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ABSTRACT

Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the

prediction of future oil production, estimation of the location of bypassed oil, and optimiza-

tion of reservoir management. But while the volume of data that can potentially provide

information on reservoir architecture and fluid distributions has increased enormously in the

past decade, it is not yet possible to make use of all the available data in an integrated

fashion. While it is relatively easy to generate plausible reservoir models that honor static

data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir

models that honor dynamic data such as transient pressures, saturations, and flow rates.

As a result, the uncertainty in reservoir properties is higher than it could be and reservoir

management can not be optimized. The goal of this project is to develop computationally

efficient automatic history matching techniques for generating geologically plausible reservoir

models which honor both static and dynamic data. Solution of this problem is necessary

for the quantification of uncertainty in future reservoir performance predictions and for the

optimization of reservoir management.

Facies (defined here as regions of relatively uniform petrophysical properties) are com-

mon features of all reservoirs. Because the flow properties of the various facies can vary

greatly, knowledge of the location of facies boundaries is of utmost importance for the pre-

diction of reservoir performance and for the optimization of reservoir management. When

the boundaries between facies are fairly well known, but flow properties are poorly known,

the average properties for a facies can be determined using traditional techniques. Tradi-

tional history matching honors dynamic data by adjusting petrophysical properties in large

areas, but in the process of adjusting the reservoir model ignores the static data and often

results in implausible reservoir models. In general, boundary locations, average permeabil-

ity and porosity, relative permeability curves, and local flow properties may all need to be

adjusted to achieve a plausible reservoir model that honors all data. In this project, we

will characterize the distribution of geologic facies as an indicator random field, making use

of the tools of geostatistics as well as the tools of inverse and probability theory for data

integration.
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EXECUTIVE SUMMARY

Automatic history matching of multi-phase flow production data can be used to construct es-

timates or realizations of reservoir properties that are consistent with time-lapse seismic data,

production data and static data obtained from logs, cores and geologic and geophysical inter-

pretation. The automatic history matching procedure used here requires the minimization

of an objective function which consists of the sum of a regularization term and production

data mismatch terms. The regularization term represents a geostatistical model constructed

from static data. A Levenberg-Marquardt algorithm is applied to minimize the appropri-

ate objective function. Currently, we are able to estimate or construct realizations of the

porosity, horizontal permeability and vertical permeability fields as well as estimates of the

well skin factors. Here, the porosity, horizontal permeability and vertical permeability fields

consist of gridblock permeabilities and porosities. In fact, we actually construct estimates or

realizations of log-permeabilities and then convert these results to permeabilities. The reason

for this is that the theoretical justification of our approach to automatic history matching

is based on Bayesian statistics and in this setting the permeability fields are assumed to be

log-normal.

As currently implemented, the Levenberg-Marquardt algorithm requires the calculation

of individual sensitivity coefficients. Adjoint equations for three-dimensional, three-phase

flow problems are developed and implemented to calculate the sensitivity of production data

to permeability fields and well skin factors. Typically, the development of adjoint equations

is tedious and lengthy, but with the formulation given here, the adjoint equations can easily

be incorporated into a fully-implicit finite-difference simulator to obtain code for automatic

history matching.

Procedures to ascertain the value of particular types of data (pressure, producing gas-oil

ratio and water-oil ratio) for reducing the uncertainty in estimates of reservoir properties are

applied and discussed.

To calculate all sensitivity coefficients required to history match a data set consisting

of Nd data, requires the solution of Nd adjoint systems. If the Nd production data are

1
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equally spaced in time, the solution of all the adjoint systems requires roughly the same

computational time as Nd/2 forward simulation runs. It may be possible to reduce the

computational time expended in solving the adjoint systems by a factor of five or more by

viewing the total set of adjoint equations at each time step as one matrix problem with

multiple right-hand sides (see Wu et al. (1999) and Killough et al. (1995)). We have not

implemented such a scheme, because we currently believe that optimization schemes which

require only the gradient of the objective function hold more promise. In any case, if Nd,

is large, the generation of all sensitivity coefficients using the adjoint method may not be

feasible. One possible solution is to search for solutions within a subspace of the model

parameters. In Chapter 3 we describe a subspace approach that is fairly efficient and results

in nearly the same solution as is obtained from the full parameter space.

Later in this report, we explore variable metric and preconditioned conjugate gradient

methods for minimizing the appropriate objective function. These methods do not require

the calculation of all sensitivity coefficients. They require only the gradient of the objec-

tive function, which can be calculated from a single adjoint solution. Thus, even if these

algorithms require significantly more iterations to converge, they may still require a small

fraction of the computer time required to obtain convergence with the Levenberg-Marquardt

algorithm. Preconditioned conjugate gradient methods and some variable metric meth-

ods also require far less computer memory than the Levenberg-Marquardt algorithm. In

this report, we explore the application of variable metric and conjugate gradient methods

to history-match pressure data from a gas reservoir. We have formulated a limited mem-

ory Broyden-Fletcher-Goldfarb-Shannon (LBFGS) algorithm and a preconditioned conjugate

gradient algorithm which we believe may be efficient for large scale optimization problems.

For history matching data from a single-phase gas reservoir, the results suggest that these

methods may be far more efficient than the Levenberg-Marquardt algorithm when the num-

ber of production data and the number of model parameters are both large. The LBFGS

and preconditioned conjugate gradient methods, however, have not yet been implemented

for history matching multiphase flow production data.

One of the primary motivations for the development of methods of history matching that

can deal with large amounts of data and large models, is the need to incorporate time-lapse

seismic data into reservoir characterization. In Chapter 4 we discuss some preliminary work

on the problem of incorporating time-lapse seismic, and its sensitivity to uncertainty in

extraneous parameters.

2



Chapter 1

INTRODUCTION

Automatic history matching is based on minimizing an objective function which includes a

sum of production data mismatch terms squared. Typically, minimization is done based on a

derivative based optimization routine, such as the Gauss-Newton and Levenberg-Marquardt

algorithms, because algorithms which do not use derivative information converge too slowly

for practical applications. We refer to the reservoir parameters to be estimated as model pa-

rameters. The model parameters typically represent reservoir simulator gridblock porosities

and permeabilities (or log-permeabilities) but may also represent well skin factors, transmis-

sibility multipliers, parameters describing relative permeability curves or parameters describ-

ing facies boundaries. Standard implementations of the Gauss-Newton method or Levenberg-

Marquardt algorithm require calculation of sensitivity coefficients, which formally represent

the derivative of predicted production data with respect to the model parameters.

For automatic history matching problems of interest to us, the number of model pa-

rameters is greater than the number of independent production data and thus the history

matching problem does not have a unique solution. If the Gauss-Newton procedure is ap-

plied to minimize an objective function consisting of only the sum of squared production

data misfit terms, the Hessian matrix will be singular and the optimization algorithm will

be unstable. This instability problem can be avoided by adding a regularization term to the

objective function to be minimized; see Tikhonov (1963) and Parker (1994). With a proper

regularization, the Hessian matrix in the Gauss-Newton method will be real symmetric pos-

itive definite and hence nonsingular. In this work, we use a prior geostatistical model to

provide regularization. With this approach, the history matching problem is equivalent to

a Bayesian estimation problem (Gavalas et al., 1976; Tarantola, 1987; He et al., 1997; Wu

et al., 1999).

The Gauss-Newton method is popular because it converges quadratically in the neigh-

3
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borhood of a minimum; see, for example, Fletcher (1987). Sometimes, however, if the initial

guess in the Gauss-Newton method results in a large initial data mismatch, the Gauss-

Newton will converge to a reservoir model which represents a local minimum and does not

give an acceptable match of production data; see, Wu et al. (1999). For this reason, we often

apply a Levenberg-Marquardt algorithm instead of the Gauss-Newton method.

Automatic history matching traces its roots to research conducted in the 1960’s by

Jacquard (1964), Jacquard and Jain (1965) and Jahns (1966). To the best of our knowledge,

Jacquard and Jain (1965) presented the first procedure for numerically computing sensitivity

coefficients for history matching purposes. They applied their method to the estimation of

permeability in a two-dimensional reservoir from pressure data obtained under single-phase

flow conditions. They used a combination of zonation (less than twenty distinct values) and

an algorithm conceptually similar to the Levenberg-Marquardt algorithm to provide regular-

ization. Jahns estimated transmissibility (kh/µ) values and storativity (φcth) simultaneously

by history matching single-phase flow pressure data. He used the finite difference method

to compute sensitivity coefficients and applied the Gauss-Newton method with an exact line

search to estimate the rock property fields by minimizing an objective function consisting

only of the sum of squared pressure mismatch terms. Zonation was used to provide regular-

ization. Jahns actually used a sequence of minimization steps where the number of zones,

and hence the number of parameters was increased at each minimization step. The maximum

number of parameters estimated was nine, eight zonal transmissibilities (or permeabilities)

and total storativity. The finite difference method used to compute sensitivities requires

Nm+1 runs of the simulator where Nm is the number of model parameters estimated. This

procedure would not be feasible when thousands of model parameters are estimated.

Jacquard and Jain (1965) based their procedure for computing sensitivity coefficients on

an electric-circuit analogue. Later, motivated by Jacquard and Jain’s ideas, Carter et al.

(1974) presented an elegant derivation of a method to compute sensitivity coefficients for two-

dimensional single-phase flow problems. As originally presented, the Carter et al. procedure

can be applied to compute the sensitivity of simulator gridblock pressures to all gridblock

permeabilities and porosities. If each well penetrates only a single gridblock, one can compute

the sensitivity of the wellbore pressure to model parameters from the well’s gridblock pressure

sensitivities, provided the simulator uses a formula like the one of Peaceman (1978) to relate

wellbore pressure and gridblock pressure. For two-dimensional single-phase flow problems

with pressure measurements at Nw wells, this procedure requires Nw+1 reservoir simulation

runs to compute all sensitivity coefficients regardless of the number of model parameters and

regardless of the number of pressure data. For three-dimensional problems, the number of

4
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simulation runs required would be equal to one plus the number of gridblocks penetrated

by wells. If the number of such gridblocks is large, the Carter et al. procedure becomes

less computationally attractive. However, He et al. (1996) have developed an approximate

three-dimensional version of the Carter et al. method which is computationally efficient.

Regardless of the number of gridblocks penetrated by wells, the He et al. method requires

only Nw + 1 reservoir simulation runs to compute the sensitivity of all well pressure data to

all gridblock permeabilities and porosities. The method is only approximate and does not

always yield accurate results if vertical flow is significant in gridblocks penetrated by wells.

It is not clear, however, whether the fact that the sensitivity coefficients are approximate

leads to significant errors in the history-matching process.

For nonlinear problems, e.g., multiphase flow problems, the derivations of Carter et al.

(1974) and He et al. (1996) do not apply. Thus, we are forced to seek other alternatives. One

possible choice is the adjoint or optimal control method, introduced independently for the

single-phase history matching problem by Chen et al. (1974) and Chavent et al. (1975). (For

single-phase flow problems, Carter et al. (1982) have shown that their method is equivalent

to the adjoint method.)

Unlike the Carter et al. (1982) method, however, the adjoint method can be applied

to compute sensitivity coefficients in multiphase flow problems. Unfortunately, the proce-

dure requires Nd adjoint solutions where Nd is the number of production data to be history

matched. The sensitivities can be calculated easily once the adjoint variables have been

computed. Solving an adjoint problem is similar to solving the simulation finite difference

equations with two distinct differences: (i) to find the adjoint variables needed to computed

the sensitivity of a particular production data at the time tl, the appropriate adjoint prob-

lem is solved backward in time, from time tl to time zero; (ii) unlike the forward problem

(simulator problem), the adjoint problem is linear. At each time step in the adjoint solu-

tion, a matrix problem is solved. The coefficient matrix is independent of the production

data but the right hand side of the matrix problem is determined directly from the specific

production data. If Nd production data are uniformly spaced in time and the final time at

which we have measured production data is tL, then computing all adjoint solutions needed

to compute the sensitivities of all production data effectively requires solving a sequence

of matrix problems related to solving the adjoint problem backward in time from tL. At

each time step, the matrix problem is solved with an average of (Nd + 1)/2 right-hand side

vectors; see Wu et al. (1999) for additional discussion. Even if one uses a procedure based

on solving a matrix problem with multiple right hand sides, it is likely that solution of the

adjoint systems needed to compute sensitivities for Nd production data will not be feasible

5
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when Nd is large. If one assumes that solving the adjoint matrix systems with an average

of (Nd+1)/2 right hand side vectors is equivalent to 0.05 times (Nd+1)/2 simulation runs,

the number of equivalent simulation runs required is prohibitive if there are several hundred

production data to be matched. Because of this, the adjoint method traditionally has been

used only in conjunction with optimization methods which require only the gradient of the

objective function, e.g., conjugate gradient or variable metric methods; see, for example,

Wasserman et al. (1975), Lee and Seinfeld (1987a,b), Yang and Watson (1988), Makhlouf

et al. (1993). Computation of the gradient of the objective function requires only the so-

lution of a single adjoint system and thus requires no more computational time than one

reservoir simulation run. Unfortunately, the implementations of these methods have resulted

in slow convergence. For example, Makhlouf et al. (1993) reported that history matching a

two-phase flow 450 cell reservoir model required 6400 CPU seconds on a CRAY X-MP/48.

