4.5: Bottomhole pressure and oil rate of Well T-6. Located in gridblock (35,11).

Fig. 4.6: Bottomhole pressure and oil rate of Well T-15. Located in gridblock (43,27).

match. In rare cases, the forward run of the initial model predicts wellbore pressures above

the observed bottomhole pressures; see, for example Figs. 4.6 and 4.13. In these cases, one

expects that one will need to decrease permeability near the well to obtain a history match

of pressure data.

Both of the reservoir models obtained from the conditional realizations with short and

long correlation lengths in the z direction predict pressures (dashed and dotted curves in

Figures 4.4-4.13) that are in reasonable agreement with the measured buildup pressures,
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Fig. 4.7: Bottomhole pressure and oil rate of Well T-16. Located in gridblock (9,4).

Fig. 4.8: Bottomhole pressure and oil rate of Well T-44. Located in gridblock (19,27).

and the results indicate that the bottomhole pressure mismatches are fairly small. Note,

however, that many of these predicted pressures are much higher than those predicted with

the initial rock property field. Moreover, in some wells the history matched models predict

a relatively small pressure drop throughout the producing history (see Fig. 4.5, 4.8 and

4.10); thus indicates that the history matching process has resulted in significantly higher

permeabilities. On the other hand, Figures 4.6 and 4.13 show that the history matched

model also predicts pressures that are lower than those predicted from the initial reservoir
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Fig. 4.9: Bottomhole pressure and oil rate of Well T-102. Located in gridblock (39,7).

Fig. 4.10: Bottomhole pressure and oil rate of Well T-104. Located in gridblock (14,16).

model, which indicates that the history matching process has decreased the permeability in

some regions.

Figures 4.14 through 4.17 show the horizontal log-permeability from the initial model (left

plot in each figure) and the conditional realization of horizontal log-permeability based on a

short correlation length in the z direction (right plot in each figure); results are shown only

for model layers 1 through 4, i.e., only for the first four gridblocks in the vertical direction.

Note that the platform part of Tengiz has a higher horizontal log-permeability than that of
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Fig. 4.11: Bottomhole pressure and oil rate of Well T-106. Located in gridblock (31,15).

Fig. 4.12: Bottomhole pressure and oil rate of Well T-120. Located in gridblock (39,39).

the flanks, especially in the top layers. Also note that in much of the reservoir, the history

matching process has resulted in a large increase in horizontal log-permeability; although it

may be difficult to tell from the figures, the largest changes are in gridblocks close to the

well locations. Also note that, because of the short vertical range (165 ft) of the variogram,

the permeability is not strongly correlated in the vertical direction, e.g., the permeability

distributions in layers 1 and 4 are quite different. The distance in the vertical direction

between the center of layer 1 and layer 4 is on the order of 506 feet.
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Fig. 4.13: Bottomhole pressure and oil rate of Well T-121. Located in gridblock (47,39).
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Fig. 4.14: The conditional realization of horizontal log-permeability conditioned to pwf ,

based on a short correlation length in z direction, layer 1.
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Fig. 4.15: The conditional realization of horizontal log-permeability conditioned to pwf ,

based on a short correlation length in z direction, layer 2.
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Fig. 4.16: The conditional realization of horizontal log-permeability conditioned to pwf ,

based on a short correlation length in z direction, layer 3.
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Fig. 4.17: The conditional realization of horizontal log-permeability conditioned to pwf ,

based on a short correlation length in z direction, layer 4.

Because of the short correlation length, results that may on the surface seem surprising

can be explained. For example, Well T-102 is located in areal (39, 7) and completed in

model layers 1, 2 and 3. From the results of Fig. 4.9, we see that the history matched model

predicts higher wellbore pressures than the initial model, which indicates that permeability

in the wellblock and nearby has been increased by history matching. A careful examination

of the results depicted in Figs. 4.14 and 4.15 indicates that the permeabilities have actually

been decreased in the layer 1 and layer 2 gridblocks that are penetrated by Well T-102. The

results of Fig. 4.16, however, indicate that in and near the gridblock of layer 3 that has

been penetrated by this well, horizontal log-permeability has been increased. Moreover the

thickness averaged horizontal permeability for layers 1 through 3 has been increased at the

areal location of this gridblock and this increase is consistent with the increased pressure

predicted by the history matched model.

Figure 4.18 shows the difference between the horizontal log-permeability field obtained

by history matching and the initial horizontal log-permeability field. Again, the results

indicate that large changes have been made to the permeability field. Note that some large

decreases have also been made, for example in some regions corresponding to about the the

37th to 45th gridblock in the x-direction. The decrease of permeability in this region appears
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to be consistent with what should be expected based on the pressure data. For example,

Well T-15 is located in areal gridblock (47, 27) and is completed in layers 2 through 3. The

pressure behavior of well T-15 (see Fig. 4.6) indicates that we need decrease permeability in

the neighborhood of this well to history match the pressure data because the pressure data

predicted with the initial model is higher than the observed pressure data.
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Fig. 4.18: The change in the horizontal log-permeability by conditioning to pwf for the first

four layers, based on a short correlation length in z direction.

Figure 4.19 shows the change in the horizontal log-permeability field obtained by history

matching when the correlation length was increased from 165 feet to 730 feet. In this case,

the changes in horizontal log-permeability are in the top four top layers. Now we can also

see clearly that the permeability has been decreased in the vicinity of well T-102 which is

consistent with our earlier discussion and the results of Fig. 4.9. Note the results of Figs. 4.4

through 4.13 indicate that we do not get significantly different pressure matches when the

long correlation length is used to construct the prior covariance matrix. Figure 4.20 shows the

rate of convergence of the LBFGS algorithm for the two different cases. The convergence rates
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indicate that the objective function decreases rapidly for both cases in the early iterations,

and both cases converge almost to the same value in about 15 iterations. The objective

function is reduced from a value of 5.8 × 107 to 3.1 × 106 and the maximum mismatch has

been changed from a value of approximately 2300 psi to approximately 500 psi.
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Fig. 4.19: The change in the horizontal log-permeability by conditioning to pwf for the first

four layers, based on a long correlation length in z direction.

4.1.2 Comments

Although we greatly improved the pressure match by history matching, it is far from a perfect

match and to obtain the match, we made extremely large changes to the log-permeability

field during the history matching process. At this point, it is unclear whether we could

obtain a match of similar or better quality with smaller changes in the permeability field. It

is clear, however that the history matching is complicated by the quality and interpretation

of the pressure data. Many “measured” buildup pressure data at a well correspond to periods
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Fig. 4.20: Behavior of the objective function.

when the well is still flowing according to the input monthly rate data, so our automatic

history matching procedure treats them as true flowing wellbore pressures. Because the

well is flowing at times corresponding to these measured shutin pressures, the optimization

algorithm makes large increases in permeability in an attempt to enable the well to flow with

little or no pressure drop.

The conditional realizations obtained from the automatic history matching procedure

indicated that a short and a long correlation length in the z direction gave quite different

results for the permeability field. When we were operating with a short correlation length,

the changes of horizontal log-permeability were fairly large layer by layer, but a calculation of

the averaged volumetric horizontal log-permeability in each column of gridblocks confirmed

that the results were in agreement with expectations based on the bottomhole pressures. The

changes layer by layer were relatively small when we were operating with a long correlation

length as expected, and the plots of the horizontal log-permeability changes verified that they

were in accordance with the predicted bottomhole pressures from the conditional realization.

Moreover, we treat the measured pressures as wellbore pressures, whereas, in reality, they

represent an approximation to the average pressure in the well’s drainage area at the instant

of shut-in. This average pressure is higher than the wellbore pressure and would require

smaller changes in the permeability in order to match this pressure, i.e., if treated the pressure

observations as gridblock pressures in flowing periods, the initial pressure mismatch term
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would be smaller in cases when the pressure predicted by the initial model is much lower than

the observed pressure. As a consequence, the history matching procedure would make smaller

changes in horizontal log-permeability if we matched the observed pressures with gridblock

pressures. Our objective, however, was to test our automatic history matching procedure on

a representative field problem, and this example demonstrates that the automatic history

matching technology we have developed is feasible for field problems.

4.2 Field Example – Oseberg Reservoir

We consider a synthetic problem which is based on the Oseberg reservoir in the Norwegian

sector of the North Sea. The reservoir consists of three distinct geological zones, Etive,

Rannoch and Oseberg. Etive is the top zone and Oseberg is the bottom zone. These

two zones are separated by Rannoch which is a relatively tight layer. There is vertical

communication between the three zones. In our simulation study, we simulate only one

half of the reservoir using a 39 × 25 × 10 grid. Only one vertical gridblock is used in the

Etive and Rannoch layer. So layer 3 through 10 are used to model the Oseberg zone. The

gridblock size in the x-direction is equal to 328 ft in the central part of the reservoir, and

the gridblock sizes expand gradually towards the ends from 328 ft to 2624 ft. The gridblock

sizes in the y-direction are uniform and equal to 656 ft. Gridblock sizes in the z-direction are

non-uniform with values equal to 23.0 ft in Etive, 16.5 ft in Rannoch and 11.5 ft in Oseberg.

Initial reservoir pressure is 4071 psi at the depth of 8192 ft subsea, and the initial bubble

point pressure is 3771 psi at this same datum. The reservoir has a gas cap at the top and

an aquifer at the bottom. The initial gas-oil contact is at 8192 ft subsea and the water-oil

contact is at 8918 ft subsea. Fig. 4.21 (a) shows the surface plot of the reservoir top and

(b) shows the overview of the reservoir top with well locations indicated by black squares

for producers and by white squares for injectors. Note that the reservoir has a significant

dip. The oil column is separated from the aquifer by a tar mat. The initial permeability and

porosity field are based on a geostatistical model, and the true synthetic model is generated

by using a Gaussian co-simulation algorithm.

Two gas injection wells, which are indicated by the white squares in Fig. 4.21 (b), are

located in the gas cap and five producing wells, which are indicated by the black squares in

Fig. 4.21 (b), are located in the oil zone. The producing wells are named PROD1, PROD2,

· · · , PROD5 and the two gas injection wells are named INJ1 and INJ2 respectively. All

these wells are fully-penetrating, i.e., all layers are open to flow. The areal locations of the

five producing wells are in gridblocks (32,3), (32,8), (32,13), (32,18) and (32,23) respectively.
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Fig. 4.21: Top depth of Oseberg reservoir and well locations.