In their work, a conjugate gradient method was used as the optimization algorithm. For

one three-phase flow problem with 450 grid blocks, 222 iterations of the conjugate gradient

algorithm were required to obtain convergence.

Largely because of the results of Makhlouf et al. (1993), until recently, our work on auto-

matic history matching has focused on using the Gauss-Newton and Levenberg-Marquardt

algorithms instead of conjugate gradient or variable metric algorithms. Wu et al. (1999) were

the first to use the adjoint method in conjunction with the Gauss-Newton method to perform

history matching. They implemented the adjoint method to compute the sensitivity of all

production data to gridblock permeabilities and porosities. In their work, they constructed

estimates and realizations of permeability and porosity fields by conditioning a prior geosta-

tistical model to pressure and water-oil ratio data. They considered only two-dimensional,

two-phase flow (water-oil) systems. In this work, we extend the procedure of Wu et al. to

three-dimensional, three-phase flow problems. This minimization procedure will definitely

not be practically feasible if both the number of data and the number of model parameters

exceed a few hundred.

Perhaps because it is simple to implement, the so-called gradient method is frequently

used to compute sensitivity coefficients needed for automatic history matching. This method

was introduced into the petroleum engineering literature by Anterion et al. (1989), but was

known earlier in the ground water hydrology literature as the sensitivity coefficient method;

see, for example, the review of parameter identification methods by Yeh (1986). In this

procedure, the sensitivity of pressures and saturations to model parameters at the end of a

simulator time-step can be obtained by solving a matrix problem obtained by differentiating

the matrix form of the finite-difference equations with respect to a model parameter, e.g., a

6
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gridblock value of permeability or porosity. From the pressure and saturation sensitivities,

one can easily construct other sensitivity coefficients, e.g., the sensitivity of gas-oil ratio

to model parameters. The advantage of the gradient simulator method is that the matrix

problem solved to obtain these sensitivity coefficients involves the same coefficient matrix

as the one used to solve for pressures and saturations at this time step. Moreover, the

coefficient matrix does not depend on the model parameters; only the right hand side of the

matrix problem depends on the model parameters. Thus, the problem reduces to solving a

matrix problem with multiple right-hand side vectors, one right-hand side vector, for each

model parameter. The difficulty is that if we wish to estimate (or construct realizations of)

permeabilities and porosities at several thousand gridblocks, then we have several thousand

right-hand sides. The number of right-hand sides is equal to the number of model parameters

to be estimated. With the fast iterative solver developed by Killough et al. (1995), it appears

that the computational time to compute a single sensitivity coefficient is on the order of

10% of a forward simulation. For the gradient simulator to be practical, the number of

model parameters must be small. This means, if the underlying reservoir simulation problem

involves tens of thousands or gridblocks, one must reduce the number of parameters estimated

directly in the optimization algorithm by some form of reparameterization, e.g., zonation

(Jacquard and Jain, 1965) or gradzones (Bissell et al., 1994; Bissell, 1994; Tan, 1995), pilot

points (de Marsily et al., 1984; RamaRao et al., 1995; Bissell et al., 1997) or subspace

methods (Kennett and Williamson, 1988; Oldenburg et al., 1993; Reynolds et al., 1996;

Abacioglu et al., 2000).

When the number of model parameters and number of production data to be matched are

both large and can not be reduced by some reparameterization technique without incurring

a significant loss of information, one must seek an alternative to computing and storing the

full sensitivity coefficient matrix, G. One can write the Gauss-Newton method such that

each iteration requires the solution of an Nd ×Nd matrix problem where Nd represents the

number of production data to be matched. If this matrix problem is solved by a conjugate

gradient method (Hestenes and Stiefel, 1952; Fletcher and Reeves, 1964; Shanno, 1978a,b),

the explicit direct computation of G is not required. Each iteration requires only the product

of G times a vector and the product of the transpose of G times a vector. A procedure for

computing these matrix vector products without first computing G was introduced into the

petroleum engineering literature by Chu et al. (2000) although the basic idea appeared earlier

in a somewhat simpler context in the geophysics literature; see Mackie and Madden (1993).

Although computation of the matrix products is relatively efficient, the conjugate gradient

method may require up to Nd iterations to obtain convergence if the matrix is poorly condi-
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tioned and no good preconditioning matrix is available (see Axelsson (1994)). If Nd is large,

this would render the algorithm impractical. Although the convergence of the conjugate

gradient method can be considerably accelerated by the choice of a good preconditioner, it

is not clear that one can construct a good preconditioner since the coefficient matrix for the

matrix problem that is solved is not explicitly computed. To compute this coefficient matrix

would require the explicit computation of the full sensitivity coefficient matrix G.

One can also avoid explicit computation of all sensitivity coefficients if history match-

ing is done using a nonlinear optimization method, that requires only the gradient of the

objective function. As mentioned previously, Makhlouf et al. (1993) found that a nonlinear

conjugate gradient algorithm could require over two hundred iterations to converge even for

a small three-phase flow history matching problem. As each conjugate gradient iteration

requires roughly the equivalent of three reservoir simulation runs, history matching a large

problem using a nonlinear conjugate gradient method does not appear to be feasible based

on the results of Makhlouf et al. (1993). However, Makhlouf et al. (1993) did not apply

preconditioning. If a good preconditioning matrix can be found for nonlinear conjugate

gradients, it is conceivable that convergence could be considerably accelerated. The most

straightforward choice of a preconditioning matrix (Kalita and Reynolds, 2000) yielded some

improvement in the convergence rate, but also often led to poorer matches of production

data than were obtained with the Gauss-Newton method. In this work, we explore the use

of approximations to the inverse Hessian matrix constructed from a variable metric method

as a preconditioning matrix for the nonlinear conjugate gradient method. We also explore

the direct use of variable metric methods as nonlinear optimization algorithms for automatic

history matching.

Quasi-Newton or variable metric methods, which are based on generating an approxima-

tion to the inverse of the Hessian matrix, require only the gradient of the objective function.

The methods differ in how they correct or update the inverse Hessian approximation at each

iteration. The rank one correction formula was first suggested by Broyden (1967). Another

formula, now called the DFP algorithm, was first suggested by Davidon in 1959 and later

presented by Fletcher and Powell (1963). The BFGS correction formula, suggested inde-

pendently by Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970), and

several variants of the BFGS formula (like the self-scaling variable metric (SSVM) by Oren

(1973), limited memory BFGS by Nocedal (1980) and Liu and Nocedal (1989)) have also

been advanced as useful variable metric methods.

The conjugate gradient method was originally proposed by Hestenes and Stiefel (1952)

for solving linear systems and extended to nonlinear optimization by Fletcher and Reeves
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(1964) to obtain the Fletcher-Reeves algorithm. Later Polak (1971) proposed a different

formula to calculate the coefficient involved in the search direction update equation. Powell

(1977) presented some numerical results and theoretical reasons which indicate that the

Polak-Ribière algorithm is superior to the Fletcher-Reeves algorithm. The efficiency of the

conjugate gradient method depends primarily on the preconditioner used.

The limited memory BFGS (LBFGS) was designed for the purpose of solving large scale

problems which involve thousands of variables. Limited memory methods originated with

the work of Shanno (1978a), and were subsequently developed and analyzed by Buckley

(1978), Nazareth (1979), Nocedal (1980), Shanno (1978b), and Buckley and Lenir (1983).

Liu and Nocedal (1989), and Nash and Nocedal (1991) tested LBFGS method with a set of

problems. They concluded that LBFGS performs better than conjugate gradient in terms

of computational efficiency, except in cases where the function evaluation is inexpensive.

Nash and Nocedal (1991) also tested a truncated-Newton method in their work. From their

comparison, none of the algorithms is clearly superior to the other.

The self-scaling variable metric (SSVM) method was used by Yang and Watson (1988)

on hypothetical water floods of both 1D and 2D reservoir models. The 1D reservoir model

consisted of 10 gridblocks with an injection well at one end and a producing well at the other

end. Sixty data from each well were used for history matching. Four cases based on this

1D reservoir model were tested. The reservoir was characterized by different parameters in

different cases. The number of model parameters varied from 9 to 19. Two other cases were

based on a quarter of a five-spot 2D model which consisted of a 10 × 10 grid. Again sixty

data from each well were history matched. The number of model parameters for these two

cases were 4 and 11 respectively. In this paper, the authors tested four different algorithms,

BFGS, SSVM, conjugate gradient and steepest descent. They concluded that (i) the self-

scaling variable metric method is significantly more efficient than the BFGS method; (ii)

the SSVM and BFGS methods are more efficient and robust than the conjugate gradient

method, except in the case where the objective function is nearly quadratic; and (iii) both

SSVM and BFGS methods perform significantly better than the steepest descent method.

Masumoto (2000) applied the SSVM method to a water-oil two phase fluid flow problem.

The author considered a 1D reservoir model with 20 gridblocks. With a fixed porosity field,

the author estimated the gridblock permeabilities. The objective function he minimized

included a pressure mismatch part and the pressure derivative mismatch part. The author did

not give any information about how many data he history matched or any assessment of the

minimization algorithm. Savioli and Grattoni (1992) compared four different minimization

algorithms: Davidon-Fletcher-Powell (DFP), Fletcher-Reeves (FR), BFGS and Levenberg-
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Marquardt (LM). The authors presented two examples. In the first example, they estimated

one permeability value and one porosity value by applying these four algorithms. The second

example they considered was an oil-water two phase water flooding problem. They estimated

the exponent used to define the relative permeability and capillary curves with a power law

function (only one adjustable parameter for each curve). They concluded that among these

four algorithms, BFGS performed best in terms of computational efficiency and stability.

Given the small number of parameters estimated, it is difficult to know whether these results

will extrapolate to large scale history matching problems.

In this work, we present the results of experiments on history matching pressure data from

a gas reservoir using preconditioned conjugate gradient and variable metric (quasi-Newton)

methods. Results are compared in terms of three metrics, computational time (measured by

number of equivalent reservoir simulation runs) required for convergence, computer memory

required, and quality of history match. The results identify a specific preconditioned con-

jugate gradient method and a limited memory BFGS as promising optimization algorithms

for automatic history matching of multiphase flow production data.

10



Chapter 2

HISTORY MATCHING OF

PRODUCTION DATA

2.1 Model Estimation and Simulation

Here, we define the reservoir model parameters and the a posteriori probability density

function (pdf) for these parameters. This pdf, which is conditional to production data,

defines the set of plausible reservoir descriptions. We discuss computation of the maximum

a posteriori (MAP) estimate. The MAP estimate is the model which maximizes the a

posteriori pdf and is thus conveniently referred to as the most probable model. Methods for

sampling this pdf to characterize the uncertainty in model parameters and the uncertainty

in performance predictions are discussed only briefly.

2.1.1 The Prior Model.

For simplicity, the reservoir is assumed to be a rectangular parallelepiped which occupies the

region

Ω = {(x, y, z) | 0 < x < Lx, 0 < y < Ly, 0 < z < Lz}. (2.1)

The forward model is a fully-implicit finite-difference simulator based on a block centered

grid. The principle permeability directions are assumed to be aligned with the coordinate

directions so that the permeability tensor is diagonal. Fluid properties are assumed to be

known. Given two-phase oil-water and two-phase oil-gas relative permeabilities, the three-

phase oil relative permeability is constructed from Stone’s Model II; see Aziz and Settari

(1979). Wellbore constraints are handled using the equation of Peaceman (1983).
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In the current version of our inverse code, we can compute sensitivity of production data

to gridblock porosities, horizontal permeabilities, vertical permeabilities and the skin factor

at each well. For the specific example considered here, we only estimate the horizontal and

vertical permeability fields and the well skin factors, so we present our equations in terms of

these model parameters. Thus, if there are N simulator gridblocks and Nw wells, the total

number of model parameters is equal to M = 2N + Nw. Specifically, the vector of model

parameters is given by

m = [mT
k ,m

T
kz ,m

T
s ]
T , (2.2)

where mk is an N -dimensional column with its jth entry equal to the horizontal permeability

for gridblock j, mkz is an N -dimensional column with its jth entry equal to the vertical

permeability for gridblock j, and ms is an Nw dimensional column vector with its jth entry

given by the skin factor at the jth well. These reservoir parameters are modeled as random

variables, so m is a random vector. From a purely history matching point of view, we wish to

construct an estimate of m from production data (dynamic data) and static data. However,

there are an infinite number of models which will give equally reasonable matches of the data,

and it is desirable to define a procedure for generating a particular estimate or to characterize

the uncertainty in reservoir descriptions. From both the philosophical and practical points of

view (see Tarantola (1987) and Omre et al. (1993)), the most challenging part of the inverse

problem is the determination of a representative pdf for reservoir parameters. Similar to the

recent work on automatic history matching by He et al. (1997) and Wu et al. (1999), we follow

ideas that can be found in Tarantola (1987) and simply assume that a prior geostatistical

model for mr = [mT
k ,m

T
kz
]T can be constructed from static data. In our work, we assume this

prior geostatistical model can be represented by a multivariate Gaussian distribution for mr

with a given mean and covariance matrix. In practice, the prior covariance matrix for the rock

property fields can be generated from semivariograms by assuming that horizontal, vertical

permeability can be modeled as stationary random functions. In our implementation, we

make this assumption and then apply the Xu et al. (1992) screening hypothesis to generate

the prior covariance matrix for mr; see, Chu et al. (1995b). In the prior model, each well skin

factor is treated as an independent Gaussian variable with specified mean and variance. If the

skin factor was estimated by fitting pressure data with a classical well testing model solution

using nonlinear regression, then the estimate of the skin factor would be its prior mean

and its variance can be constructed directly from the same information used to construct

confidence intervals.
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The vector of prior means is given by

mprior =







mk,prior

mkz ,prior

ms,prior






. (2.3)

We let Ck denote the prior covariance matrix for mk, Ckz denote the prior covariance for kz,

Ck,kz denote the cross covariance matrix between k and kz and let Cs denote the Nw × Nw

model covariance matrix for the vector of well skin factors. Then the prior model covariance

matrix is given by

CM =







Ck Ck,kz O

Ck,kz Ckz O

O O Cs






, (2.4)

where the O’s denote null submatrices of the appropriate size. If horizontal and vertical

permeability are not correlated, then Ck,kz is also a null matrix.

The prior pdf for m is then given by

πp(m) = a exp
{

− 1

2
(m−mprior)

TC−1
M (m−mprior)

}

, (2.5)

where a is the normalizing constant. Note the model which has the highest probability based

on Eq. 2.5 is m = mprior, thus it is convenient to think of mprior as the best estimate of the

model based on static data.

2.1.2 The a Posteriori Probability Density Function.

We wish to determine the conditional pdf for m given observed production data. Here, we

consider only three types of production data, wellbore pressure (pwf ), producing water-oil

ratio (WOR) and producing gas-oil ratio (GOR). The WOR and GOR data are not actually

measured directly but are constructed from rate measurements. Nevertheless, we will refer

to the values of WOR and GOR as measured or observed data. The column vector dobs,w

contains all observed WOR data that will be used as conditioning data. The column vector

dobs,g contains the set of GOR conditioning data and dobs,p contains all conditioning pressure

data. Throughout, the Nd dimensional column vector dobs includes all production data that

will be used to condition the model m. This may include one type of data, e.g., only GOR

data or multiple types of data, e.g., pressure, WOR and GOR data.

Pressure measurements errors are modeled as independent identically distributed Gaus-

sian random variables with mean zero and variance σ2
p. GOR measurement errors are mod-

eled as independent identically distributed Gaussian random variables with mean zero and
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variance σ2
g . WOR ratio measurement errors are modeled by the procedure introduced by

Wu et al. (1999). In this model, the WOR measurement error depends on the magnitude of

the measurement. Specifically, the variance of a particular measurement error is defined as

Var(eWOR) = WOR2
obsεo +

1

q2
o,obs

max
[

ε2wq
2
w,obs, σ

2
w,min

]

, (2.6)

where eWOR denotes the error in the “measurement” of WOR constructed from the observed

oil and water rates, q2
o,obs and q

2
w,obs. Here, εm denotes the relative measurement error for the

flow rate of phasem. For example, if the relative measurement error in the oil flow rate is two

per cent, then εo = 0.02. The term σw,min is used so that we do not prescribe unrealistically

small measurement errors for the WOR when the WOR is small. To use this model, one

must specify values of εw, εo, and σw,min. The three diagonal matrices, CD,p, CD,w and CD,g,

respectively, denote the covariance matrices for pressure data measurement errors, WOR

measurement errors and GOR measurement errors. If the total number of conditioning data

is Nd, i.e., the dimension of dobs is Nd, then the overall data covariance matrix is given by

the following Nd ×Nd diagonal matrix:

CD =







CD,p O O

O CD,w O

O O CD,g






. (2.7)

We of course do not need to use all types of data as conditioning data. For example, if we

wish to history match only GOR data, then dobs = dobs,g and CD = CD,g.

For a given model m, d denotes the predicted, true or calculated data corresponding to

dobs. If m is the true reservoir from which dobs was obtained and there are no measurement

errors, then d = dobs. As d depends on the model, we write

d = g(m), (2.8)

to represent the operation of calculating d given m. In our work, Eq. 2.8 represents the

operation of running the reservoir simulator to calculate d.

Bayes’ theorem (see Tarantola (1987)) implies that the a posteriori pdf for the model

m conditional to the observed data is proportional to the product of the prior pdf and the

likelihood function for the model, and is thus given by

f(m|dobs) = a exp{−O(m)}, (2.9)

where a is the normalizing constant and

O(m) =
1

2

[

(

m−mprior

)T
C−1
M

(

m−mprior

)

+
(

g(m)− dobs

)T
C−1
D

(

g(m)− dobs

)

]

. (2.10)
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Construction of the MAP Estimate and Realizations.

The maximum a posteriori (MAP) estimate is denoted by m∞ and is defined to be the

model that maximizes the pdf of Eq. 2.9, or equivalently minimizes the objective function of

Eq. 2.10. Although gradient based methods appear to be the only feasible way to construct

a minimum of O(m), there is no guarantee that Eq. 2.10 has a unique global minimum, or

that a gradient-based optimization procedure will converge to a global minimum. In fact,

if a gradient method is applied to minimize O(m), it is important to check the results to

ensure that the method did not converge to a local minimum which yields an unacceptable

match of production data, or unreasonable reservoir properties.

If one wishes to generate multiple realizations of the model, it is necessary to sample the

conditional pdf of Eq. 2.9. The most common way to do this is to apply the method proposed

by Oliver et al. (1996) and Kitanidis (1995). In our work this method is referred to as the

randomized maximum likelihood method. To generate a realization with this procedure, we

calculate a unconditional realization muc from

muc = mprior + C
1/2
M zM , (2.11)

where zM isNm-dimensional column vector of independent standard random normal deviates.

The matrix C
1/2
M is a square root of CM and is normally chosen as C

1/2
M = L where

CM = LLT , (2.12)

is the Cholesky decomposition of CM . For large problems, generation of the Cholesky de-

composition is not feasible, and we apply sequential Gaussian co-simulation to generate an

unconditional realization of the model; see Gómez-Hernández and Journel (1992). Similarly

a realization of the data is generated from

duc = dobs + C
1/2
D zD, (2.13)

where zD is an Nd-dimensional column vector of standard random normal deviates. The

conditional realization of m is then obtained by minimizing

Or(m) =
1

2
(m−muc)

TC−1
M (m−muc) +

1

2
(d− duc)

TC−1
D (d− duc). (2.14)

It can be argued (see Zhang et al. (2001)) that O(m) can be approximated as a chi-squared

distribution with expectation given by E(O(m)) = Nd and standard deviation given approxi-

mately by σ(O(m)) ≈
√
2Nd. Virtually all samples should be within five standard deviations
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of the mean. Thus, if applying an optimization algorithm to minimize Eq. 2.14 gives a result

mc, we accept mc as a legitimate realization if and only if

Nd − 5
√

2Nd ≤ O(mc) ≤ Nd + 5
√

2Nd. (2.15)

If Eq. 2.15 is not satisfied, the minimization algorithm has failed. Normally this failure

indicates that the algorithm has converged to a local minimum or converges so slowly that

the decrease in the objective function is so small that the convergence criteria, which is based

on the change in the objective function, is satisfied before we actually reach a minimum.

Ultimately, we wish to be able to history match several hundred production data to gen-

erate realizations of tens of thousands of model parameters. Thus computational efficiency is

an extremely important consideration. It is equally important that the algorithm be robust,

i.e., convergence failures should be extremely small. If minimization of Or(m) frequently re-

sult in value Or(mc) which does not satisfy Eq. 2.15, the utility of the optimization algorithm

is diminished.

The Gauss-Newton method with restricted step has often been used to minimize O(m);

see Chu et al. (1995a) However, if the initial guess for the model yields a very poor match

of the observed production data, a straightforward application of the method may converge

extremely slowly or may converge to a model which yields an unacceptable match of pro-

duction data; see Wu et al. (1999). Wu et al. (1999) overcame this problem by using an

artificially high value for the variance of data measurement errors at early iterations. Here,

we avoid this difficulty by using a form of the Levenberg-Marquardt algorithm introduced

by Bi (1999). This algorithm can be written in two different forms. The first comes from a

modification of the standard Gauss-Newton method and is given by

[

(1 + λl)C
−1
M +GT

l C
−1
D Gl

]−1

δml+1 = −
[

C−1
M (ml −mprior) +GT

l C
−1
D (g(ml)− dobs)

]

, (2.16)

ml+1 = ml + αlδm
l+1 (2.17)

where αl = 1. Here l, as either a subscript or superscript, refers to the iteration index. The

matrix Gl denotes the Nd ×M sensitivity coefficient matrix evaluated at ml. The entry in

the ith row and jth column of Gl represents the sensitivity of the ith calculated data gi to

the jth model parameter evaluated at ml, i.e., this entry is ∂gi(m
l)/∂mj, where mj is the

jth entry of m. If O(ml+1) < O(ml), we set λl+1 = λl/10, and if the objective function does

not decrease, we increase the Levenberg-Marquardt parameter by a factor of 10. We start

with an initial value of λ = 10, 000. For the multiphase flow problems we have considered to

date, this simple procedure works well.
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Although we focus on the generation of the MAP estimate in this work, it is possible to

use a similar procedure to generate a realization with the randomized maximum likelihood

method introduced by Kitanidis (1995) and Oliver et al. (1996). To do so, we simply replace

dobs by duc and mprior by muc in Eq. 2.16.

The second form of the Levenberg-Marquardt algorithm can be obtained from Eq. 2.16

by applying standard matrix inversion lemmas (see Tarantola (1987)) and is given by

δml+1 =
ml −mprior

1 + λl
+CMG

T
l

[

(1+ λl)CD +GlCMG
T
l

]−1[Gl(m
l −mprior)

1 + λl
−
(

g(ml)− dobs

)

]

.

(2.18)

Againml+1 is obtained from Eq. 2.17 with αl = 1. Choosing λ = 0 in Eqs. 2.16 and 2.18 gives

two forms of the Gauss-Newton method. When the Gauss-Newton algorithm is applied, we

use the restricted step method Fletcher (1987) to calculate the damping factor αl in Eq. 2.17.

The formula of Eq. 2.16 requires calculation of C−1
M and then solving an Nm×Nm matrix

problem where Nm is the number of model parameters. If the number of model parameters is

small, this may be a computationally efficient procedure. Applying Eq. 2.18 requires solving

an Nd × Nd matrix problem where Nd is the number of data. If the number of production

data that will be history matched is small, this is the preferred procedure. If Nm exceeds a

few thousand and Nd exceeds a few hundred, the computational resources required to apply

either form of the LM algorithm are too large for routine practical application.

Eq. 2.18 requires solving

(

(1 + λl)CD +GlCMG
T
l

)

x = Gl(m
l −mprior)− (g(ml)− dobs), (2.19)

for

x =
(

CD +GlCMG
T
l

)−1(
Gl(m

l −mprior)− (g(ml)− dobs)
)

. (2.20)

If the matrix problem of Eq. 2.19 is solved iteratively by the conjugate gradient method,

then one does not need to explicitly compute G; one only needs to be able to calculate Gu

and GTv for vectors u and v at each iteration of the Gauss-Newton or Levenberg-Marquardt

algorithm; see Chu et al. (2000) et al. A clear presentation of how one may compute Gu

and GTv is given in Abacioglu (2001). Computation of Gu requires a forward run of the

simulation. Computation of GTv requires one solution of the adjoint system. As the solution

of the adjoint system requires roughly the same computational time as one simulation run,

each iteration of the conjugate gradient method requires roughly two reservoir simulation

runs. Computation of the right hand side of Eq. 2.19 also requires one simulator run but

must be done only once for each Gauss-Newton iteration. To apply the conjugate gradient

algorithm, we need to provide the initial estimate for the solution and calculate the residual
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corresponding to the initial estimate which requires one operation of Gu and one operation

of GTv. To accomplish one Levenberg-Marquardt iteration, we need one more operation of

GTv outside the inner iteration; see Eq. 2.18. Thus, if the inner iteration (the solution of

Eq. 2.19 by the conjugate gradient method) requires on average kcg iterations for convergence

and kLM iterations are required to obtain convergence of the Levenberg-Marquardt, roughly

ILM = kLM(2kcg + 4), (2.21)

reservoir simulation runs are required to generate a MAP estimate or realization. For the

overall procedure to be feasible kcg must be quite small. If an extremely good preconditioning

matrix could be found for the conjugate gradient step, it is likely that the method could be

quite effective. Since the matrix (1 + λl)CD +GlCMG
T
l is never explicitly formed, however,

it is difficult to see how a good preconditioner could be generated. (For the case where CD

is a constant diagonal matrix, using CD as a preconditioning matrix would not alter the

condition number.)