Fig. 4.22 (a) through (e) show the production rate history for each well respectively. The

production rate history for all producing wells are plotted together in Fig. 4.22 (f). We can see

that these five wells are open to flow with a high flow rate (15000 STB/Day) in a sequential

order (at 30, 90, 180, 270 and 360 days in turn). The oil rates shown in Fig. 4.22 are the rates

which were specified as the target rates in the simulation runs. The minimum bottom-hole

pressure (MINBHP) which is fixed at 2000 psi is used as the producing constraint whenever

production at a well’s target rate causes the bottom-hole pressure to fall below 2000 psi, this

constraint will be switched to be the producing target, i.e., the well will be produced at a

fixed bottom-hole pressure of 2000 psi. The maximum water-oil ratio (MAXWOR) which is

specified to be 50 STB/STB and the maximum gas-oil ratio (MAXGOR) which is specified

to be 561,000 MSCF/STB are used as the producing economic limits. When these economic

limits are violated at a certain well, then the corresponding well will be shut in. INJ1 and

INJ2 are gas injection wells which are located in gridblocks (2,12) and (2,24) respectively.

The gas injection rate history for the two gas injectors are plotted in Fig. 4.23. INJ1 starts

to inject gas at 900 days and INJ2 starts to inject gas at 990 days. No producing constraint

is specified for the injection well. The top, bottom and outer reservoir boundaries are all

assumed to be no-flow boundaries, and the capillary pressure is assumed to be negligible. In

the oil column, initial oil saturation is 0.885 and the initial water saturation is equal to the
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Fig. 4.22: Production rate history for the five producing wells.

irreducible water saturation which is equal to 0.115. In the gas cap, the initial gas saturation

is 0.885. The water saturation in the gas cap is the irreducible water saturation and there is

no oil in the gas cap. The oil formation volume factor (FVF) and the oil viscosity are shown

in Fig. 4.24. Gas FVF and viscosity are shown in Fig. 4.25. Water FVF and viscosity are

1.03 RB/STB and 0.34 cp, respectively, at the reference pressure of 4219.5 psi. The water-

oil two-phase relative permeability is shown in Fig. 4.26 (a) and oil-gas two-phase relative

permeability is shown in Fig. 4.26 (b) respectively. Stone’s model II is used to generate

three-phase oil relative permeability; see Aziz and Settari (1979).
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Fig. 4.23: Injection rate history for the gas injection wells.

(a) FVF (b) Viscosity

Fig. 4.24: Oil FVF and viscosity.

4.2.1 Reservoir Model

A non-isotropic exponential covariance structure, with ranges ax = 1968 ft, ay = 6555 ft

and az = 20 ft was used. The statistical descriptions of the prior models for Etive and

Rannoch, and Oseberg are given in Tables 4.1 and 4.2 respectively. Note that horizontal and

vertical log-permeability in Oseberg decrease linearly from top to bottom, i.e., from layer 3

to layer 10. In Table 4.2, only the means for model layer 3 and 10 are specified. Means for the

intermediate model layers are obtained by linear interpolation. Note that Rannoch has a low
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(a) FVF (b) Viscosity

Fig. 4.25: Gas FVF and viscosity.

(a) Water-oil (b) Oil-gas

Fig. 4.26: Relative permeability.

permeability compared to Etive and Oseberg, and acts as a flow restriction between the Etive

and Oseberg formations. The unconditional realization of ln(k) and ln(kz) for Oseberg layers

was generated with fixed means. The mean value of 7.48 for ln(k) and 6.47 for ln(kz) were

used for generating the unconditional realization. Therefore, the unconditional realization

for ln(k) and ln(kz) do not have any trend vertically. The mean used for generating the

unconditional realization for ln(k) and ln(kz) for Etive layer are 6.02 and 4.61, respectively.

The same means as used in generating the true Rannoch layer were used to generate the

unconditional realization for ln(k) and ln(kz) for the Rannoch layer. The correlation between

horizontal and vertical log-permeability, ρk,kz
, was equal to 0.8, and the correlations between
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log-permeability and porosity, ρk,φ, ρkz ,φ, was equal to 0.3. An unconditional realization

generated based on the geostatistical parameters mentioned above with a specific seed was

used to generated the true model. In order to provide the decrease trend for the permeability

for the Oseberg zone, we added a constant for the ith layer of the Oseberg layer to the

unconditional realization by the following way

mtrue,i = muc,i + (7.8− 7.48)− (i− 3) ∗ (7.8− 6.3)/8 (4.1)

to generate the true horizontal permeability field. The true vertical permeability field was

generated similarly. Then we used a different seed to generate initial guesses for horizontal

and vertical log-permeability. In the history matching process, the porosity field was fixed

and equal to the true porosity. The tar-zone is located in gridblocks centered at (xi, yj, zk),

i = 33, 34, 1 ≤ j ≤ 25, 1 ≤ k ≤ 10. In the tar-zone, we set the horizontal and vertical

permeability equal to 1 md in the true case. When history matching to generate a real-

ization by the randomized maximum likelihood method, we first generate an unconditional

realization muc from the prior model and then modify muc by setting the entries correspond-

ing to ln(k) and ln(kz) for the tar-zone to zero. As noted previously, the tar-zone prevents

water conning from the aquifer. Fig. 4.27 (a) through (c) show the 3D cube of the horizontal

log-permeability, ln(k), vertical log-permeability, ln(kz), and porosity φ, respectively, for the

true model. Fig. 4.28 (a) through (c) show the middle x-z cross-section corresponding to

true ln(k), ln(kz) and φ respectively.

Etive Rannoch

Mean Variance Mean Variance

ln(k) 7.5 1.2 2.1 1.8

ln(kz) 6.3 1.8 0.15 2.2

φ 0.14 0.002 0.10 0.001

Table 4.1: Prior model of Etive and Rannoch.

Mean top Mean bottom Variance

ln(k) 7.8 6.3 0.4

ln(kz) 6.4 4.4 0.8

φ 0.22 0.22 0.001

Table 4.2: Prior model of Oseberg.
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Fig. 4.27: Permeability and porosity for the true model.
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Fig. 4.28: Permeability and porosity for the true model.

Fig. 4.29(a) shows the observed wellbore pressures, which are generated based on the

true model, for all seven wells including both producers and injectors. Fig. 4.29(b) shows

the GOR data from the five producing wells. From this figure, we can see that the gas

breaks through at the five producing wells in a sequential order due to the fact that the

producers start to produce in a time-delayed scheme. the exception is that the PROD2

experiences gas breakthrough earlier than PROD1. This occurs because PROD2 is much

closer to the injection well than PROD1. Fig. 4.30(a) shows wellbore pressures obtained

from the unconditional realization which is used as initial model (initial guess) in the history

matching procedure. Comparing Fig. 4.30(a) with Fig. 4.29(a), we can see that the behavior
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of the wellbore pressure for the initial model is different from the behavior of the wellbore

pressure for the true model. Fig. 4.30(b) shows the GOR data for the initial model. We

can see that, for the initial model, only PROD1 and PROD2 had gas breakthrough and

the breakthrough happened very late compared with the true model. Breakthrough did not

happen for PROD3 to PROD5.

(a) Pressure (b) GOR

Fig. 4.29: Observed production data.

(a) Pressure (b) GOR

Fig. 4.30: Calculated data for the initial model.
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4.2.2 History Matching

The observed data used for history matching were constructed by running the simulator with

the true model for a total time of 2400 days. Several data sets are used for history matching.

Data set 1 contains the wellbore pressures from both the producing wells and injection wells

and the GOR data from the producers. There are 71 measurements for each type of data at

each well. So the total number of data history matched is 852 for the first data set. Data set

2 contains only the wellbore pressure from the five producing wells and the two gas injection

wells. No GOR data are used inthe history matching process. The total number of data

history matched for the second data set is 497. Data set 3 contains only the GOR data from

the five producing wells. In this case, the total number of data used for history matching is

375. No noise was added to the data, i.e., we history matched the objective function given

by Eq. 3.14 with duc replaced by dtrue. However, in generating the covariance matrix for

measurement errors, we assumed wellbore pressure measurement errors to be independent

identically distributed Gaussian random variable with mean zero and variance equal to 1

psi2 and gas-oil ratio measurement errors to be independent identically distributed Gaussian

random variables with mean zero and variance equal to 25.0. The limited memory BFGS

algorithm was used for minimization.

Fig. 4.31: Behavior of the objective function.

With data set 1, even though no noise was added to the true data, the objective function

value is only reduced from 1.4× 107 to 3.2× 104 in 46 iterations which is much larger than

Nd. As shown below, however, we obtained reasonable matches of the data. The behavior
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of the objective function is shown by the triangles in Fig. 4.31. Pressure data matches for

three producing wells, PROD1, PROD2, PROD4 and one injection well, INJ2, are shown in

Fig. 4.32. In these four figures and in similar figures, the circles represent the observed data,

the diamonds represent the calculated data based on the initial model and the plus signs

represent the calculated data based on the final model after history matching the production

data. From these four figures, we can see that we get a reasonably good match for pressure

data at both producing wells and the injection well. The largest pressure mismatch at any

wells was 19 psi. Matches of comparable quality were obtained at the other three wells.

Fig. 4.33 shows the GOR data match for PROD1, PROD2, PROD3 and PROD4. Again a

very good match for GOR data at these four wells is obtained.

Fig. 4.32: Wellbore pressure data match at four wells, data set 1.

Fig. 4.34 shows the gas saturation at 2400 days for the first layer which corresponds to

Etive (top row) and the third layer which is the first layer of the Oseberg (bottom row)

corresponding to initial, true and final model which is obtained by history matching both
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Fig. 4.33: GOR data match at four wells, data set 1.

pressure and GOR data. Fig. 4.35 shows the gas saturation at 2400 days for the 13th

x-z cross-section (top row) and the 20th x-z cross-section (bottom row) corresponding to

the initial, true and final models. From these figures, we can see that the gas distribution

for the final model obtained by history matching the production data is similar to the gas

distribution for the true model. For the initial model (see Fig. 4.34 (a) and (d) and Fig. 4.35

(a) and (d)), the gas moves more slowly towards the producing wells. The gas breaks

through only at PROD1 and PROD2 and the breakthrough time is much later than for

the true model. For the model obtained by history matching the production data, the gas

breaks through at all wells at about the same time as for the true model. Fig. 4.36 shows

4 layers of the horizontal log-permeability field corresponding to the initial, true and final

model obtained by history matching data set 1. In this figure, the log-permeability fields

for the same layer are plotted with the same scale. From these figures, it is not easy to see

how the log-permeabilities change by history matching the production data. In order to see
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Layer1
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(d)��������������������������������(e)����������������������� (f)

Fig. 4.34: Gas saturation at 2400 days in the first layer (top row) and the third layer (bottom

row) corresponding to initial, true and final model from history matching wellbore pressure

and GOR, data set 1.

how the history matching changes the permeability field from the initial guess, we plotted

in Fig. 4.37 the log-permeability change, i.e., the difference between the final model and the

initial model, for six layers. From this figure, we can see clearly that for the first three layers,

the permeabilities around some wells for the final model are larger than the permeabilities

in the same area for the initial model which is an unconditional realization. Recall that the

mean of log-permeability for the Etive layer and the top two layers of the Oseberg zone for

the initial model is smaller than the true model. Therefore the permeabilities are increased

for these layers in order to match the GOR data. We also can see that the permeabilities for

the layers 7 through 9 are decreased. Even though we did not show it here, the permeabilities

are decreased also for the bottom layer. Recall that the permeability for the true model has

the decreasing trend vertically and the permeability for the layer 6 through 10 for the true

model are smaller than the initial model. Because flow in the vertical direction is negligible,

the vertical log-permeabilities were only changed slightly by history matching (less than

0.001 for the change in log-permeability).
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Fig. 4.35: Gas saturation at 2400 days for the 13th cross-section (top row) and the 20th cross-

section (bottom row) corresponding to initial, true and final model from history matching

wellbore pressure and GOR, data set 1.

When data set 2, which contains only the wellbore pressure data, was history matched,

the algorithm converged to a local minimum. I tried several different start point around

this minimum, the algorithm always converged to the similar value which may imply a local

minimum. The objective function value was reduced from 2.0×106 to 2.4×105 in 5 iterations.

The behavior of the objective function is shown by the squares in Fig. 4.31. Pressure data

match for PROD1, PROD2, PROD4 and INJ2 are shown in Fig. 4.38. Comparing this figure

with Fig. 3.27, we can see that it is worse than obtained matching both types of data. The

reason for that is that the algorithm converges to a local minimum corresponding to a very

big objective function value.

The final data set we history matched contains only GOR data from all five producing

wells. Each producing well has 71 GOR data. So a total of 355 GOR data are history

matched. The behavior of the objective function is shown in Fig. 4.31 by the circles. The

value of the objective function was reduced from 1.2× 107 to 3.0× 104 in 27 iterations. The

algorithm was restarted at the 15th iteration. The GOR data matches for PROD1 through
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Layer�3

Layer�1

Initial���������������������� True��������������������� Pwf+GOR

Layer�10

Layer�9

Fig. 4.36: Horizontal permeability field for 4 different layers corresponding to initial, true

and final model obtained from history matching wellbore pressure and GOR, data set 1.

103



Layer�1������������������������Layer�2��������������������������Layer�3

5 10 15 20 25 30 35

25

20

15

10

5

-0.8 -0.6 -0.4 -0.2 -0.0 0.2

5 10 15 20 25 30 35

25

20

15

10

5

-0.375 -0.250 -0.125 0.000 0.125

5 10 15 20 25 30 35

25

20

15

10

5

-0.75 -0.45 -0.15 0.15 0.45 0.75

Layer�7�������� Layer�8��������������������������Layer�9

5 10 15 20 25 30 35

25

20

15

10

5

-1.00-0.75 -0.50 -0.25 0.00 0.25

5 10 15 20 25 30 35

25

20

15

10

5

-1.25 -0.95 -0.65 -0.35 -0.05 0.25

5 10 15 20 25 30 35

25

20

15

10

5

-1.50 -1.16 -0.82 -0.47 -0.13 0.21

Fig. 4.37: Change in log-permeability for six layers.

PROD4 are shown in Fig. 4.39. Again, the circles represent the observed data; the plus

signs represent the data calculated based on the model obtained after history matching the

GOR data and the diamonds represent the calculated data based on the initial model. We

can see that we obtained a slightly better match of GOR data compared to the GOR match

obtained by history matching both pressure and GOR data; compare Fig. 4.39 and Fig. 4.33.

The stars in Fig. 4.40 shows the bottom-hole pressure data which are calculated based on

the model obtained after history matching only GOR data. Again, in these figures, circles
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Fig. 4.38: Pwf data obtained from initial model (diamonds), true model (plus signs) and the

observed data (circles) at four wells, data set 2.

represent the observed data and diamonds represent the calculated data corresponding to

the initial model. We can see that even though pressures are not matched as well as the

case where the pressure data were used as the conditioning data, the pressures predicted

from the matched model are much closer to the observed data than those predicted from the

initial model. Although we did not match any data from the injection wells, the observed

pressure data are matched very well at the injection wells which implies that the GOR data

at the producing wells can resolve the permeability around the injection wells very well for

the case where the flow rates at the injection wells are fixed. Wu (1999) also observed this

phenomenon.
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Fig. 4.39: GOR data obtained from initial model (diamonds), true model (circles) and final

model obtained by history matching only GOR data (plus signs) at four wells, data set 3.

4.2.3 Future Performance Prediction

In making a future performance prediction, after the 2400 days production history, each

of the five producing wells is produced at the constant rate of 9000 STB/Day with the

minimum bottom-hole pressure of 2000 psi as the constraint for the time period from 2400

days to 2800 days. From 2800 days to 3900 days, the five producing wells are produced

at a fixed constant bottom-hole pressure of 2000 psi. After the first 2400 days history, the

two injection wells were shut in for 200 days, i.e., from 2400 days to 2600 days; from 2600

days to 2800 days gas was injected at the rate of 18715 MSCF/Day, which is one third of

the injection rate at the end of the observed history. From 2800 days to 3900 days, the

injection rates were changed to 56145 MSCF/Day, which is equal to the rate at the end of

the 2400 days history. Note that the total time span for the future performance prediction

is 1500 days, i.e., from 2400 days to 3900 days. The simulation runs were performed for

the initial model, the true model and the models obtained by history matching the three

different data sets described in the previous section. The total cumulative oil production
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Fig. 4.40: data obtained from initial model (diamonds), true model (circles) and the model

obtained by history matching only GOR data (stars) at four wells, data set 3.

obtained for each of the five models is shown in Fig. 4.41. Fig. 4.41 (b) shows the total

cumulative oil production only for the period of time corresponding to the future prediction.

In this figure, the solid line, dashed line, short dashed line, dot-dashed line and the dotted

line, respectively, represent the total cumulative oil production from the true model, the

model obtained by history matching both pressure and GOR data, the model obtained by

history matching only GOR data, the model obtained by history matching only pressure and

the initial model. From this figure, we can see that the cumulative oil productions based on

the model obtained by conditioning the initial model to both pressure data and GOR data

and the model obtained by conditioning only to the GOR data are closer to the cumulative

oil production corresponding to the true model than the model obtained by conditioning

only to pressure data. The total cumulative oil production obtained for the initial model

is far away from that obtained for the true model. The results of the future performance

predictions suggests that the GOR data are more useful than pressure data for reducing the

uncertainty in performance prediction. Although this result is consistent with observations

of Li et al. (2001),we have not investigated this aspect in sufficient detail to be confident that
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the conclusion is general. Fig. 4.42 (a) through (e) show the predictions of GOR obtained

based on the five different models for PROD1 through PROD5.

(a) 0-3900 days

(b) 2400-3900 days

Fig. 4.41: Total field cumulative oil production.
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(a) PROD1 (b) PROD2

(c) PROD3 (d) PROD4

(e) PROD5

Fig. 4.42: GOR data for all producing wells for the production history and the future

performance predictions.
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Chapter 5

SENSITIVITY OF SEISMIC

IMPEDANCE CHANGE TO

PERMEABILITY AND POROSITY

5.1 Introduction to Time-Lapse Seismic Data

Time-lapse seismic is the process of repeating 3D seismic surveys over a producing reservoir

to monitor changes in saturation and pressure. The potential impact on reservoir engineering

and reservoir management is large because time-lapse seismic may allow direct imaging of

rock properties that are closely related to vertically averaged fluid saturations and pressure.

This is much different from the current limitation of measurements of these quantities at

well locations. In general, seismic images are sensitive to the spatial variation of two distinct

types of reservoir properties (Arenas et al., 2001):

• Non-time-varying static geologic properties such as lithology, porosity, cementation,

and shale content.

• Time-varying dynamic fluid-flow properties such as fluid saturation and pore pressure.

If data were available from only one 3D seismic survey, it would not be possible to

differentiate between the effects of static features and those due to changes in saturation and

pressure. By comparing the data from 3D surveys acquired at different times in the same

location, however, it is possible to eliminate the effects of unknown static properties to focus

on the dynamic changes in production related properties.
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The simplest, most direct method of using time-lapse seismic data is to qualitatively

monitor reservoir changes due to production. In this approach, one simply identifies regions

in which the amplitude or impedance has changed with time and attributes these changes to

changes in saturation, pressure, or temperature. The first tests of this concept were carried

out by Arco in the Holt Sand fireflood from 1981 to 1983 (Hughes, 1998). Similar studies

have been reported by Cooper et al. (1999) at the Foinhaven Field and Lumley et al. (1999)

at the Meren Field in Nigeria. The primary objectives at Foinhaven were simply to map

fluid movements and to identify by-passed oil. The authors of the study concluded that the

time-lapse signal qualitatively agreed with the expected reservoir performance. At Meren,

the goal was to identify pathways of injected water, sealing faults, and compartments that

may have by-passed oil. The authors concluded that the data was successful in achieving

these objectives.

The other, more difficult, approach is to use the time-lapse data to estimate the reservoir

flow parameters, such as permeability and porosity. Advances in automatic or computer-

assisted history matching have allowed researchers to consider the integration of time-lapse

seismic data with production data. All quantitative approaches for doing this involve the

minimization of an objective function that includes the mismatch between the synthetic

changes in seismic data and the observed changes. Using optimization methods, a distri-

bution of parameters that minimize the objective function is sought. The type of seismic

data used in the objective function has varied among the researchers. Huang et al. (1997)

used amplitude difference or other seismic attributes difference while Arenas et al. (2001)

used velocity difference. Landa and Horne (1997) assumed that saturation changes could be

obtained directly from time-lapse surveys.

While a number of geophysicists (Tura and D.Lumley, 1999; Landro, 2001; Meadows,

2001) have assumed that changes in saturation and pressure can be estimated directly from

time-lapse seismic data (including offset data), it is clearly less restrictive to use all data

(including production data) in the estimation of saturation and pressure. Thus we will use

the seismic data in the objective function–not saturations and pressures.

Because the number of data and model parameters can be quite large in history matching

problems which include time-lapse seismic data, it is common to reduce the number of model

parameters by using “pilot points” (Arenas et al., 2001; van Ditzhuijzen et al., 2001) or to

divide model into zones with similar properties (Huang et al., 2001).