For the multiphase flow history matching examples presented in this work, the form of

the LM algorithm given by 2.18 is applied. The convergence tolerance is defined by

O(ml)−O(ml+1)

O(ml) + 10−14
≤ 10−3. (2.22)

2.1.3 Evaluation of Uncertainty.

The best way to evaluate uncertainty in reservoir properties would be to construct a large

suite of realizations by sampling the pdf of Eq. 2.9; see, for example, Hegstad and Omre

(1997), Omre et al. (1996), He (1997) or Wu (1999). Although sampling the pdf is preferable,

the computational expense of doing so even with the relatively efficient randomized likelihood

method can be considerable. For the case where we simply construct the MAP estimate

of the model, the a posteriori covariance matrix can be used to provide an approximate

evaluation of uncertainty in individual model parameters. Tarantola (1987) has shown that

the a posteriori covariance matrix can be written as

CMP = CM − CMG
T
(

GCMG
T + CD

)−1
GCM . (2.23)

In this equation, G is the matrix of sensitivity coefficients evaluated at the maximum a

posteriori estimate of the model. The matrix CMP gives the exact characterization of the

uncertainty in model parameters if the relationship between data and model parameters is

linear. In this case, the diagonal elements of this matrix give the a posteriori variances of the
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model parameters, which represents one measure of the uncertainty in the model parame-

ters. One should note, however, that the ith diagonal element of CMP gives only the variance

of the marginal distribution of mi and neglects the effect that the correlation between pa-

rameters has on the reduction in uncertainty. For three-dimensional problems, conditioning

to production data may yield a negligible reduction in the uncertainty in individual model

parameters, but may significantly reduce the uncertainty in predicted performance; see He

(1997) and He et al. (1997)

As model parameters have dimensions and the differences in variances between different

types of parameters may be large, one should scale the a posteriori variances to evaluate the

relative reduction in uncertainty; see He et al. (1997). For the problems considered here,

we will simply use the diagonal entries of CMP divided by the corresponding prior variances

(diagonal entries of CM) to measure the reduction in model uncertainty.

Sensitivity coefficients indicate how strongly a model parameter influences a particular

data. In particular, the sensitivity of the ith calculated data di = gi(m) to the jth model

parameter mj is given by

ŝi,j =
∂gi
∂mj

. (2.24)

Recently, Zhang et al. (2000) showed that examination of raw sensitivity coefficients can

result in misleading interpretations of which model parameters are best resolved by observed

data. This is particularly true for parameters which have radically different magnitudes, such

as porosity and permeability. For example, the sensitivity of active well transient pressure

data to porosity may be much greater than the sensitivity of pressure data to permeability

although flowing wellbore pressure data resolves permeability better than it does porosity.

To understand the relative reduction in the uncertainty in model parameters that is obtained

by history matching observed data, Zhang et al. (2000) introduced dimensionless sensitivity

coefficients. The dimensionless sensitivity of the ith data, gi, to the jth model parameter is

defined by

si,j =
∂gi
∂mj

σmj

σd,i
, (2.25)

where σmj
denotes the prior standard deviation of model parameter mj and σd,i denotes

the standard deviation of the measurement error for the ith observed data. At least in an

approximate sense, if si,j > si,l, then conditioning a model to observed data dobs,i will reduce

the uncertainty in parameter mj more than parameter ml. If ml represents a gridblock

porosity and mj a gridblock log-permeability, then the standard deviation for ml typically

will exceed one hundred times the standard deviation of porosity, i.e., σmj
> 100σml

. Thus,

we may have si,j > si,l even though ŝi,l > ŝi,j . Dimensionless sensitivities give only an
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approximate measure of the reduction in uncertainty in model parameters because they do

not account for any reduction in uncertainty due to prior or posterior correlations between

parameters.

2.2 Calculation of Sensitivity Coefficients

The equations that must be solved to compute sensitivity coefficient with the adjoint method

are presented in this section.

2.2.1 The Reservoir Simulator.

The simulator used is based on a fully-implicit, finite-difference formulation of the three-

phase flow, black-oil equations expressed in an x–y–z coordinate system which apply on Ω;

see Eq. 2.1. At every gridblock, three finite difference equations apply. These 3N equations

represent the mass balances for each of the three components. In addition, a constraint is

applied at each of the Nw wells to yield Nw additional equations. At each well at each time

step, either an individual phase flow rate, the total flow rate or the wellbore pressure may be

specified as a well constraint. In the results considered here, capillary pressures are assumed

to be negligible.

For gridblock i, the primary variables are pi, Sw,i and Sg,i. In addition, the flowing

wellbore pressure, pwf,j at the jth well is a primary variable. We let yn denote a column

vector which contains the set of primary variables at time step n. At gridblock i, the finite

difference equation for component u can be written

fu,i(y
n+1, yn,m) = fn+1

u,i = 0, (2.26)

for u = o, w, g and i = 1, . . . , N . The well constraints are represented by

fwf,j(y
n+1, yn,m) = fn+1

wf,j = 0, (2.27)

for j = 1, 2, . . . , Nw. If the flowing wellbore pressure at well j at time tn+1 is specified to be

equal to pn+1
wf,j,0, then Eq. 2.27 is given by

fwf,j(y
n+1, yn,m) = pn+1

wf,j − pn+1
wf,j,0 = 0. (2.28)

Eqs. 2.26 and 2.27 represent the system of 3N +Nw equations that are solved to obtain the

values of the primary variables at time tn+1 = tn+∆tn. For wells at which the flowing bottom

hole pressure or total flow rate is specified, phase flow rates at each well are computed by
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using the equation of Peaceman (1983). The complete system of equations can formally be

written as

fn+1 = f(yn+1, yn,m) =








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where

yn+1 =






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. (2.30)

Eq. 2.29 is solved for yn+1 by the Newton-Raphson method (Aziz and Settari (1979))

which can be written as

Jνδyn+1,ν+1 = −f(yn+1,ν , yn,m) (2.31)

yn+1,ν+1 = yn+1,ν + δyn+1,ν+1, (2.32)

where ν is the iteration index and

Jν =

(

[∇yn+1fT ]T

)

yn+1,ν

, (2.33)

is the Jacobian matrix evaluated at yn+1,ν ,which represents the νth approximation for yn+1.

2.2.2 Adjoint Equations.

We define a general scalar function by

β = β(y1, ..., yL,m), (2.34)
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where L corresponds to the last time tL at which one wishes to compute sensitivity coeffi-

cients. The objective is to compute the sensitivities coefficients for β. As is well known, the

adjoint functional J is obtained by adjoining Eq. 2.29 to the function β to obtain

J = β +
L
∑

n=0

(λn+1)Tfn+1, (2.35)

where λn+1 is the vector of adjoint variables at time step n+ 1, and is given by

λn+1 =
[

λn+1
1 , λn+1

2 , . . . , λn+1
3N+Nw

]T

. (2.36)

Taking the total differential of Eq. 2.35, and doing some simple rearranging gives

dJ = dβ+
L
∑

n=0

{

(λn+1)T [∇yn+1(fn+1)T ]Tdyn+1+[∇m(f
n+1)T ]Tdm

}

+
L
∑

n=0

(λn+1)T [∇yn(f
n+1)T ]Tdyn

= dβ+BT +
L
∑

n=1

{[(λn)T [∇yn(f
n)T ]T +(λn+1)T [∇yn(f

n+1)T ]T ]dyn+(λn)T [∇m(f
n)T ]Tdm},

(2.37)

where

BT = (λL+1)T{[∇yL+1(fL+1)T ]TdyL+1 + [∇m(f
L+1)T ]Tdm}+ (λ1)T [∇y0(f 1)T ]Tdy0. (2.38)

The total differential of β can be written as

dβ =
L
∑

n=1

[∇ynβ]
Tdyn + [∇mβ]

Tdm. (2.39)

The initial conditions are fixed, so

dy0 = 0. (2.40)

Choosing

λL+1 = 0, (2.41)

it follows that BT = 0. Using this result and Eq. 2.39 in Eq. 2.37 and rearranging the

resulting equation gives

dJ =
L
∑

n=1

[{

(λn)T [∇yn(f
n)T ]T + (λn+1)T [∇yn(f

n+1)T ]T + [∇ynβ]
T
}

dyn
]

+ {[∇mβ]
T +

N
∑

n=1

(λn)T [∇m(f
n)T ]T}dm. (2.42)
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To obtain the adjoint system, the coefficients multiplying dyn in Eq. 2.42 are set equal to

zero, i.e., we require that the adjoint variables satisfy

(λn)T [∇yn(f
n)T ]T + (λn+1)T [∇yn(f

n+1)T ]T + [∇ynβ]
T = 0. (2.43)

Taking the transpose of Eq. 2.43, gives the adjoint system

[∇yn(f
n)T ]λn = −[∇yn(f

n+1)T ]λn+1 −∇ynβ. (2.44)

This system is solved backwards in time for n = L,L− 1, . . . , 1.

Note that the coefficient matrix (∇yn(f
n)T ) in the adjoint system is simply the trans-

pose of the Jacobian matrix of Eq. 2.33 evaluated at yn. The matrix multiplying λn+1 in

Eq. 2.44 is a diagonal band matrix which is only related to the accumulation terms in the

reservoir simulation equations. This is an important result as it means that one can extract

the matrices involved in the adjoint equations directly from the Jacobian matrices used in

the simulator. This avoids the tedious process of directly deriving the individual adjoint

equations. In this sense, our derivation shows that the adjoint method is somewhat similar

to the gradient simulator method (Anterion et al. (1989)) in that the coefficient matrices

that appear in both problems can be formed directly from Jacobian matrices used in solv-

ing the finite-difference equations by the Newton-Raphson method. As the adjoint system

is solved backwards in time, information needed to compute the transpose of the Jacobian

matrices must be saved from the simulation run, whereas, in the gradient simulator method,

the desired sensitivity coefficients are computed at each time step during the simulation run.

Considering J as a function of m , we can write its total differential as

dJ = (∇mJ)
Tdm. (2.45)

By comparing Eq. 2.42 and Eq. 2.45, it follows that the desired sensitivity coefficients for

J , or equivalently, β are given by

∇mJ = ∇mβ +
L
∑

n=1

[∇m(f
n)T ](λn). (2.46)

In Eq. 2.46, the gradient ∇mβ involves the partial derivatives of β with respect to the model

parameters. If the jth model parameter does not explicitly appear in the expression for β,

then ∂β/∂mj = 0. For example, if β = pnwf , then we set ∇mβ = 0 in Eq. 2.46.

For the results considered here, the choices of β are restricted to the wellbore pressure,

GOR and WOR at time steps where observed data for these variables are used as condi-

tioning data. If one wishes to use a conjugate gradient (Makhlouf et al. (1993)) or variable
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metric method (Yang and Watson (1988)), then one needs only compute the gradient of the

objective function and this can be done by setting β = O(m) in the adjoint procedure. In

this case, one only needs to solve the adjoint system Eq. 2.44 once to obtain the gradient.

2.3 Dimensionless Sensitivity Coefficients, An Exam-

ple

The example presented here is one which is sufficiently complex to be instructive but small

enough so that we were able to check the sensitivity coefficients computed by the adjoint

method with those computed by the finite-difference method. Although some of the sensi-

tivity coefficient results presented are not easy to explain from a purely physical viewpoint,

all of them have been compared with results generated with the finite-difference method. (In

some previous publications, the finite-difference method was referred to as the direct method,

see, for example, Chu and Reynolds (1995) or He et al. (1997).) For all cases that we have

considered, the adjoint method and finite-difference method gave results that agreed to two

significant digits. Thus plots of the sensitivities obtained from the two methods are graph-

ically indistinguishable and we present only plots of sensitivities obtained by the adjoint

method.

The areal extent of the reservoir is 600 feet by 600 feet and contains two layers. Layer 1

refers to the top layer and layer 2 refers to the bottom layer. The thickness of each layer is

uniform and equal to 30 feet. An uniform 15×15×2 finite difference grid with ∆x = ∆y = 40

ft and ∆z = 30 ft is used in all reservoir simulation runs.