In studies to date, the sensitivity of time-lapse seismic data to changes in model param-

eters has either been computed by the finite-difference method (Huang et al., 1997, 1998,

2001; van Ditzhuijzen et al., 2001) or the gradient simulator method (Landa and Horne,
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1997). It is not feasible to compute sensitivity coefficients using either of these methods

when the number of model parameters is large, however. The only reasonable approach is

to use the adjoint method to integrate seismic impedance data into our objective function

and to compute the sensitivity of data to model parameters. It will also be necessary to use

more efficient optimization methods in the history matching than those used previously to

get optimum model parameters. A practical method for doing this is outlined in this report.

5.2 Seismic Impedance

Geophysicists often prefer to use amplitude when integrating time-lapse seismic data because

amplitude data is always generated and also because it is used to interpret the structure of

underground layers. Amplitude, however, depends both on the reflectivity between layers

and on the properties of the source. In order to use time-lapse seismic data in history

matching for inversion of reservoir parameters, such as permeability and porosity, we must

use data which are quantitatively related to the change in value of saturation and pressure.

Thus we use seismic P -wave impedance, which is directly related to the values of elastic

parameters in reservoir. The definition of impedance is

Z = ρVp , (5.1)

where ρ is body density, Vp is P -wave velocity. In time-lapse seismic, the subtraction of

such seismic impedance volumes from two different times will show the effect of the phase

saturation and pressure change.

Generally, our approach to integration of time-lapse seismic data begins with the cre-

ation of a model with initial parameters such as bulk modulus, shear modulus, shaliness,

permeability and porosity, etc. We then use the reservoir simulator to get pressure and

phase saturations, which can be used to generate synthetic data for GOR, WOR and seismic

impedance change, etc. The synthetic data are then compared to field data. The difference

between these two groups will tell us whether they match or not under some criteria. If they

match, it means that our model is good enough and computation stops. If not, we will solve

an adjoint system to compute sensitivities which can be used to compute model corrections.

This procedure is repeated until a match is achieved (see Fig. 5.1).

In our approach, we assume that the change in seismic P -wave impedance has been es-

timated by the geophysicists. In order to compute the data mismatch, we need to compute

the theoretical change in impedance due to changes in saturation and pressure in the reser-

voir, and ultimately, we need to compute the effect of changes in permeability and porosity
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Fig. 5.1: Flow Chart for History Matching with Integration of Time-Lapse Seismic Data
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on the impedance. The forward modelling of seismic P -wave impedance is accomplished

by adding rock physics models to the reservoir simulator. The following sections describe

common approaches to the computation of impedance.

5.2.1 Seismic Velocities

The velocity of the primary wave is

Vp =

√

1

ρ

(

K +
4

3
G

)

, (5.2)

where K is the bulk modulus and G is the shear modulus.

The velocity of shear wave is

Vs =

√

G

ρ
. (5.3)

The seismic impedance is the product of the primary velocity Vp and the bulk density ρ,

which can be written in several different ways:

Z = ρVp =

√

ρ

(

K +
4

3
G

)

=

√

ρK +
4

3
ρ2V 2

s . (5.4)

5.2.2 Poro-Elastic Properties

From Eq. 5.4, we see that to compute seismic impedance, we must know either ρ,K,G or

ρ,K, Vs. It is easy to compute ρ using the following equation:

ρ = (ρoSo + ρwSw + ρgSg)φ+ (1− φ)ρsolid , (5.5)

so the main task is to get K,G, Vs. Several formulas have been proposed to compute them.

Usually, we can use Gassmann equations to get K and use Han, Kuster plus Toksöz or

Ramammorthy equations to get G, Vs (Guerin, 2000).

Gassmann Equations

Gassmann equations (Gassmann, 1951) give us a relation between the bulk modulus of sat-

urated rock and fluid saturation. According to Murphy et al. (1993) and Nolen-Hoeksema

(2000), the Gassmann equations provide a low frequency approximation of Biot theory. The
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assumption is that the wave must be in low frequency, which is generally true in seismic ex-

ploration. It is common to use these relations to explain the dependence of seismic impedance

on pressure and saturation. The equations are

K = Kgrain
Kframe +Q

Kgrain +Q
, (5.6)

Q =
Kfluid (Kgrain −Kframe)

φ (Kgrain −Kfluid)
, (5.7)

log10Kframe = log10Kgrain − 4.25φ , (5.8)

Kgrain =
1

2

[

γKc + (1− γ)Ks +
KsKc

Ksγ +Kc(1− γ)

]

, (5.9)

1

Kfluid

=
Sw
Kw

+
Sg
Kg

+
So
Ko

, (5.10)

where Kgrain is the modulus of grain, Kframe is the modulus of the dry frame, Kfluid is the

modulus of pore fluid, Ks is the sand modulus, Kc is the clay modulus, φ is porosity and γ

is shaliness.

Equations for Computation of G and Vs

The Han equation (Han et al., 1986) for the velocity of the shear wave is

Vs = 3520.0− 4910.0φ− 1890.0γ , (5.11)

where φ is porosity, γ is shaliness and the units of Vs are m/s.

The KT (Kuster plus Toksöz) equation (Kuster and M.N.Toksöz, 1974) for shear modulus

is

G = Gm
(6Km + 12Gm)Gi + (9Km + 8Gm)((1− Ic)Gm + IcGi)

(9Km + 8Gm)Gm + (6Km + 12Gm)((1− Ic)Gi + IcGm)
, (5.12)

where Gm denotes the shear modulus of the matrix and Gi is the shear modulus of the

inclusion. In the case of a mixture of sand and clay, Ic is replaced by shaliness γ.

The Ramammorthy equations (Ramammorthy et al., 1995) are

G = Ggrain(1− 3.48φ+ 2.19φ2) , (5.13)

and

Ggrain = (0.039 log10 γ + 0.072)−1 , (5.14)
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where Ggrain is the shear modulus of grain, φ is porosity, γ is shaliness. According to Ra-

mammorthy et al. (1995), Eq. 5.14 is valid when γ is between 0.06 and 0.42. If γ is below

0.06, Ramammorthy et al. (1995) recommended using the following equation:

G = 42.65(1− 3.48φ+ 2.19φ2) , (5.15)

where 42.65 is the shear modulus of pure quartz and the unit of G is GPa. Eq. 5.15 was

first derived by Murphy et al. (1993).

For all examples in this report, we use the Gassmann and Han formulas.

5.3 Sensitivity of Seismic Impedance Change to Reser-

voir Parameters

Because the static reservoir parameters, for example geological features, affect the seismic

survey, we consider the change of seismic impedance, thereby eliminating such static effects

and focus on the effects from dynamic changes.

5.3.1 The Predominant Effect of Phase Saturation Change in Seis-

mic Impedance Change

The purpose of using seismic impedance change data in history matching is to infer infor-

mation from phase saturation change due to the production. In practice, it is not clear

that this can be done because other poorly known properties of the reservoir such as sand

modulus, clay modulus, and porosity will also affect the seismic impedance. Even if these

parameters do not change with time, our model will include errors because we usually sup-

pose spatially uniform values for these spatially varying parameters. Before using seismic

impedance change data, we must make sure that the change of phase saturation will be the

predominant effect. In this investigation, we select some typical values for a sensitivity study

to show that the effect from phase saturation change will be the dominant effect on seismic

impedance change. To simulate real production, we consider two cases, one of which is an oil

reservoir under water flood and the other is a solution gas drive reservoir. The base values

of the reservoir parameters are shown in Table 5.1.

Water Flood Case

In addition to these base values, we select reasonable upper and lower bounds for other

parameters as shown in Table 5.2. By varying each parameter, we can study the “effect of
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Parameter Value

Porosity 0.2

Shaliness 0.2

Sand Modulus (Pa) 3.8× 1010

Clay Modulus (Pa) 21.2× 109

Density of Solid (kg/m3) 2650

Density of Gas (kg/m3) 214

Density of Water (kg/m3) 986

Density of Oil (kg/m3) 707

Modulus of Gas (Pa) 3.94× 107

Modulus of Water (Pa) 2.39× 109

Modulus of Oil (Pa) 6.71× 108

Initial Water Saturation 0.2

Initial Oil Saturation 0.8

Initial Gas Saturation 0.0

Table 5.1: Base Value in Computation

uncertainty” in these parameters on the change in seismic impedance.

Parameter Lower Bound Upper Bound

Water Saturation 0.2 0.6

Shaliness 0.0 0.4

Clay Modulus 1.0× 1010 3.0× 1010

Sand Modulus 2.8× 1010 4.8× 1010

Table 5.2: Lower and Upper Bounds for Reservoir Parameters (Water Flood)

We then compute the change in seismic impedance due to the variation in water satura-

tion. We recompute such changes assuming different values of other parameters, changing

one parameter at a time. The results are in Table 5.3.

From Table 5.3, we can see that even if the value of the rock mineral parameters were

greatly in error, the change of seismic impedance change due to water saturation change

would be largely unaffected. That is to say that we can neglect the uncertainty of shaliness,

grain modulus and shale modulus in the seismic impedance change data.
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Parameter Change in Seismic Impedance Change Ratio

Base Value 251978 3.6%

Shaliness in Lower Bound 242795 3.5%

Shaliness in Upper Bound 265121 3.8%

Clay Modulus in Lower Bound 249037 3.6%

Clay Modulus in Upper Bound 252823 3.6%

Sand Modulus in Lower Bound 247481 3.5%

Sand Modulus in Upper Bound 253692 3.6%

Table 5.3: Change in Seismic Impedance from Changing Water Saturation

Solution Gas Drive Case

In the solution gas drive case, the base values are the same as those in Table 5.1. The bounds

on parameter values for the sensitivity study are shown in Table 5.4.

Parameter Lower Bound Upper Bound

Gas Saturation 0.0 0.5

Shaliness 0.0 0.4

Clay Modulus 1.0× 1010 3.0× 1010

Sand Modulus 2.8× 1010 4.8× 1010

Table 5.4: Lower and Upper Bounds for Reservoir Parameters (Solution Gas Drive)

Using the same methods described in the previous section, we obtain the results shown

in Table 5.5. It is clear that in solution gas drive, the phase saturation change is still the

most important effect. Given these results, it appears that the uncertainty in mineralogy

can be dealt with as part of modelling error and that its effect on change in impedance is

small compared to those parameters that affect the phase saturation, such as permeability

and porosity.

5.3.2 Sensitivity Coefficients Using Adjoint Method

In history matching, we generally use gradient based optimization methods, which require

computation of the gradient of the objective functions with respect to model parameters. The

most efficient method for obtaining the sensitivity of seismic impedance change to reservoir
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Parameter Change in Seismic Impedance Change Ratio

Base Value −526631 −7.5%
Shaliness in Lower Bound −502306 −7.2%
Shaliness in Upper Bound −562770 −8.0%
Clay Modulus in Lower Bound −528152 −7.5%
Clay Modulus in Upper Bound −525463 −7.5%
Sand Modulus in Lower Bound −528241 −7.5%
Sand Modulus in Upper Bound −523081 −7.5%

Table 5.5: Change in Seismic Impedance from Changing Gas Saturation

parameters is using the adjoint method. Although the adjoint method can be used to provide

sensitivity to almost any kind of parameter, in this report, we describe only the computation

of the sensitivity of impedance to permeability and porosity.

In field case, we will have a lot of seismic impedance data (nearly in every gridblock).

Here, we only consider the computation of sensitivity of the seismic impedance in a single

gridblock; in future history matching work, we will only need to add more source terms to

the adjoint system to calculate all the seismic impedance sensitivities needed.

The Adjoint System

According to Li (2001), the adjoint system and the desired sensitivity coefficients for some

functional J , or equivalently β are

[∇yn(fn)T ]λn = −[∇yn(fn+1)T ]λn+1 −∇ynβ , (5.16)

and

∇mJ = ∇mβ +
L
∑

n=1

[∇m(f
n)T ](λn) , (5.17)
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where,

yn =
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(5.18)

is the vector of the primary variables that are solved for in a reservoir simulator,

m =













m1

m2

...

mNm













(5.19)

is the model parameters vector, and

λn+1 =
[

λn+11 , λn+12 , . . . , λn+13N+Nw

]T

(5.20)

is the adjoint variable. Here, β could be any functional for which the sensitivity is required.

In this report, β is the seismic impedance of a gridblock.

In our computations, we will compute the sensitivity to horizontal permeabilities (kh)

and porosity (φ). In each gridblock, kh can be divided into kx and ky, so the model vectors

can be written as

mkx
= kx = [ kx,1 kx,2 · · · kx,M ]T , (5.21)

mky
= ky = [ ky,1 ky,2 · · · ky,M ]T , (5.22)

and

mφ = φ = [ φ1 φ2 · · · φM ]T . (5.23)

Then the equations to calculate sensitivities are

∇kx
J = ∇kx

β +
L
∑

n=1

[∇kx
(fn)T ](λn) , (5.24)

∇ky
J = ∇ky

β +
L
∑

n=1

[∇ky
(fn)T ](λn) , (5.25)
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and

∇φJ = ∇φβ +
L
∑

n=1

[∇φ(f
n)T ](λn) . (5.26)

In the isotropic case, kx is equal to ky, so the sensitivity to horizontal permeability is

∇kh
J = ∇kx

J +∇ky
J , (5.27)

where J is seismic impedance at some specified time step L.

From Eq. 5.16 and Eq. 5.17, we know that for the various equations which convert

reservoir parameters into seismic impedance, there are different forms for computing the

source term ∇ynβ and direct derivative terms ∇kh
β and ∇φβ, which we summarize in the

following sections.

Source Term and Direct Term Computation Using Gassmann and Han Equations

The density of rock with porous fluid is

ρ = (ρoSo + ρwSw + ρgSg)φ+ (1− φ)ρsolid , (5.28)

so the derivative of seismic impedance with respect to P is

∂Z

∂P
=

1

2

(

ρK +
4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂P
+

8

3
V 2
s ρ

∂ρ

∂P

)

, (5.29)

where
∂ρ

∂P
= φ

(

So
∂ρo
∂P

+ Sw
∂ρw
∂P

+ Sg
∂ρg
∂P

)

. (5.30)

The derivative of seismic impedance with respect to water saturation Sw is:

∂Z

∂Sw
=

1

2

(

ρK +
4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂Sw
+ ρ

∂K

∂Sw
+

8

3
V 2
s ρ

∂ρ

∂Sw

)

, (5.31)

where
∂ρ

∂Sw
= φ (ρw − ρo) , (5.32)

∂K

∂Sw
=

(

(

K2
grain −KgrainKframeφ−KgrainKframe

)

∂Kfluid

∂Sw

)

(

K2
grainφ+Kfluid (Kgrain −Kgrainφ−Kframe)

) −
(

(Kgrain −Kgrainφ−Kframe)
∂Kfluid

∂Sw

)

(

K2
grainφ+Kfluid (Kgrain −Kgrainφ−Kframe)

)×
(

K2
grainKframeφ+Kfluid

(

K2
grain −KgrainKframeφ−KgrainKframe

))

(

K2
grainφ+Kfluid (Kgrain −Kgrainφ−Kframe)

) ,

(5.33)
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and
∂Kfluid

∂Sw
=

1
Ko
− 1

Kw
(

Sw

Kw
+ 1−Sw−Sg

Ko
+ Sg

Kg

)2 . (5.34)

The derivative of seismic impedance with respect to gas saturation Sg is:

∂Z

∂Sg
=

1

2

(

ρK +
4

3
ρ2V 2

s

)−1/2

×
(

K
∂ρ

∂Sg
+ ρ

∂K

∂Sg
+

8

3
V 2
s ρ

∂ρ

∂Sg

)

, (5.35)

where
∂ρ

∂Sg
= φ (ρg − ρo) , (5.36)

∂K

∂Sg
=

(
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K2
grain −KgrainKframeφ−KgrainKframe

)

∂Kfluid

∂Sg

)

(
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) −
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(

K2
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(

K2
grainφ+Kfluid (Kgrain −Kgrainφ−Kframe)

) ,

(5.37)

and
∂Kfluid

∂Sg
=

1
Ko
− 1

Kg

(

Sw

Kw
+ 1−Sw−Sg

Ko
+ Sg

Kg

)2 . (5.38)

There is no direct dependance between seismic impedance and permeability k, so the

derivative of seismic impedance with respect to permeability is zero.

The derivative with respect to porosity is:

∂Z

∂φ
=

1

2

(

ρK +
4

3
ρ2V 2

s

)−1/2

×
((

K +
8

3
ρV 2

s

)

∂ρ

∂φ
+ ρ

∂K

∂φ
+

8

3
ρ2Vs

∂Vs
∂φ

)

, (5.39)

where
∂Vs
∂φ

= −4910.0 , (5.40)

∂ρ

∂φ
= ρo (1− Sw − Sg) + ρwSw + ρgSg − ρsolid , (5.41)

∂K

∂φ
=

(
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K2
grain −KfluidKgrain

)
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∂φ
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)
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φ
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)

+KfluidKgrain −KfluidKframe

−
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(
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)

+KfluidK
2
grain −KfluidKgrainKframe

)

(

φ
(
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)

+KfluidKgrain −KfluidKframe

) ×
(

K2
grain −KfluidKgrain −Kfluid

∂Kframe

∂φ

)

(

φ
(

K2
grain −KfluidKgrain

)

+KfluidKgrain −KfluidKframe

) ,

(5.42)
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and
∂Kframe

∂φ
= −4.25 ln(10)10(log10(Kgrain)−4.25φ) . (5.43)

Source Term and Direct Term Computation Using Gassmann and KT Equations

Here, we assume that the Gassmann and KT equations are applied when computing the

seismic impedance given by

Z =

√

ρ

(

K +
4

3
G

)

, (5.44)

where G is shear modulus.

The density of rock with porous fluid is

ρ = (ρoSo + ρwSw + ρgSg)φ+ (1− φ)ρsolid , (5.45)

so the derivative of seismic impedance with respect to P is

∂Z

∂P
=

1

2

(

ρK +
4

3
ρG

)−1/2

×
(

K
∂ρ

∂P
+

4

3
G
∂ρ

∂P

)

, (5.46)

where
∂ρ

∂P
= φ

(

So
∂ρo
∂P

+ Sw
∂ρw
∂P

+ Sg
∂ρg
∂P

)

. (5.47)

The derivative of seismic impedance with respect to water saturation Sw is

∂Z

∂Sw
=

1

2

(

ρK +
4

3
ρG

)−1/2

×
((

K +
4

3
G

)

∂ρ

∂Sw
+ ρ

∂K

∂Sw

)

, (5.48)

where ∂ρ
∂Sw

, ∂K
∂Sw

and ∂Kfluid

∂Sw
can be computed using Eqs. 5.32 to 5.34.

The derivative of seismic impedance with respect to gas saturation Sg is

∂Z

∂Sg
=

1

2

(

ρK +
4

3
ρG

)−1/2

×
((

K +
4

3
G

)

∂ρ

∂Sg
+ ρ

∂K

∂Sg

)

, (5.49)

where ∂ρ
∂Sg

, ∂K
∂Sg

and ∂Kfluid

∂Sg
can be computed using Eqs. 5.36 to 5.38.

The derivative of impedance with respect to permeability k is also zero in this case.

The derivative with respect to porosity φ is

∂Z

∂φ
=

1

2

(

ρK +
4

3
ρG

)−1/2

×
((

K +
4

3
G

)

∂ρ

∂φ
+ ρ

∂K

∂φ

)

, (5.50)

where ∂ρ
∂φ
, ∂K
∂φ

and ∂Kframe

∂φ
can be computed using Eqs. 5.41 to 5.43.
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Source Term and Direct Term Computation Using Gassmann and Ramammor-

thy Equations

Here the Gassmann and Ramammorthy equations are used to compute the seismic impedance,

which is given by

Z =

√

ρ

(

K +
4

3
G

)

, (5.51)

where G is shear modulus. In this case, all derivatives are the same as the previous section

except

G = Ggrain

(

1− 3.48φ+ 2.19φ2
)

, (5.52)

so
∂G

∂φ
= Ggrain (4.38φ− 3.48) . (5.53)

In this report, we have supposed that porosity φ does not change with pressure. In the

future, we will add the derivative of φ with respect to pressure P in Eq. 5.29 and Eq. 5.46.

We have assumed that we will use the change in impedance for history matching, not

the impedance. We therefore need to compute the sensitivity of the change in impedance

to porosity and permeability. There are two ways to do this. The most computationally

efficient method would be to set dobs = Zobs(tf ) − Zobs(ti) where tf and ti are the final and

initial times for the acquisition of time-lapse data. When computing sensitivities using the

adjoint system, this would result in sources at tf and ti. What we have done in this study

is to compute the sensitivities at times tf and ti, then take the difference of them.

5.4 Results and Discussion

In order to test the computation of the sensitivity of impedance to permeability and porosity,

two synthetic models were created. Both of them use a 15× 15× 1 grid with 4x = 4y = 40

ft and 4z = 30 ft. The porosity field is homogenous and equal to 0.22. The permeability

field is heterogenous and isotropic. The mean of ln(k) is 3.95 (52 mD) and the variance is

0.52.