Each layer of the true model consists of three permeability regions. Fig. 2.1 shows the

distribution of values of horizontal log-permeability in layer 1. For layer 1, ln(k) = 5.2

(k = 181 md) in the lower left quadrant, ln(k) = 5.8 (k = 330 md) in the lower right

quadrant and ln(k) = 5.5 (k = 245 md) in the upper half. For layer 2, ln(k) = 3.7 (k = 40

md) in the lower left quadrant, ln(k) = 4.3 (k = 74 md) in the lower right quadrant and

ln(k) = 4.0 (k = 55 md) in the upper half. In the truth case, vertical permeability is equal

to one-tenth horizontal permeability in the top layer and is equal to two-tenths of horizontal

permeability in the bottom layer. Thus, for layer 1, ln(kz) = 2.9 (kz = 18 md) in the lower

left quadrant, ln(kz) = 3.5 (kz = 33 md) in the lower right quadrant and ln(kz) = 3.2

(kz = 24.5 md) in the upper half. For layer 2, ln(kz) = 2.1 (kz = 8 md) in the lower left

quadrant, ln(kz) = 2.7 (kz = 15 md) in the lower right quadrant and ln(kz) = 2.4 (kz = 11)

in the upper half. Here reservoir porosity is assumed to be uniform with φ = 0.22. Even

though the truth case consists of zones, permeabilities of each grid cell are estimated. The
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simplicity of the example chosen allows one to easily visualize the quality of estimates. Some

of the pertinent information is summarized in Table 2.1 where the first row gives the zone

and the layer number. Throughout, Zone 1 refers to the upper half of the system as depicted

in Fig. 2.1, Zone 2 refers to the lower right quadrant and Zone 3 refers to the lower left

quadrant. The zone descriptions for layer 2 are the same. Var ln(k) denotes the variance of

ln(k) and E[ln(k)] denotes its mean.

1 8 15

1

8

15

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

1

5

2

34

Figure 2.1: True model of horizontal log permeability, layer 1.

Table 2.1: True log-permeabilities and statistical parameters for example problem.

Zone/layer 1/1 2/1 3/1 1/2 2/2 3/2

true ln(k) 5.5 5.8 5.2 4.0 4.3 3.7

true k, md 245 330 181 55 74 40

true ln(kz) 5.5 5.8 5.2 4.0 4.3 3.7

true kz, md 24.5 33 18 11 15 8

Var [ln(k)] 0.5 0.5 0.5 0.5 0.5 0.5

E[ln(k)] 5.5 5.5 5.5 4.0 4.0 4.0

Var [ln(kz)] 0.5 0.5 0.5 0.5 0.5 0.5

E[ln(kz)] 3.2 3.2 3.2 2.4 2.4 2.4

Capillary effects are not included. Initial reservoir pressure at the depth corresponding

to the center of the top layer is specified as pi = 4500 psi. Initial bubble point pressure is
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set equal to 4515 psi. Initial water saturation is equal to irreducible water saturation which

is equal to 0.2. Initial oil saturation is So,i = 0.8. As mentioned previously, Stone’s second

model is used to calculate the relative permeability to oil from the two sets of two-phase

relative permeability curves. For the two-phase oil-water system, residual oil saturation is

0.2. For the two-phase gas-oil system, residual oil saturation is 0.3 and critical gas saturation

is equal to 0.05.

The reservoir contains four producing wells which are completed only in the top layer. The

white gridblocks in Fig. 2.1 show the location of the gridblocks that contain wells. These

wells are located near the four corners of the reservoir. Well 1 is completed in gridblock

(3, 3, 1), well 2 is completed is gridblock (13, 3, 1), well 3 is completed in gridblock (13, 13, 1)

and well 4 is completed in gridblock (3, 13, 1). Each of these four wells is produced at total

flow rate of 350 RB/D. A single water injection well (well 5) completed in gridblock (8, 8, 2)

is used to inject water into the bottom layer at a rate of 1100 STB/D. At initial reservoir

pressure, this is equivalent to an injection rate of 1107 RB/D. Note that the injection well

(well 5) is located in the lower right quadrant of the bottom layer, which corresponds to the

highest permeability zone (ln(k) = 4.3) of the bottom layer. The true skins factors at wells

1 through 5, respectively, are specified as 3.0, 4.0, 5.0, 2.0 and 0.0.

By running the simulator using data from the truth case as input, the production response

shown in Figs. 2.2 and 2.3 were obtained. As the injection rate in RB/D is less than the

producing rate, the pressure at all four producing wells (not shown) continually decreases

with time. Except at very early times, the pressure at the injection well also decreases with

time.
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Figure 2.2: The gas-oil ratio.
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Figure 2.3: The water-oil ratio.

For the example considered, wells produce from only one gridblock so the water-oil ratio

and gas-oil ratio, respectively, are given by

WOR =
krwµoBo

kroµwBw

, (2.47)

and

GOR = Rs +
krgµoBo

kroµgBg

. (2.48)

These equations are applied at each producing well and are evaluated using the pressure and

saturations of the gridblock containing the well.

For three-dimensional multiphase flow problems, sensitivity coefficients are difficult to

understand physically. If one wishes to perform history matching by manually adjusting

parameters instead of using a fully automated procedure, the availability of a procedure to

compute sensitivity coefficients should prove valuable in those cases where we are unable to

apply physical intuition to predict how a change in a model parameter will change production

data. The sensitivity of GOR to the permeability field is particularly hard to predict. The

reason for this difficulty is that the gas production rate consists of two parts, gas dissolved

in the oil phase (reflected by Rs) and the free gas flow rate which is largely controlled by

gas relative permeability. If, as should be expected, an increase in permeability in the well’s

gridblock results in an increase in gridblock pressure, then Rs increases, but gas saturation

will typically decrease resulting in a decrease in the production rate of free gas. If the

incremental increase in the production rate of dissolved gas is greater than the incremental

decrease in the rate of production of free gas, then the increase in permeability will result

in an increase in GOR so the sensitivity of GOR to gridblock permeability is positive. On
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the other hand if the incremental decrease in the production rate of free gas is greater than

the incremental increase in the production rate of dissolved gas, then the sensitivity will be

negative. The interpretation of sensitivity coefficients is further complicated when injected

water is displacing both oil and gas and flow occurs in both the horizontal and vertical

directions. In this case, the sensitivity of WOR and GOR to a gridblock permeability depend

on gridblock pressure, water saturation and gas saturation and changes in these variables

depend on how a change in permeability affects flow of each phase in all three directions.

2.3.1 Sensitivity to Horizontal Permeability.
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Figure 2.4: Dimensionless sensitivity of WOR at well 1 to horizontal log-permeability of

layer 1.

Fig. 2.4 shows a plot of the dimensionless sensitivity of the producing WOR at well 1

to the horizontal log-permeability field of layer 1 at two times after breakthrough. In this

figure, and in similar ones presented later, sensitivities are shown along a diagonal line of

gridblocks from the upper left corner to the lower right corner of the reservoir as oriented

in Fig. 2.1. Thus gridblock 3 pertains to the areal location of well 1, gridblock 8 pertains to

the areal location of the injection well, and gridblock thirteen represents the areal location

of well 3. As shown in Fig. 2.4, the sensitivity of the water-oil ratio to layer 1 horizontal

log-permeability is negative at gridblocks that are near the injection well and between well

3 and the injection well. This makes sense because increasing these permeabilities causes

more of the injected water to flow towards well 3 thus decreasing the WOR at well 1. On

the other hand, increasing the permeability in the interwell region between well 1 and the
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injector causes more of the injected water to flow towards well 1 and increases the velocity

of flow. Thus, the water saturation and WOR at well 1 increase. The sensitivity of the

producing GOR to these permeabilities (Fig. 2.5) is not so easily explained and the behavior

of the dimensionless sensitivity of GOR to horizontal log-permeability in layer 2 (Fig. 2.6)

would be extremely difficult to predict based on physical intuition. The results shown in

Fig. 2.6 pertain to the diagonal row of gridblocks in layer 2 that correspond to the layer 1

diagonal row of gridblocks shown in Fig. 2.5.
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Figure 2.5: Dimensionless sensitivity of GOR at well 1 to horizontal log-permeability of layer
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Figure 2.6: Dimensionless sensitivity of GOR at well 1 to horizontal log-permeability of layer
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2.3.2 Sensitivity to Vertical Permeability.
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Figure 2.7: Dimensionless sensitivity of GOR at well 1 to vertical log-permeability of layer

2.

Fig. 2.7 shows a plot of the dimensionless sensitivity of the producing GOR at well 1

to layer 2 vertical log-permeability at four times. The results pertain to the same diagonal

row of gridblocks as the results of Fig. 2.6. Increasing kz in gridblock 3 of Fig. 2.7 increases

flow from layer 2 to layer 1 at the areal location of well 1 which produces only from layer 1.

As this gridblock vertical permeability is increased, a greater percentage of the fluid flowing

into the layer 1 gridblock containing well 1 comes from layer 2; at times after breakthrough,

this results in a lower gas saturation in the wellblock and a lower GOR. This explains why

the sensitivity of GOR to ln(kz) for gridblock 3 is negative at 210 and 300 days. Note at the

same times, the sensitivity of GOR to ln(kz) at the injection well (gridblock 8) is positive.

Although increasing this vertical permeability would cause more of the injected water to flow

into the top layer and thus increase the producing WOR at well 1, we do not believe that

one could predict a priori that this would also increase the GOR for the specific problem

under consideration.

The reservoir model under consideration contains only two layers and the layer thick-

nesses coincide with the height of the two vertical gridblocks used in the finite-difference

model. Thus, the reservoir simulators involves only the value of the harmonic average verti-

cal permeability at the boundary between layers. Thus, even though we later present results

on the estimates of layer vertical permeabilities, one should recognize that any two sets of

layer vertical permeabilities that result in the same value of the harmonic average vertical

permeability will yield the same production data.

30



Oliver & Reynolds DE-PS26-00FT40759 December 10, 2001

2.3.3 Sensitivity to Skin Factor.

The flowing wellbore pressure of producing well j is highly sensitive to the skin factor for

well j but is insensitive to the skin factor at all other producing wells. Increasing the skin

factor at a flowing well results in a decreased wellbore pressure (∂pwf,j/∂sj < 0), but has a

negligible effect on the well’s gridblock pressure. Since producing GOR and WOR are based

on the well’s gridblock pressure, GOR and WOR are insensitive to the wells skin factor. This

indicates that history matching only to GOR or only to WOR data can not resolve well skin

factors. Reasonable estimates of well skin factors can be obtained only by history matching

pressure data.

Since the injection rate is fixed at the water injection well, the flow rate at the water

injection well is insensitive to the skin factor at the injection well. It follows that the wellbore

pressure at each producing well is insensitive to the skin factor at the injection well. (This

would not be the case if the wellbore pressure was specified as the well constraint at the

injection well.)

The injection wellbore pressure is highly sensitive to the skin factor at the injection well.

This sensitivity coefficient is positive because as the skin factor increases, a higher wellbore

pressure is required to maintain the specified injection rate. The injection well pressure is

insensitive to the skin factors of all producing wells because the total flow rate is specified

as a well constraint at the producing wells.

2.3.4 Comments.

The sensitivity of a specific production data (e.g., GOR at a specified time) to a particular

model parameter (e.g., layer 1 vertical log-permeability for a gridblock containing a producing

well) gives a measure of the magnitude of the change in this data that will result from a

change in this model parameter. If this sensitivity is small, then we expect that the particular

model parameter can not be reliably determined by the particular observed data, i.e., we

expect the uncertainty in the model parameter will be not be significantly reduced by history

matching the model to this single data point. However, to compare how different types of

data affect the estimates of different models parameters, sensitivity results must be scaled

properly. If the measurement error is very small, then the range of values of the model

parameter that yield an acceptable match of the single observed data will be smaller and we

expect the uncertainty in the model parameter to be smaller. Also if the prior variance is very

small, then the model parameter is resolved well before history matching the data. Thus,

even if the particular data is highly sensitive to the model parameter, we should not expect
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history matching to yield a big reduction in the uncertainty. The dimensionless sensitivity

coefficients introduced by Zhang et al. (2000)(see Eq. 2.25) attempts to scale sensitivity

coefficients to account for measurement errors and the prior variances in model parameters.

Qualitatively, we expect that the higher dimensionless sensitivity coefficients correspond to

a greater reduction in the uncertainty in model parameters. This simple concept ignores the

correlation between model parameters, however. For example, if vertical permeability were

nonzero, but no vertical flow occurred in a particular region of the reservoir, production data

would be insensitive to kz in that region. If, however, kz were strongly correlated to k in

that region and the data reduced the uncertainty of k, we would expect the uncertainty in

kz to be reduced also.

2.4 Automatic History Matching Example

2.4.1 The Truth Case.

The truth case is the same one for which sensitivity coefficients were previously calculated.

The true skin factor at well 1 through 5 respectively, are given by 3.0, 4.0, 5.0 2.0 and 0.0

respectively. The observed data consists of data obtained by running the reservoir simula-

tor for the truth case to predict reservoir performance for a 300 day time period. At each

producing well, we selected 10 WOR data, 10 GOR data and 10 pressure data to use as

conditioning data. At the injection well, we selected 10 pressure data to use as conditioning

data. The data are uniformly distributed throughout the 300 days time period with the

earliest time conditioning data corresponding to t = 30 days. We assumed pressure mea-

surement errors to be independent, identically-distributed, normal random variables with

mean zero and variance equal to 1 psi2. GOR measurement errors were modeled similarly

except the variance was set equal to 100 (scf/STB)2. The variances of WOR measurement

errors were specified by Eq. 2.6 with σw,min = 2.0 STB/STB, εo = 0.01 and εw = 0.02.

For the top layer, the prior means for ln(k) and ln(kz), respectively, were specified as 5.5

and 3.2 with the variances of both random variable equal to 0.5. For the second layer, the

prior means for ln(k) and ln(kz), respectively, were specified as 4.0 and 2.4 with the variances

of both random variable equal to 0.5. This information and permeability values for the true

model were presented previously in Table 2.1.

The same semivariogram was used for each of the four log-permeability fields. The

semivariogram is an isotropic spherical semivariogram with range equal to 160 ft and sill

equal to 0.5. As the areal dimensions of simulation gridblocks are ∆x = ∆y = 40 feet, if
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the distance between the centers of two gridblocks at the same elevation is greater than or

equal to 4∆x, the two gridblock permeabilities are uncorrelated. There is no correlation

between layer 1 permeabilities and layer 2 permeabilities. In each layer, the correlation

coefficient between ln(k) and ln(kz) is set equal to 0.7. Each well skin factor is modeled as

an independent random variable with mean equal to 2.0 and variance equal to 25.

2.4.2 The MAP Estimate.

As discussed previously, the MAP estimate was generated using the Levenberg-Marquardt

algorithm to minimize the objective function of Eq. 2.10. The vector of prior means was used

as the initial guess. Note even though each layer actually consists of three zones, horizontal

and vertical log-permeability are estimated at each gridblock. This simple model is used

only because it makes it easy to evaluate the quality of the estimate. We consider results

obtained by history matching only pressure data, pressure plus WOR data, pressure plus

GOR data and all three types of data.
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(a) Conditioned only to pwf data.

� � ���

�
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(b) Conditioned to all pwf , GOR and

WOR data.
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Figure 2.8: Maximum a posteriori estimate of horizontal log-permeability, layer 1.

The left plot in Fig. 2.8 shows the MAP estimate of layer 1 horizontal log-permeability

obtained by history-matching only pressure data and the right plot shows results obtained by

conditioning to pressure, GOR and WOR data. Comparing results to the truth case shown

in Fig. 2.1, we see that the MAP estimate obtained by conditioning to all three types of data
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is closer to the truth case. The estimates of layer 2 ln(k) are not shown but qualitatively

look very similar to those shown in Fig. 2.8. Conditioning to pressure, WOR and GOR data

gave a better estimate of the layer 2 horizontal log-permeability field than was obtained by

conditioning only to pressure.
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4.
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Figure 2.10: MAP estimate of vertical log-permeability along the line through wells 3 and 4.

Fig. 2.9 confirms the preceding results and also shows results obtained by conditioning

to pressure and WOR data only and pressure and GOR data only. The results in Fig. 2.9

pertain to results along the line of gridblocks in layer 1 that pass through wells 3 and 4 (see

Fig. 2.1, and along the corresponding line of gridblocks in layer 2. Fig. 2.10 shows the cor-
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responding estimates of ln(kz). In Figs. 2.9 and 2.10 and in similar figures, curves through

solid triangular data points refer to results obtained by conditioning only to pressure data,

curves through data points denoted by an asterisk refer to results obtained by conditioning

only to pressure and WOR data, curves through solid circular data points refer to results

obtained by conditioning only to pressure and GOR data and curves through solid square

data points represent results obtained by conditioning to all observed data, pressure, GOR

and WOR. Considering the overall results, it is clear the worst estimates of the true perme-

ability fields are obtained when only pressure data is history-matched and the best estimates

are obtained when the estimate is obtained by history-matching all the pressure, WOR and

GOR data. History matching only GOR data plus pressure data gives better estimates of

vertical permeability than history matching pressure and WOR data. On a visual basis, it

does not appear that history matching pressure plus water-oil ratio data gives significantly

better results than matching only pressure data. This conclusion is similar to one reported

by Landa and Horne (1997) and Wu et al. (1999).

Conclusions qualitatively similar to those shown in Figs. 2.9 and 2.10 were obtained by

examining estimates along a diagonal line of gridblocks in layer 1 that passes through wells

1, 5 and 3 and the corresponding diagonal row of gridblocks in layer 2. Figs. 2.11 and 2.12

show the corresponding normalized a posteriori variances constructed from the a posteriori

covariance matrix, CMP .
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Figure 2.11: The normalized a posteriori variance of horizontal log-permeability along the

diagonal line through wells 1, 3 and 5.

These variances pertain to the same diagonal rows of gridblocks considered in the sensitivity
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coefficient plots of Figs. 2.4-2.7. In these figures, gridblock 3 pertains to the areal location

of well 1, gridblock 8 pertains to the areal location of well 5 and gridblock 13 represents

the areal location of well 3. The normalized variances at well locations are roughly equal to

0.2 which may be interpreted to mean that we have reduced the uncertainty of these log-

permeabilities by eighty percent. Except at the areal location of the injection well (gridblock

8) history matching WOR and/or GOR data plus pressure data reduced the uncertainty

(as measured by the normalized a posteriori variance) below the uncertainty obtained by

history matching only to pressure data. Note this occurs even at layer 1 gridblock 3 which

contains well 1 (see Fig. 2.11(a)) even though the pressure at well 1 is highly sensitive to this

gridblock permeability and largely insensitive to other layer 1 ln(k) values. Note, however,

well gridblock ln(k) and the well skin factor are both unknown and must be resolved by

the data. We believe that the fact that both the WOR (Fig. 2.4) and the GOR (Fig. 2.5)

are highly sensitive to this gridblock ln(k) at certain times but insensitive to the well skin

factor explains why adding observed GOR and WOR data as conditioning data reduces the

uncertainty in ln(k) at the gridblock containing well 1.
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Figure 2.12: The normalized a posteriori variance of vertical log-permeability along diagonal

line, well 1-3.

As the WOR and GOR (Figs. 2.4 and 2.5) are almost completely insensitive to the

horizontal gridblock permeability for gridblock 8 of layer 1, it is not completely surprising

that conditioning to WOR and/or GOR plus wellbore pressures does not significantly reduce

the uncertainty below that obtained by conditioning only to pressure data. Any additional

reduction in uncertainty in ln(k) obtained at this gridblock by adding WOR and/or GOR
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as conditioning data must come from the correlation between this ln(k) random variable

and the log-permeabilities in neighboring gridblocks where the GOR and WOR sensitivity

coefficients are non-negligible. It is interesting to note, however, that even though at later

times, the GOR (Fig. 2.6) and WOR (not shown) are relatively sensitive to ln(k) for gridblock

8 of layer 2, the reduction in uncertainty in this horizontal log-permeability is essentially

independent of which type of data is history matched as long as pressure data is included as

conditioning data. This is because the injection wellbore pressures (not shown) and flowing

wellbore pressures at all producing wells are quite sensitive to this gridblock permeability but

flowing wellbore pressures are insensitive to the skin factor at the injection well. Thus, using

GOR and WOR data in addition to pressure data as conditioning data does not reduce the

uncertainty in this gridblock ln(k) below the level obtained by conditioning only to pressure

data.

Estimates of well skin factors obtained by matching various combinations of production

data are shown in Table 2.2. Note the best estimates are obtained by history matching

pressure, WOR and GOR data.

Table 2.2: The true and estimated skin factors.

Well No. 1 2 3 4 5

True skin factors 3.00 4.00 5.00 2.00 0.00

Initial guess 2.00 2.00 2.00 2.00 2.00

pwf 2.60 3.30 2.97 2.61 -0.19

pwf+WOR 2.67 3.39 3.18 2.22 0.24

pwf+GOR 2.73 3.39 3.54 2.07 0.00

pwf+GOR+WOR 2.83 3.65 4.37 1.96 -0.27

The history matches of some of the observed GOR and WOR data are shown in Fig. 2.13.

Solid circular and triangular data points represent the observed data used as conditioning

data. Curves through the cross data points indicate the data predicted from the initial guess

(mprior) of the model parameters. (Some initial pressure mismatches exceeded 400 psi.) The

other solid curves represent predicted data based on the model obtained by simultaneously

matching pressure, WOR and GOR data. Matches of similar quality were obtained for all

wells for all pressure, WOR and GOR observed data.
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Figure 2.13: The GOR match (left)and WOR match (right) for the model conditioned to

pwf , GOR, and WOR data.

2.4.3 Remarks.

The results and discussion of this history matching example serves to illustrate the following

observations. (i) If particular production data are completely insensitive to a model parame-

ter, changing this model parameter does not change the values of production data predicted

by reservoir simulation. Thus, conditioning to these data can reduce the uncertainty in this

model parameter only by reducing the uncertainty in the parameters which are correlated

with this model parameter. The reduction in uncertainty due to either a prior correlation

(determined by CM) or a posterior correlation (determined by CMP ) can not be predicted

by examining sensitivity coefficients. (ii) If a set of model parameters is well resolved by a

given data set, adding a second set of conditioning data to the first may not give an addi-

tional reduction in uncertainty even if the second set of data is highly sensitive to the model

parameters.

Regarding observation (i), one might guess that the good estimates of ln(kz) obtained

(see Fig. 2.10) are partially due to a high correlation between the random functions ln(k)

and ln(kz) (correlation coefficient equal to 0.7) and the fact that horizontal log-permeability

is fairly well resolved by the data. However, in dimensionless form, the sensitivity of pro-

duction data to horizontal log-permeability and the sensitivity of production data to vertical

log-permeability variables show peaks of similar magnitude; compare, for example Fig. 2.6

with Fig. 2.7. Thus, it is reasonable to conjecture that the good estimates of ln(kz) obtained

in Fig. 2.10 are not solely due to the correlation between ln(k) and ln(kz). To investigate

this conjecture, we generated the MAP estimate assuming that horizontal and vertical per-

meability are not correlated in the prior model. The resulting corresponding MAP estimate

of ln kz did not provide a significantly worse estimate of the true ln(kz) field than the MAP
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estimate shown in Fig. 2.10.

2.5 Comments on Sensitivity Coefficients

Although our objective is to develop methodology for automatic history matching, it is

important to note that sensitivity coefficients help understanding reservoir physics and can

be useful even when history matching is done manually. In the manual approach, the reservoir

engineer has to decide which parameters to adjust and the magnitude of the adjustment based

on physical intuition and trial and error. For three-phase problems where gas production

or injection is significant, our experience suggest that physical intuition is insufficient to

predict how modifications to the permeability field will affect the producing gas-oil ratio.

Calculated sensitivity coefficients, however, provide a clear indication of how changes in

gridblock permeabilities will affect the the producing gas-oil ratio. To illustrate these points,

we consider a simple two-dimensional problem.

2.5.1 A Cross Section Example.

We consider a vertical cross section of a solution-gas-drive reservoir. The simulation grid

consists of 15 gridblocks in the x-direction (horizontal direction) and 8 gridblocks in the

z-direction (vertical direction). No flow occurs in the y-direction and only one gridblock

is used in the y-direction. The dimension of each gridblock is 40 feet in the x-direction,

and 30 feet in the z-direction. The horizontal and vertical permeabilities are 40 mD and 4

mD in each gridblock, respectively. The porosity field is uniform with a value of 0.22. A

single well located at the bottom center (gridblock (8,8)) is produced at a constant oil rate

of 50 STB/d. Water is immobile with initial water saturation equal to irreducible water

saturation, Siw = 0.2. Initial oil saturation is equal to 0.8. The initial reservoir pressure is

4500 psi in the bottom row of gridblocks. Initial bubble point pressure is equal to 4417 psi.

The reservoir pressure drops below bubble point soon after the beginning of the simulation

run. Critical gas saturation is 0.05. After 30 days of production, gas saturation is still below

critical (Fig 2.14(a)), whereas after 400 days of production (Fig 2.14(b)), gas saturation

ranges from 0.26 to 0.33 and is highest in the top most row of gridblocks. This indicates

that counter current flow has occurred; some of the gas that has been liberated from solution

has flowed to the top of the reservoir due to the effect of gravity.

For this type of problem it is difficult to predict a priori whether an increase in a gridblock
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(a) Gas saturation at 30 days. (b) Gas saturation at 400 days.

Figure 2.14: Gas saturation at early and late times.

permeability will increase or decrease the producing gas-oil ratio (GOR) which is given by

GOR = Rs +
krgµoBo

kroµgBg

, (2.49)

where Rs denotes the dissolved GOR, Bo and Bg, respectively, denote the oil and gas forma-

tion volume factor, µo and µg, respectively, denote the oil and gas viscosity, and kro and krg,

respectively, denote oil and gas relative permeability. All terms in Eq. 2.49 are evaluated at

the pressure and saturation of the gridblock containing the producing well. Increasing per-

meability tends to result in higher gridblock pressure which increases the dissolved gas part

of the producing GOR, but results in a decrease in gas saturation which tends to decrease the

free gas part of the producing GOR. Additional difficulty in predicting the behavior arises

from the interaction between gravity and viscous forces. It is not clear a priori whether in-

creasing a particular gridblock permeability will cause more gas to flow to the top, or cause

more gas to flow to the producing well.