In one model, there are five wells. One injector is in gridblock (8, 8) and four producers

are located symmetrically in gridblocks (3, 3), (3, 13), (13, 3) and (13, 13) (see white points

in Fig. 5.2(a)). We use this model to simulate a water flood for a case where the initial

pressure in the oil reservoir is 4500 psi, which is slightly above the initial bubble point

pressure, 4417 psi. Each producer produces at total fluid rate 220 RB/D. The minimum

bottom hole pressure for each producer is 50 psi and the maximum water-oil ratio for each
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producer is 0.49. For the injector, the maximum water injection rate is 550 RB/D. Initial

oil saturation is 0.8 and the initial water saturation is equal to irreducible water saturation

Swc = 0.2.

The other model has one producer in gridblock (3, 3) (see white points in Fig. 5.2(b)).

We use it to simulate production by solution gas drive. This producer produces at total fluid

rate 700 RB/D. The minimum bottom hole pressure is 50 psi and the maximum water-oil

ratio is 0.49. All initial reservoir pressure, initial bubble point pressure, oil saturation and

water saturation are the same as those in the water flood case.

In both cases, we compute the sensitivity of seismic impedance change in gridblocks (4, 5)

and (6, 10) (see black points in Fig. 5.2) to horizontal permeability and porosity at the 30th

day. Also we output the corresponding water and gas saturation distribution maps and

pressure maps.

From these maps, we make the following observations,

1. In the water flood case, the seismic impedance change map (Fig. 5.4) has the same

shape as the water saturation change map (Fig. 5.3(a)). In the solution gas drive case,

there is also great similarity between the seismic impedance change map and the gas

saturation change map (Fig. 5.5 and Fig. 5.3(b)). In this case the change in seismic

impedance is mainly due to the change in fluid saturation due to production. Using the

seismic impedance change, we could qualitatively monitor the reservoir production.

2. From the sensitivity of seismic impedance change to log-permeability in the water

flood case (Fig. 5.6(a) and Fig. 5.7(a)) and the solution gas drive case (Fig. 5.6(b)

and Fig. 5.7(b)), we know that seismic impedance change has sensitivity dependence

on reservoir permeability because the change in reservoir permeability will affect the

change in phase saturation. So seismic impedance change is clearly “sensitive” to the

change in permeability.

3. In addition to the direct effect of porosity on impedance, the seismic impedance change

also has an indirect dependence on porosity, which can be understood from the phase

saturation equation:
∂S

∂t
+

(

UT
φ

df

dS

)

∂S

∂x
= 0 , (5.54)

where the term in parenthesis is called the “phase velocity”, which describes the rate

of advance of the phase saturations. Because this velocity includes porosity φ, we see

that the seismic impedance change must be sensitive to porosity through the effect on

saturation.
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4. The shapes of the maps of sensitivity to porosity in the water flood case (Fig. 5.6(c)

and Fig. 5.7(c)) and the solution gas drive case (Fig. 5.6(d) and Fig. 5.7(d)) do not

look at all like the shapes of the maps of sensitivity to log-permeability. The reason is

that the sensitivity can be divided into two terms as following:

∂J

∂φ
=
∂Z

∂φ
+
∂f

∂φ
λ (5.55)

where ∂Z/∂φ is the direct derivative term and λ∂f/∂φ is contribution to the derivative

from the flow equations. In porosity sensitivity, the direct term is very large compared

to the effect from the flow equations. This is different from permeability sensitivity

because seismic impedance change has no direct dependence on permeability.

5. A comparison of the sensitivity of seismic impedance change to log-permeability and

porosity from the perturbation method and the adjoint method shows that the different

methods give almost identical results for the water flood case (Fig. 5.8) and the solution

gas drive case (Fig. 5.9). The relative errors between them are very small (Fig. 5.10,

Fig. 5.11, Fig. 5.12 and Fig. 5.13), which shows that our adjoint method is giving the

correct results.
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Fig. 5.2: ln(k) Field
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Fig. 5.3: Water, Gas Saturation and Pressure Distribution at the 30th Day
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Fig. 5.4: Seismic Impedance Change at the 30th Day (Water Flood)
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Fig. 5.5: Seismic Impedance Change at the 30th Day (Solution Gas Drive)
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Fig. 5.6: Sensitivity of Seismic Impedance Change in Gridblock (4, 5) to ln(k) and φ at the

30th Day
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Fig. 5.7: Sensitivity of Seismic Impedance Change in Gridblock (6, 10) to ln(k) and φ at the

30th Day
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Fig. 5.8: Comparison between Adjoint Method and Perturbation Method in Computing

Sensitivity of Seismic Impedance Change in Gridblock (4, 5) to ln(k) and φ at the 30th Day
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Fig. 5.9: Comparison between Adjoint Method and Perturbation Method in Computing
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Fig. 5.10: Relative Error between Adjoint Method and Perturbation Method in Computing

Sensitivity of Seismic Impedance Change in Gridblock (4, 5) to ln(k) at the 30th Day (Water

Flood)
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Fig. 5.11: Relative Error between Adjoint Method and Perturbation Method in Computing

Sensitivity of Seismic Impedance Change in Gridblock (4, 5) to φ at the 30th Day (Water

Flood)
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Chapter 6

HISTORY MATCHING OF FACIES

DISTRIBUTIONS

6.1 Overview of the Truncated Gaussian Model

The truncated plurigaussian random field model is fairly appealing as a method for generat-

ing facies distributions. Galli and his coworkers at the center for Geostatistics in the School

of Mines in Fontainebleau have established that it can be used to generate a remarkably wide

variety of facies textures and shapes. Besides the qualitative visual appeal of the images,

the method uses the covariance in a consistent way — unlike most indicator models. The

truncated plurigaussian model is not, however, widely applied outside of France. The reason

seems to be that it is fairly difficult to select model parameters that are consistent with a

particular image such as might be provided by a geologist. We use the term parameters to

refer to quantities such as the range, the variance, the covariance type (Gaussian, Exponen-

tial, Spherical, etc.) and the thresholds for discrimination of facies. While most of these

parameters are obvious, parameterization of the thresholds can be done in many different

ways. In the third section, we discuss our investigation of the model parameterization in

some detail.

The variables of the model are the elements of the two Gaussian random fields that are

truncated to determine facies. For a gridded model, there are two model variables for each

grid block. In general, neither the parameters or the variables are known. The distributions

of both are described by probability density functions. The prior pdfs for these parameters

and variables will typically be quite simple and largely uninformative. To establish a more

informative prior, we will assume that we will be provided with an example of the distribution

for facies — one realization of the geology.
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Our ultimate goal is to sample from the pdf of reservoir facies realizations conditional

to the prior geology and to well observations and production data. We will separate this

problem into two phases. In the first phase, we will develop a method for estimating the prior

pdf of the model parameters conditional to the observation of a sample reservoir geology. In

the second phase, we will develop the methods for applying RML to generate realizations of

facies conditional to production data and well observations.

Three major improvements in the application of the truncated Gaussian method for litho-

facies simulations based on indicators have been reported in the literature. By analyzing the

limitations and the potential of the truncated Gaussian method, Galli et al. (1994) found a

way to apply this method to a complex 3-D problem with vertical variation in the proportions

of lithofacies. They also showed that this method preserved the consistency of the indicator

variograms and cross variograms. The major achievement of this paper is the introduction of

the truncated plurigaussian method. In this paper, facies were defined by truncating linear

combinations of two or more Gaussian random functions which can be correlated or not.

By doing so, the truncated Gaussian method becomes very flexible for general geological

simulation problems. Although we have mapped out possible approaches for both phases of

the project, this report includes only the initial sensitivity study establishing the features of

the problem.

Le Loc’h et al. (1994) showed the flexibility of the truncated plurigaussian method by

truncating two Gaussian functions. They pointed out that even if the two underlying Gaus-

sian functions are uncorrelated, the resulting facies sets obtained by truncating are not

independent. The correlation depends on the construction of thresholds of lithotypes. Using

uncorrelated Gaussian functions they found that complex theoretical indicator variograms

can be produced in combining various anisotropies by choosing different Gaussian functions.

The choice of variogram models also will affect the resulting facies distributions. They sug-

gested that the choice of a truncation method to the Gaussian functions should be as simple

as possible to have easier control over the problem.

The paper by Le Loc’h and Galli (1997) presents an insight to implementing the algorithm

both for practical structural analysis and conditional simulations. In demonstrating the

influence of the thresholds chosen for truncation, the partition of facies was accomplished

using rectangles. But even with this relatively simple thresholding method, it is not at

all straightforward to choose appropriate thresholds. The difficulty in estimating model

parameters that will result in the desired facies distributions has restricted the practical

application of this method. An example of a truncated plurigaussian simulation conditional

to facies data at well locations was presented with a very slow convergence. This problem
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was attributed to the instability of the Gaussian covariance matrix.

6.2 Generating Thresholds

The choice of the method of truncation of the Gaussian variables is important in applying

truncated Gaussian simulation in automatic history matching to generate reservoir models

satisfying geological requirements. Le Loc’h et al. (1994) have applied rectangular thresholds

in truncated Gaussian simulation. In their approach, lithofacies Fi is modeled by

Fi = {x ∈ R3;Sij−1 ≤ Yj(x) < Sij, j = 1, . . . , p}, (6.1)

where Yj(x), for j = 1, . . . , p, are Gaussian random functions which can be dependent or

independent. In practice, two Gaussian random functions were used to determine lithotypes,

i.e. p = 2. The thresholds Si
j−1 and Sij were decided by the proportion of each lithotypes.

Field facies maps with a variety of textures and patterns were generated by truncating

groups of Gaussian functions with different combinations of variogram types. Fig. 6.1 shows

some of their results. Although the rectangular thresholds approach is useful for geological

simulation problems when conditioning to lithotype proportion data, it does not seem easy

to be applicable to the problem of optimization of lithotype grouping in automatic history

matching problems.

Alternatively Voronoi tessellation could be used to create the thresholds. Given a set of

points in a plane, a Voronoi diagram can be created by dividing the plane into regions, so

that every location in the region around one point is closer to that point than to any of the

other points. Shirriff (1993) described an algorithm for creating Voronoi diagrams on a set of

points to generate fractal patterns which resemble the randomness in nature. By attributing

each region with a lithotype, a threshold map could be designed from a Voronoi diagram

with great flexibility in optimization. Fig. 6.2 shows Voronoi diagrams generated by Shirriff

(1993). However, the difficulty in calculating sensitivities of lithotype at any location in the

threshold map to the locations of Voronoi points is the main obstacle in coupling the Voronoi

type thresholds with efficient optimization methods which require computation of gradients.