At 30 days, the pressure in the reservoir is below the bubble point pressure (Fig. 2.14(a)),

but all gridblock gas saturations are below critical gas saturation. As a result of the low gas

saturation, all produced gas comes from the dissolved gas in the oil phase. An increase in the

horizontal and vertical permeabilities results in higher pressure, and as a result, more gas will

be dissolved in the oil. Because no free gas is produced, increasing the dissolved GOR results

in an increase in the producing GOR. Thus the sensitivity of GOR to vertical permeability is

positive everywhere; see Fig. 2.15(a). The sensitivity of pressure to vertical permeability is

highest in the region of the wellbore gridblock because vertical pressure gradients are largest

there. The sensitivity is somewhat higher in the gridblock above the well completion than in

the wellbore gridblock itself because the permeability of that gridblock affects two gridblock

transmissibilities while the vertical permeability of the wellbore gridblock affects only one.

After 400 days of production, gas saturation is above critical everywhere, and because of
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(a) Sensitivities at 30 days. (b) Sensitivites at 400 days.

Figure 2.15: Sensitivity of producing GOR to vertical permeability

gravity segregation, gas saturation is highest in the upper layers (Fig. 2.14(b)). Fig. 2.15(b)

shows the sensitivity of producing GOR to vertical permeability at 400 days. The sensitivity

of GOR to gridblock vertical permeability is positive for gridblocks near the well indicating

that increasing vertical permeability in this region will result in an increase in GOR. On the

other hand, for gridblock slightly above the center of the reservoir, the sensitivities are large

in magnitude but negative. This indicates that increasing kz in these gridblocks will result in

increased transport of gas to the top of the reservoir and a decrease in the producing GOR.

2.6 LM Versus Gauss-Newton

As noted before, the MAP estimate that was presented was obtained using a Levenberg-

Marquardt algorithm. A limited set of experiments indicates that the Levenberg-Marquardt

method has better convergence properties than the standard Gauss-Newton method espe-

cially for cases where the initial data mismatch is large. Here, we compare these two algo-

rithms for a two-dimensional, two-phase (oil-water) flow problem. The true model for the

2D example is shown in Fig. 2.16. The value of log-permeability is 3.7 (40.4 md) in the lower

left quadrant, 4.3 (73.7 md) in the lower right quadrant and 3.9 (49.4 md) in the upper part.

The porosity is constant throughout the model with value 0.22. A 21 × 21 × 1 grid is used

for reservoir simulation. Well 5 is a water injection well which is located at the center of the

reservoir (in gridblock (11,11)). Wells 1 through well 4 are producing wells and are located,

respectively, in gridblocks (4, 4), (18, 4), (18, 18) and (4, 18). At well 5, water is injected

at rate of 785 STB/D. Each producing well produces at total fluid rate of 200 RB/D. We

generated eight pwf observed data for each producing well uniformly spaced in a 320 day

period. The MAP estimate is conditioned to the pwf data only.

For this problem, the Gauss-Newton method required 18 iterations to converge with an
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Figure 2.17: The convergence rate of LM and GN.

objective value function of about 60 at convergence, whereas the Levenberg-Marquardt algo-

rithm converged in 9 iterations with an objective function value of about 10 at convergence;

see Fig. 2.17. Even more importantly, the Levenberg-Marquardt method converged to a

reasonable estimate (Fig. 2.18(b)), of the true log-permeability field of Fig. 2.16. On the

other hand, the MAP estimate generated from Gauss-Newton method (Fig. 2.18(a)) is very

rough and is quite different from the true model. For example, in the lower left quadrant of

the reservoir, the true value of log-permeability is 3.7, but in the results obtained from the

Gauss-Newton method, gridblock values of log-permeability range from from 2.5 to 5.0 in
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Figure 2.18: Comparison of MAP estimate of log-permeability using Gauss-Newton and

Levenberg-Marquardt algorithms.

this quadrant.

2.7 Application of Quasi-Newton and Conjugate Gra-

dient Methods

Here, we explore the conjugate gradient and quasi-Newton (variable metric) methods. The

advantage of these methods is that they require only the computation of the gradient of the

objective function with respect to the model parameters. The sensitivity coefficient matrix

G is not needed. Our results suggest that these methods can lead to considerable reductions

in computer time and memory required for large scale history matching problems. To date,

however, we have only implemented thess procedures to history match data from single phase

gas reservoirs.

2.7.1 Quasi-Newton Methods

The well known Newton’s equation is given by

H(ml)δml+1 = −g(ml), (2.50)
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where the H(ml) and g(ml), respectively, denote the second derivative (Hessian matrix) and

the gradient of the objective function evaluated at ml and l is the iteration index. With

either the objective function of Eq. 2.10 or the one of Eq. 2.14, the Hessian matrix is given

by

Hl = C−1
M +GT

l C
−1
D Gl (2.51)

where Gl is the sensitivity matrix evaluated at ml. As noted before, if both the number of

model parameters and the number of data are large, the evaluation of Gl is computationally

expensive. In quasi-Newton methods, H−1
l is approximated by a symmetric positive definite

matrix Dl which is corrected or updated from iteration to iteration. Different quasi-Newton

methods use different formulas to calculate Dl+1 from Dl. All updating formulas satisfy the

quasi-Newton condition given by

Dl+1yl = sl, (2.52)

where yl = gl+1−gl and sl = ml+1−ml. Various possible updating formulas honor this quasi-

Newton condition. In our procedure, we use Broyden-Fletcher-Goldfarb-Shanno (BFGS)

correction equation given by

Dl+1 = Dl +
sls

T
l

sTl yl
− Dlyly

T
l Dl

yTl Dlyl
+ vlv

T
l , (2.53)

where

vl = (yTl Dlyl)
1/2
( sl
sTl yl

− Dlyl
yTl Dlyl

)

. (2.54)

The limited memory BFGS (LBFGS), which uses a limited number of previous vectors

(gl and sl) to construct the inverse Hessian approximation at each iteration, can be applied

to large scale problems. In our work, the LBFGS algorithm proposed by Nocedal (1980) was

implemented and applied. The BFGS or LBFGS algorithm is given below:

Step 1 Initialization

Provide an initial guess of the modelm0, calculate the objective function corresponding

to m0 and evaluate the gradient of the objective function at m0, set l=0.

Step 2 Calculate the search direction dl = −Dlgl.

Step 3 Calculate the step size αl.

Step 4 Update the model mc = ml + αldl.

Step 5 Calculate the objective function based on mc.
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Step 6 If O(mc) < O(mk), set ml+1 = mc, l = l + 1 and go to step 7;

otherwise cut the step size by a specified factor and go to step 4.

Step 7 Determine if the stopping criteria are satisfied or not. If satisfied, then stop; otherwise

go to step 2.

Note that when we implement BFGS, we form the inverse Hessian approximation explicitly,

whereas in LBFGS we calculate the product of Hlgl directly and do not store or calculate

the full matrix Dl; see Nocedal (1980).

Convergence Criteria

In our results, the following stopping criteria are used to terminate the algorithm:

1.
| Ol+1 −Okl |
Ol + 10−14

< ε (2.55)

where l denotes the iteration index. For Gauss-Newton and Levenberg-Marquardt

algorithm, we used ε = 10−3. When we used the same value for the other algorithms,

the algorithm frequently obtained a model which satisfied Eq. 2.55 but not Eq. 2.15.

This problem was avoided by setting ε = 10−7.

2. Specify a maximum iteration number. If the number of iterations exceeds the specified

number, we terminate the algorithm. Here, the maximum number of iterations is

specified as 100. Note that reaching the maximum number of iterations does not imply

that the algorithm has converged. However, all the examples we tested converged in

fewer than 100 iterations even though we used ε = 10−7 in Eq. 2.55.

Scaling

Generally speaking, scaling is obtained by multiplying the old Dl by a factor γ and then

substituting γDl instead of Dl itself into the update equation to calculate Dl+1. The purpose

of scaling the matrix Dl is to decrease the condition number of matrix Rl = H
1/2
l DlH

1/2
l

where Hl is the true Hessian matrix, and therefore to improve the convergence behavior of

BFGS. When Dl is close to H−1
l which is the inverse of the true Hessian, Rl will be close to

the identity matrix and the condition number of Rl will be close to 1 which is ideal. There

are many options we can choose to perform scaling. Shanno and Phua (1978) and Yang

and Watson (1988) use the scaling factor γ = sTy/(yTHy) and only scale the initial matrix

D0, in their work. Oren (1973) and Oren (1974a) provided several switching rules which are
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used to calculate the scaling factor. In our implementation, at iteration l, the scaling factor

depends on the value of τl where τl can be calculated by

τl =
sTl D

−1
l sl

sTl yl
= −αlg

T
l sl

sTl yl
=

gTl sl
gTl Dlyl

. (2.56)

If τl < 1 we let scaling factor γl equal to τl, otherwise we let γl equal to σl where

σl =
sTl yl
yTl Dlyl

.

In LBFGS, only D0 is explicitly provided, and Dl for l ≥ 1 is never calculated directly.

So when we use the first and the last expression of Eq. 2.56 to calculate τl, we use D0 instead

of Dl.

2.7.2 Conjugate Gradient Method

It is well known that the conjugate gradient method can be applied to minimize non-quadratic

objective functions. Although the method has been applied for the history matching of

production data (see, for example Makhlouf et al. (1993)), its slow rate of convergence has

precluded its use in large scale history matching problems. The success of the conjugate

gradient method for nonlinear optimization depends on whether we are able to construct

a good preconditioner. A good preconditioning matrix at the lth iteration is a matrix Ml

which is a good approximation to the Hessian Hl so that

M−1
l Hl ≈ I. (2.57)

For our problem, the search direction obtained by the Gauss-Newton method is calculated

from Eq. 2.16 with λ = 0 and the Hessian at the lth iteration is given by

Hl = C−1
M +GT

l C
−1
D Gl. (2.58)

An optional preconditioner for the conjugate gradient method would be

Ml = Hl, (2.59)

but the conjugate gradient method requires calculating

pl = M−1
l rl, (2.60)

at each iteration, If Ml = Hl, Eq. 2.60 requires the same computational effort as the direct

application of Newton’s method and does not improve computational efficiency. If we choose

Ml = C−1
M , however, then Eq. 2.60 becomes

pl = CMrl. (2.61)
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So the calculation of pl from rl requires only multiplication by the prior covariance matrix

CM . Kalita (2000) and Kalita and Reynolds (2000) considered the problem of conditioning

a gas reservoir model to well test pressure data by automatic history matching. Both the

Gauss-Newton method and the conjugate gradient method with C−1
M as the preconditioner

were used to minimize the relevant objective function (Eq. 2.10 or Eq. 2.14). Kalita’s results

indicate that the conjugate gradient method was not always more efficient than the Gauss-

Newton method. Moreover, in most cases, the conjugate gradient method converged to a

value of the objective function which was significantly higher than the converged value of

the objective function obtained by the Gauss-Newton method. In our work, we show that

these difficulties can be overcome by using a better preconditioner.

In the preconditioned conjugate gradient algorithm, the preconditioning matrixMl is used

only in an equation like Eq. 2.60. Thus, it is preferable to estimate M−1
l directly instead of

estimating Ml. We would like M−1
l to be an approximation for the inverse Hessian. This

suggests that M−1
l can be constructed from a quasi-Newton method. Our work indicated

that Dl ≈ H−1
l calculated from either a BFGS or a scaled limited memory BFGS (LBFGS)

method provides preconditioners superior to using Dl ≈ CM . The LBFGS preconditioner

can be implemented in a way so that we do not need to calculate Dl directly; instead, we

simply form the product Dlrl when needed in computations like the one of Eq. 2.60.

2.8 Evaluation of Computational Efficiency

Here we assess the computational efficiency of GN (Gauss-Newton), LM (Levenberg-Marquardt),

PCG (preconditioned conjugate gradient), BFGS and LBFGS. In the evaluation of computa-

tional efficiency, we count only the number of adjoint solutions and the number of reservoir

simulation runs required by each method. Moreover, we count one adjoint solution over

the total time interval of a simulation run as one equivalent simulation run. We do not

keep track of the computational effort incurred when a proposed model update is rejected

because it results in an increase in the objective function. We only keep track of the number

of iterations which correspond to a decrease in the objective function.

In GN and LM, if the data are evenly distributed in the time domain, the computational

cost of calculating sensitivity of all data to all model parameters requires (Nd+1)/2 adjoint

solutions which is equivalent to (Nd + 1)/2 simulation runs. GN and LM require one addi-

tional simulation run to calculate the objective function. The new objective function value

is compared with the old objective function values. If the objective function decreases, the

new model will be accepted. Otherwise the new model will be rejected and the iteration is
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repeated. So a total of (Nd + 1)/2 + 1 simulation runs are needed to accomplish one GN or

LM iteration.