Our intention is to use three or more intersecting lines as thresholds. In this report, I

will focus on introducing truncated Gaussian simulation using three threshold lines. Three

randomly generated lines intersecting each other without all passing through the same point

divide the plane into 7 regions. A facies type can be attributed to each region, so up

to 7 different kinds of facies can be included in the same plane with appropriate relative

percentage. This number of facies is generally enough for geology maps in petroleum reservoir
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a: Exponential and spherical variograms.

b: Exponential and Gaussian variograms.

c: Exponential and Gaussian variograms.

Fig. 6.1: Simulation using independent Gaussian functions (Le Loc’h et al., 1994).

study, but if not, another line could be added. The three lines are thresholds for different

rock properties. Given an angle θ and a distance r, a threshold line could be described by

the following equation:

y = tan(θ − π

2
)(x− r

cos θ
), (6.2)

i.e., the threshold line is perpendicular to the line passing through the origin with the slope

θ and intersects the line at a distance r.

The coordinates of the threshold map are y1 and y2 respectively. Calculation of (y1, y2)

for each gridblock in the field will be introduced in the next section.
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Fig. 6.2: Examples of Voronoi diagrams by Shirriff (1993).

6.3 Bayesian Model

The“model” will consist of model parameters and model variables. Model parameters, mP ,

will include the discrete parameters that quantify the number of threshold lines, the type of

covariance, and the number of facies regions occupied by each facies. Discrete parameters

will be denoted as mPD. Continuous model parameters, mPC, include the range of the

covariance and the locations of threshold lines. The prior (noninformative) distribution

for covariance type will probably be assumed to be uniform. It seems likely that in the

initial implementation, the number of threshold lines will probably be set to three unless

we determine that is insufficient in which case we may allow more generality. The prior

distribution for discrete parameters will be denoted as P (mPD). The continuous model

parameters will describe the ranges of the covariance in the two principal directions for y1

and y2, the angle of the covariance axes and the locations of the threshold lines.

Our objective in phase I will be to develop a method for sampling from the pdf of the
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model parameters conditional to an observation of a sample cross-section, dXS.

P (mPD,mPC, dXS) = P (mPD,mPC|dXS)P (dXS) (6.3)

and

P (mPD,mPC, dXS) = P (mPC|mPD, dXS)P (mPD|dXS)P (dXS), (6.4)

so

P (mPC,mPD|dXS) = P (mPC|mPD, dXS)P (mPD|dXS). (6.5)

We believe that we will be able to sample quite well from the distribution P (mPC|mPD, dXS)

using the method of RML. We will develop a method for sampling from P (mPD|dXS).

6.4 The Initial Facies Model

For this example, the reservoir model is designed as two dimensional and heterogeneous,

with the size 300 ft × 300 ft. It is discretized into 128 × 128 gridblocks. The facies fields

were generated using the square-root method for Gaussian random fields. y1 is a Gaussian

random variable with the Gaussian covariance C1(r) = (σr)
2 exp(−3r2/a2). y2 is a Gaussian

random variable with the Exponential covariance C2(r) = (σr)
2 exp(−3|r|/a), where a is the

range of the covariance and r is the distance between two locations. The parameters used

for the truncated Gaussian simulation examples are summarized in Table 6.1.

y1 y2

Variance 1.0 1.0

Range (ft) 90. 120.

Prior mean 0 0

Covariance Gaussian Exponential

Table 6.1: Geostatistical parameters for simulation of the facies fields.

Random fields y1 and y2 are computed by

Y = µ+ LZ, (6.6)

where the mean µ = 0 for both fields, and Z is a vector of independent identically distributed

Gaussian variables with mean 0 and variance 1. L is a square root of the covariance matrix

as shown in Eq. 6.7:

C = LLT . (6.7)
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Both vectors y1 and y2 have the same dimension as the number of total gridblocks. The

facies in the nth gridblock is determined by the region of the threshold diagram in which the

point (y1(n), y2(n)) is located. Fig. 6.3 shows gray-scale plots of y1 and y2 in the field. To

have a better comparison of the fields with the Gaussian and the Exponential covariance,

another field was generated using the Gaussian kernel but multiplied by the same vector

used to generate the Exponential covariance field (see Fig. 6.4).
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Fig. 6.3: The gray-scale plots of y1 and y2 in the field. The kernel of y1 is from Gaussian

covariance and y2 is from Exponential covariance.

6.5 Relationship between r, θ and the Facies Map

To acquire insight into the relationship of the model parameters and the facies map of the

field, the following investigations were made.

A base threshold map was generated using the initial r and θ sets as:

R = [−0.140178,−0.680754,−1.10564],

Θ = [2.50385, 1.77335, 0.379948].

The plot of each of the threshold lines numbered from 1 to 3 and the resulting map of facies

regions are shown in Fig. 6.5. Starting from the top-most region, counterclockwise, the

regions segregated by the three threshold lines are given numbers 1 to 6, and the region in

the middle is the facies region 7. We consider the situation in which there are three types
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Fig. 6.4: The gray-scale plot of the convolution product of the Gaussian kernel with the

random multivariate normal array used in computing y2.

of facies, namely, A, B and C, in the field, and they are attributed to each region as in

Table 6.2. The plot on the left of Fig. 6.6 shows the distribution of facies on the threshold

map. The plot on the right is the resulting facies map of the field from this set of thresholds.

Black indicates facies A. Grey and white indicate facies B and C respectively.

Region No. 1 2 3 4 5 6 7

Facies Type A B A C C B B

Table 6.2: Facies type for each region in the threshold map.

In the first phase of the project, we will develop the methodology for estimating the pdf

of the parameters describing the threshold lines given a sample realization of the reservoir,

as provided from a geologist or from an outcrop of the formation. Although rock facies are

discrete and hence not differentiable, we believe that the most efficient methods for generating

conditional realizations may be using the method of Randomized Maximum Likelihood. In

this case, we will need to approximate the discrete function by one that is differentiable

and then compute the gradient analytically. For this report, the effect of relatively small

perturbations of the model parameters will be investigated by perturbing a base model, one

parameter at a time.
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Fig. 6.5: The base thresholds map and each threshold line numbered from 1 to 3.

6.5.1 Perturbing r

In the first step, the distance of a randomly picked threshold line to the origin was perturbed

by parallel translation of the line. Fig. 6.7, 6.8 and 6.9 show the threshold maps and the

resulting facies maps by increasing r values of the second threshold line by 0.5 at a time.

The fraction of facies A, i.e. the black area, was reduced and scattered gradually. And the

facies C, the white area, was increased.

6.5.2 Perturbing θ

Now starting from the same base threshold map as in the previous test, the second threshold

line was rotated by only increasing its slope angle step by step. The distance of the second

threshold line to the origin point was not changed and the remaining threshold lines were also

kept as in the base case. The threshold maps and the resulting facies maps while rotating

the second threshold line are recorded in Figs. 6.10 to 6.14. A variety of textures and shapes

are observed from these facies maps.
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Fig. 6.6: The threshold map and the facies map of the 2-D field for the base case.
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Fig. 6.7: The thresholds map and the facies map after increasing r2 by 0.5.

6.5.3 Sensitive Regions

In the threshold map, the most sensitive region of changing facies types to the moving of the

thresholds should correspond to the region adjacent to the threshold lines. Similarly, on the

facies map, the boundaries between different facies types should be the most sensitive region

to changes in threshold parameters. To show this, the parameters, r1, r2, r3, θ1, θ2 and θ3,

were perturbed one by one with ∆r = 0.25 and ∆θ = 10◦. For the plots of sensitivity, the

facies were arbitrarily assigned integer values, 1, 2 and 3. The difference of the values is

displayed in gray scale maps. Figs. 6.15 to 6.20 illustrate the sensitive region to each of the

parameters.
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Fig. 6.8: The thresholds map and the facies map after increasing r2 by 1.0.
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Fig. 6.9: The thresholds map and the facies map after increasing r2 by 1.5.

6.6 Facies Arrangements

By correctly arranging the facies types in the threshold map, the resulting distribution of

facies in the field can be controlled to match geological requirements of rock type distribu-

tions. To show this, four different facies arrangement schemes, besides the base case, were

made and are shown together with corresponding facies maps in Figs. 6.21, 6.22, 6.23 and

6.24. The case shown in Fig. 6.21 allows facies B be adjacent to both facies A and facies C,

while restricting direct contact between facies A and facies C. Reducing the portion of facies

A by replacing A with facies C in the region 1, a field map for a very different geological

condition was generated as shown in Fig. 6.22. In Fig. 6.23, facies B was wrapped in facies

A. The facies map is generally divided into two regions, the black and gray region and the

white region. This kind of facies map might be typical for alluvial plains. In Fig. 6.24, any
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Fig. 6.10: The thresholds map and the facies map after increasing θ2 by 50 degrees.
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Fig. 6.11: The thresholds map and the facies map after increasing θ2 by 80 degrees.

facies among the three has similar possibilities for contacting each of the other two facies.

6.7 Anisotropic Covariance

Gaussian fields with different ranges in the main directions can also be simulated using the

truncated Gaussian method. In this case, the Gaussian covariance of the Gaussian random

variable y1 is calculated as C1(x, y) = σ2 exp(−3( x2

ax
2 +

y2

ay
2 )), and the Exponential covariance

of the Gaussian random variable y2 is C2(x, y) = σ2 exp(−3
√

x2

ax
2 +

y2

ay
2 ). Here, ax and ay are

the range of the covariance in the x and y directions. The parameters used for the truncated

Gaussian simulation examples are summarized in Table 6.3. Gaussian random fields y1 and

y2 were calculated the same way as described before. The same two sets of Z vectors were
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Fig. 6.12: The thresholds map and the facies map after increasing θ2 by 110 degrees.
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Fig. 6.13: The thresholds map and the facies map after increasing θ2 by 140 degrees.

used in the calculation. Fig. 6.25 shows gray-scale plots of y1 and y2, which have the same

dimensions as the field map. Fig. 6.26 is the facies field generated using the preceding y1

and y2. Facies types were decided by using the base facies threshold map. So, even though

other conditions are exactly the same with base isotropic covariance case, the directional

difference in ranges has made a distinct appearance in the facies map.

6.8 Comments

The preceding facies distribution plots obtained by perturbing each of the threshold parame-

ters, such as r, θ and facies attribution in the threshold map, have shown that the truncated

Gaussian simulation method is able to generate facies maps with a wide variety of textures
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Fig. 6.14: The thresholds map and the facies map after increasing θ2 by 190 degrees.
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Fig. 6.15: Sensitive regions by increasing r1 by 0.5.

and shapes. Using intersecting lines as thresholds of truncation, facies map can be easily

adjusted. More importantly, for any location in the field, the sensitivities of the facies type

to the threshold parameters can be conveniently calculated by using intersecting lines as

thresholds. As expected, the plots of the sensitive regions have shown that on the field facies

map, the most sensitive regions to changes of threshold parameters are the boundaries be-

tween different facies. Introduction of Gaussian functions with anisotropic covariances into

truncated Gaussian simulation have brought more flexibility to this method in matching

facies models.
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Fig. 6.16: Sensitive regions by increasing r2 by 0.5.
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Fig. 6.17: Sensitive regions by increasing r3 by 0.5.
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Fig. 6.18: Sensitive regions by increasing θ1 by 10 degrees.
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Fig. 6.19: Sensitive regions by increasing θ2 by 10 degrees.
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Fig. 6.20: Sensitive regions by increasing θ3 by 10 degrees.
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Fig. 6.21: The thresholds map and the facies map. Facies A (black) and facies C (white)

were restricted from having direct contact.
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Fig. 6.22: The thresholds map and the facies map. A big portion of facies A (black) in last

case was replaced by facies C (white).
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Fig. 6.23: The thresholds map and the facies map. Facies B (gray) is wrapped in facies A

(black).

y1 y2

variance 1.0 1.0

range x (ft) 60. 120.

range y (ft) 120. 60.

prior mean 0 0

Distribution Gaussian Exponential

Table 6.3: Geostatistical parameters for simulation of the facies fields with anisotropic co-

variances.
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Fig. 6.24: The thresholds map and the facies map. The three facies have similar possibility

of contacting each other.
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Fig. 6.25: The gray-scale plots of y1 and y2 in the field. The kernel of y1 is from Gaussian

covariance and y2 is from Exponential covariance.
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Fig. 6.26: The facies map of the field with anisotropic covariances.
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Chapter 7

CONCLUSIONS

The Bayesian approach to automatic history matching of production data requires the ap-

plication of an optimization algorithm to minimize an objective function which includes the

sum of squared production data misfit terms plus a regularization term arising from a prior

geostatistical model constructed from static data. For field scale problems where the number

of production data history matched ranges from several dozen to a few thousand, the number

of reservoir variables (model parameters) estimated by history matching ranges from many

hundred to tens of thousands, standard gradient based optimization algorithms such as the

Gauss-Newton and Levenberg-Marquardt algorithms which require calculation of the sensi-

tivity of each production data to each model parameter require too much time and memory to

be useful. Thus we have investigated the application of two algorithms which require only the

gradient of the objective function. Specifically, we have implemented and tested a nonlinear

conjugate gradient method and a scaled limited memory Broyden-Fletcher-Goldfarb-Shanno

(LBFGS) algorithm for the automatic history matching problems. We have found an appro-

priate procedure for scaling in the LBFGS algorithm, but have not found a preconditioner

for the conjugate gradient which makes this method competitive with the scaled LBFGS

algorithm. The LBFGS algorithm and preconditioned conjugate gradient algorithms require

calculation of the gradient of the objective function. We have implemented and tested an

adjoint procedure for calculating this gradient. The LBFGS has been successfully applied

to two field type history matching examples. Based on our investigation of application of

optimization algorithms to the problem of history matching production data, we make the

following specific conclusions:

• The adjoint method yields sufficiently accurate estimates of the gradient of the objec-

tive for history matching purposes.
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• The scaled LBFGS algorithm implemented is sufficiently robust and computationally

efficient for application to field scale history matching problems.

• For history matching of production data, the scaled LBFGS is a more robust and

computationally efficient than the Gauss-Newton, Levenberg-Marquardt and precon-

ditioned conjugate gradient algorithms tested.

• The limited memory BFGS algorithm requires significantly less time and less memory

than the modified Levenberg-Marquardt and BFGS algorithms, but yields results of

comparable quality based on the value of the objective function obtained at conver-

gence, and the model obtained at convergence.

• Scaling has a significant effect on the performance of the LBFGS and BFGS algorithms.

The scaling factors used here result in significant improvement in the convergence

properties of the algorithm as compared to the no scaling case.

As our goal is to develop and implement technology to condition a reservoir description

generated from a prior geostatistical model to both production data and time-lapse seis-

mic data, we have developed procedures to integrate seismic data. In our approach, it is

assumed that the change in seismic impedance will be provided as data by the geophysi-

cists. Given a specific reservoir description and pressure and saturations distributions, the

corresponding seismic impedance can be predicted by a simple rock physics model based on

the Gassmann equations. Similar to production data, the square of the mismatch between

observed time-lapse seismic data and corresponding calculated time-lapse seismic data for

the given reservoir model and pressure/saturation distribution is included in the objective

function. Thus, we have implemented the adjoint method to calculate the sensitivity of seis-

mic data to rock property fields. We have also shown that the effect of reasonable changes

in shaliness and the sand modulus and clay modulus on time-lapse seismic data is relatively

small compared to the effect of saturation and pressure changes. This leads to the first of

the following three specific conclusions on history matching time lapse impedance data.

• Uncertainties in mineralogy will not have a significant error on time-lapse impedance

data; thus, we should be able to integrate time-lapse impedance data to reduce the

uncertainty in rock property fields even when the mineralogy is not accurately known.

• The sensitivity of seismic impedance data to rock property fields can be accurately

computed with the adjoint method.
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• Even though the number of seismic data are large, using a simple forward model based

on the Gassmann equations and the adjoint method for computing the gradient of the

part of the objective function involving the mismatch term for time-lapse impedance

data, it should be feasible to condition reservoir models to time-lapse seismic data.

The set of reservoir variables that can be estimated by the automatic history matching of

production and time-lapse seismic data include gridblock log-permeabilities and porosities.

As the variation of these variables between facies is usually much larger than the variation

within a facies, it may be critical to estimate facies boundaries in the history matching

process. In this work, we have developed a truncated plurigaussian model for the generation

of facies maps. Unlike previous implementations of this method, we have used intersecting

lines as thresholds. With this approach, we show that it is still possible to generate a rich

variety of textures and shapes, but the new approach should make it easier to generate

approximations of the sensitivity coefficients needed to condition reservoir models to facies

distributions.
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Chapter 8

FUTURE WORK

The history matching process formulated here involves the minimization of an objective

function O which always includes a regularization term Om arising from a prior model and

a production data misfit term Op which in the simplest form is equal to sum of the squared

difference between predicted and observed production data with each squared misfit term

divided by the variance of the associated measurement error. The objective function may

include a similar misfit term Os for seismic data based on differences between observed time-

lapse impedance data and time-lapse impedance data calculated for a particular set of values

of reservoir variables. At this point in the project, we have developed and implemented the

adjoint method for computing the sensitivity of each production datum to each reservoir

variable where the reservoir variables may include gridblock horizontal permeabilities, verti-

cal permeabilities and porosities. With these sensitivities, we have been able to implement

Gauss-Newton and Levenberg-Marquardt algorithms to history match production data when

the objective function minimized is given by

O = Om +Od. (8.1)

We have also implemented an adjoint method to compute the gradient of Od. The calcula-

tion of this gradient is one of many steps necessary to implement nonlinear preconditioned

and conjugate gradient and quasi-Newton methods to minimize the objective function of

8.1. These four optimization algorithms have been implemented and compared. Based on

computational efficiency, memory requirements and robustness, we have selected a scaled

limited memory Broyden-Fletcher-Goldfard-Shanno (LBFGS) algorithm as the most useful

for large scale history matching problems. Based on realistic history matching problems

we have done, however, we expect that it may be possible to improve the efficiency of this

algorithm. We have also implemented an adjoint method to compute the sensitivity of time-
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lapse impedance data to gridblock permeabilities and porosities, but as yet have not done

any history matching of seismic data either individually or together with production data.

Moreover, the options that have actually been implemented for matching production data

are restricted to estimating only two rock property fields, for example horizontal and ver-

tical log-permeabilities with porosity fixed, or an isotropic permeability field together with

porosity. Our investigation into the possibility of estimating boundaries between facies is in

its early stages.

In the future, we intend to consider the following aspects.

• Implement code so that the scaled LBFGS algorithm can be used to estimate any

combination of ln(kx), ln(ky), ln(kz) and porosity.

• Implement and investigate a partially doubly stochastic model that the mean log-

permeabilities and mean porosities may different in different geologic regions or layers.

In this case, we may wish to estimate these means together with individual gridblock

values of rock properties by history matching production data.

• Develop procedures to estimate the shape of relative permeability curves together with

rock property fields during the history matching process.

• Attempt to improve the computational efficiency of the LBFGS algorithm by consid-

ering damping or model scaling procedures.

• Quantify the measurement and modelling error of time-lapse impedance data. This is

important because an esimate of these errors is needed to time the objective function

Os which includes the seismic data misfit terms.

• Implement the LBFGS method for estimating rock property fields by history matching

seismic data by themselves or seismic data and production data simultaneously.

• Develop a method to estimate the probability density function (pdf) for the model

parameters which define the plurigaussian model for facies so that this pdf is consistent

with cross section maps provided by geologists.

• Develop a method to determine effective gridblock permeabilities and porosities for

gridblocks containing more than one facies.

• Develop a procedure to calculate the sensitivity of production data to the location of

boundaries between facies so that facies boundaries can be adjusted as part of the

history matching process.
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du Pétrole, 19(3):297–334, 1964.

P. Jacquard and C. Jain. Permeability distribution from field pressure data. Soc. Petrol.

Eng. J., 5(4):281–294, 1965.

Hans O. Jahns. A rapid method for obtaining a two-dimensional reservoir description from

well pressure response data. Soc. Petrol. Eng. J., 6(12):315–327, 1966.

Rintu Kalita. Conditioning a Three Dimensional Reservoir Model to Gas Production Data.

M.S. thesis, University of Tulsa, Tulsa, Oklahoma, 2000.

B. L. N. Kennett and P. R. Williamson. Subspace methods for large-scale nonlinear inversion.

In Mathematical Geophysics, pages 139–154. D. Reidel, 1988.

J. E. Killough, Yogeshwar Sharma, Alain Dupuy, Robert Bissell, and John Wallis. A multiple

right hand side iterative solver for history matching SPE 29119. In Proceedings of the 13th

SPE Symposium on Reservoir Simulation, pages 249–255, 1995.

Peter K. Kitanidis. Quasi-linear geostatistical theory for inversing. Water Resour. Res., 31

(10):2411–2419, 1995.

Tamara K. Kolda, Dianne P. O’Leary, and Larry Nazareth. BFGS with update skipping and

varying memory. SIAM J. Optim, 8(4):1060–1083, 1998.
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