In LBFGS and PCG, the total computational cost of implementing one iteration is equiv-

alent to 3 simulation runs, which included one equivalent simulation run for calculating

the gradient of the objective function by using the adjoint method, one simulation run for

calculating the step size by using Newton-Raphson method to do the line search and an-

other simulation run for calculating the objective function. Thus, LBFGS and PCG are

((Nd + 1)/2 + 1)/3 times faster than GN and LM for each iteration. For example if we have

1000 data, LBFGS and PCG will be roughly 167 times faster than GN or LM. In terms of

the total time, if GN or LM requires n1 iterations to converge on average, while LBFGS or

PCG needs n2 iterations to converge on average, then LBFGS or PCG will be t times faster

than GN or LM where

t =
n1
n2

((Nd+1)/2+1)/3

=
n1

n2

× (Nd + 1)/2 + 1

3
. (2.62)

Although BFGS requires slightly more time than LBFGS and PCG to perform the matrices

operations involved in the update equation, it is the memory requirement that makes the

standard BFGS method inferior to LBFGS and PCG for large scale problems.

2.8.1 Memory

For large scale problems, the memory required by an optimization algorithm is also a key

issue that needs to be considered. Because we are only concerned with the difference between

algorithms, we only consider the memory used by the algorithm itself. Table 2.3 gives a rough

estimate of the number of double precision real numbers used by each algorithm. Nd is the

number of data, Nm is the number of model parameters, and L is the number of previous

vectors used in the LBFGS algorithm. For convenience, we use one memory unit to stand

for the memory occupied by one double precision real number. In the GN or LM method,

(2 + 2Nd) × Nm (δm, one Nm−dimension work array, sensitivity coefficient matrix G and

CMG
T ) memory units are used. In PCG, 6×Nm (6×Nm: s, dir, r, m−mpr, ∇Od, one work

array) memory units are used. In BFGS or SBFGS (7 +Nm)×Nm (7×Nm: vk, m−mpr,

δm, ∇Od, yk, dir, one work array; inverse Hessian approximation matrix) memory units are

used. In LBFGS, (4 + 2× L)×Nm (4×Nm: δm, diagonal inverse Hessian approximation,

dir, one work array; yk and sk for k = 1, 2, · · · , L) memory units are used. When the

number of data and the number of model parameters are both large GN, LM BFGS and

SBFGS use extremely large amounts of memory which make them impractical. LBFGS uses
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slightly more memory than PCG depending on how big L is. From the above comparison,

the LBFGS and PCG algorithm seems more promising than the other methods we have tried

for large scale problems. The memory used by both methods are independent of the number

of data.

Table 2.3: Memory used by each algorithm

No. of DP real numbers

GN/LM (2+2×Nd)× Nm

PCG 6×Nm

BFGS/SBFGS (7+Nm)×Nm

LBFGS (4+2×L)×Nm

2.9 Preliminary Results

In order to investigate the reliability and computational efficiency of the optimization al-

gorithms discussed previously, we consider history matching data from a synthetic three-

dimensional gas reservoir. The reservoir is 2000 ft × 2000 ft × 40 ft. Gridblock sizes are

∆x = ∆y = 100 ft and ∆z = 10 ft. Thus there are 20, 20 and 4 gridblocks in the x−, y−
and z−directions respectively.

A spherical variogram was used to generate the prior covariance matrix. The correlated

lengths in the x−, y− and z− direction are 400 ft, 200 ft and 10 ft respectively. Horizontal

permeability, vertical permeability, porosity and skin factor are the model parameters for this

example. We assume that porosity field is correlated with horizonal permeability field and

the correlation coefficient is 0.7 and that vertical permeability field is uncorrelated with the

porosity and horizonal permeability fields. The prior information for the model parameters

are given in Table 2.4.

The initial pressure is 3230 psi. All six boundaries are assumed to be no-flow boundaries.

The reservoir is produced by two completely penetrating wells. Well 1 is located in areal

gridblock (5,5) and well 2 is located in areal gridblock (15,15). Well 1 was shut in for two

days and then was produced at the rate of 4× 104 Mscf/day for two days. Well 2 produced

at the rate of 3.5×103 Mscf/day for the first two days and was then shut in for the following

two days. Fig. 2.19 shows the pressure response of the two wells. We used 22 measured data

from each well as conditioning data. Thus the total number of data to be history matched

is 44. The number of model parameters is 20 × 20 × 4 × 3 + 8 = 4808. The observed data
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Table 2.4: Prior information of model parameters

Mean Variance

ln(kx) 4.0 0.5

ln(kz) -2.9 0.5

φ 0.25 0.002

Sskin 4.0 0.0001

are obtained by adding random noise to the simulated pressure data predicted from the true

reservoir.

Figure 2.19: Pressure response from the true model.

2.9.1 Comparison of Six Methods

Six algorithms, Gauss-Newton (GN) with restricted step, Levenberg-Marquardt (LM), pre-

conditioned conjugate gradient (PCG), BFGS, scaling BFGS (SBFGS) and limited memory

BFGS (LBFGS), are tested and the behavior of them is compared. In LM, we simply use the

value of 1000 for the initial damping factor and multiply by 10 when the objective function

increases and divide by 10 when the objective function decreases. In PCG, the full matrix

CM was chosen as the preconditioner and fixed for each iteration. In BFGS and scaling

BFGS, the full prior covariance matrix CM is used as the initial inverse Hessian approxi-
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mation. In scaling BFGS, we only scale the initial inverse Hessian approximation and it

is scaled by a factor of γ which is equal to τ when τ = gT1 s1/g
T
1 D0y1 < 1 and is equal to

σ = sT1 y1/y
T
1 D0y1 when τ ≥ 1. The LBFGS we used is the algorithm proposed by Nocedal

(1980). In the LBFGS method, at most 30 previous vectors were used to construct the

inverse Hessian approximation Dl, and at each iteration, D0, which is an identity matrix, is

scaled by a factor of sTl yl/(y
T
l yl) where l represents the l

th iteration. All 6 algorithms were

applied to the same 10 unconditional realizations of data and the model, when doing history

matching, i.e. the same muc and duc were used in the objective function of Eq. 2.14.

Table 2.5: Comparison between algorithms

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

GN
Obj. 37 31 21 33 43 28 27 38 40 33 33.1

No. Iter. 7 13 6 8 12 8 12 12 6 6 9

LM
Obj. 38 30 21 33 43 28 27 38 40 34 33.2

No. Iter. 8 14 12 8 13 13 21 8 14 10 12

BFGS
Obj. 59 52 35 41 70 41 39 53 54 87 53

No. Iter. 33 17 18 19 33 38 18 42 35 52 30.5

SBFGS
Obj. 77 50 33 43 56 36 43 105 64 38 54.5

No. Iter. 13 51 25 38 17 41 29 14 32 31 29.1

LBFGS
Obj. 53 47 63 131 138 44 66 174 87 42 84.5

No. Iter. 36 41 17 42 27 50 10 39 34 43 33.9

PCG
Obj. 153 146 70 94 347 42 184 213 230 45 152

No. Iter. 12 20 11 23 19 64 5 17 19 23 21.3

Table 2.5 shows the objective function value at convergence and the number of iterations

required to obtain convergence. In terms of the number of iterations, the GN and LM are

the best algorithms and the objective function converges to a small value (33 on average) for

each of the 10 realizations. Both the GN and LM methods, however, require considerable

work for each iteration due to evaluating the sensitivity of each data to all model parameters.

From the results shown in Table 2.5, we can make these conclusions.

1. In terms of total machine time, algorithms which only require the gradient of the

objective function (especially LBFGS and PCG) are much faster than GN and LM

method. As discussed previously, theoretically, LBFGS and PCG should be roughly

[(ND + 1)/2 + 1]/3 times faster than GN and LM per iteration. In this example,
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we history matched 44 data to generate each realization. Thus, LBFGS and PCG

algorithms should be [(Nd+1)/2+1]/3 ≈ 8 times faster than GN and LM per iteration.

2. Based on results of Zhang et al. (2000), we believe that the average value of the

objective function at the minima should be on the order of Nd = 44 and should not

exceed Nd+5
√
2Nd = 91. However the average objective function value at convergence

is higher than this value for the preconditioned conjugate gradient method where the

preconditioner is the full matrix CM . Thus, it appears that the PCG method does not

yield an appropriate history matched model. Moreover, LBFGS converges to a high

value (close to 91). Thus we need to seek modified algorithms that will have better

convergence properties.

To further investigate the convergence property of LBFGS, we have tried different initial

H0 and different scaling scheme, which are described below.

OPT1. Use the identity matrix as the initial inverse Hessian approximation; scale D0 for each

iteration by a factor γ, i.e.,

D̂0 = γD0 = γI = sTl yl/(y
T
l yl)I = σ.

OPT2. Use the identity matrix as the initial inverse Hessian approximation; scale D0 for each

iteration by a factor γ which is determined by the following scheme:

γ = τ for τ < 1 where τ = gTl sl/(g
T
l yl),

γ = σ otherwise.

OPT3. Use the identity matrix as the initial inverse Hessian approximation; scale D0 for each

iteration by a factor γ which is determined by the following scheme:

γ = τ for τ < 1 where τ = −αlgTl sl/(sTl yl),
γ = σ otherwise.

OPT4. Use the identity matrix as the initial inverse Hessian approximation; scale D0 for each

iteration by a factor γ which is determined by the following scheme:

γ = τ for τ < 1 where τ = sTl sl/(s
T
l yl),

γ = σ otherwise.

OPT5. Use the diagonal of CM instead of the identity matrix as the initial inverse Hessian

approximation and only scale the initial matrix by a factor γ which is determined by

the following scheme:

γ = τ for τ < 1 where τ = gT1 s1/(g
T
1 D0y1) = −α1g

T
1 s1/(s

T
1 y1) = sT1D

−1
0 s1/(s

T
1 y1),

γ = σ otherwise.
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OPT6. Use the diagonal of CM as the initial inverse Hessian approximation; scale D0 for each

iteration by a factor γ which is determined by the following scheme:

γ = τ for τ < 1 where τ = gTl sl/(g
T
l D0yl),

γ = σ otherwise.

OPT7. Use the diagonal of CM as the initial inverse Hessian approximation; scale D0 for each

iteration by a factor γ which is determined by the following scheme:

γ = τ for τ < 1 where τ = −αlgTl sl/(sTl yl),
γ = σ otherwise.

OPT8. Use the diagonal of CM as the initial inverse Hessian approximation; scale D0 for each

iteration by a factor γ which is determined by the following scheme:

γ = τ for τ < 1 where τ = sTl D
−1
0 sl/(s

T
l yl),

γ = σ otherwise.

Table 2.6: Comparison of LBFGS algorithm with different options

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

OPT1
Obj. 53 47 63 131 138 44 66 174 87 42 84.5

No. Iter. 36 41 17 42 27 50 10 39 34 43 33.4

OPT2
Obj. 53 51 41 70 114 42 65 F 95 42 63.7

No. Iter. 41 33 40 52 40 53 11 F 24 43 37.4

OPT3
Obj. 47 51 41 62 115 43 66 F 54 40 57.6

No. Iter. 41 34 25 51 39 41 10 F 41 40 35.7

OPT4
Obj. 47 55 30 309 94 36 36 F 58 38 78

No. Iter. 38 50 36 12 43 44 35 F 39 39 37

OPT5
Obj. 90 F 60 100 70 58 59 110 156 60 84.8

No. Iter. 40 F 14 39 25 39 16 50 11 46 31.1

OPT6
Obj. 55 55 78 66 F 41 60 163 61 41 69

No. Iter. 21 26 8 46 F 46 16 36 50 32 31.2

OPT7
Obj. 59 F 30 38 83 42 36 67 50 36 49

No. Iter. 10 F 20 32 16 24 23 16 34 34 23.2

OPT8
Obj. 43 41 31 38 55 33 35 54 54 36 42

No. Iter. 34 22 18 38 21 35 26 24 21 34 27.3

53



Oliver & Reynolds DE-PS26-00FT40759 December 10, 2001

All the results corresponding to the above options are summarized in Table 2.6. Compar-

ing the first four options, OPT 1, which is used by Shanno and Phua (1978) and Yang and

Watson (1988), is the worst one, in the sense of results in the highest value of the objective

function. Theoretically (see Oren (1974b)) we have

τl =
sTl D

−1
l sl

sTl yl
= −αlg

T
l sl

sTl yl
=

gTl sl
gTl Dlyl

. (2.63)

These three expressions give three equivalent formulae for τl. In general the motivation for

using the last two formulae to calculate τl is to avoid calculating the inverse of Dl. In the

LBFGS method only D0 is directly provided; Dl for l ≥ 1 is never calculated directly. Thus,

we tried implementing the first and last forms for τ given in Eq. 2.63 with Dl replaced by

D0. OPT 4 uses the formula

τl =
sTl D

−1
0 sl

sTl yl
=
sTl sl
sTl yl

, (2.64)

OPT 3 uses

τl = −
αlg

T
l sl

sTl yl
(2.65)

and OPT 2 uses

τl =
gTl sl

gTl D0yl
=
gTl sl
gTl yl

. (2.66)

In Table 2.6, an F entry indicates that the algorithm converged to a very large value. In

our examples, F corresponds to a value greater than or equal to 700. Note that OPT1, in

which a “fixed” scaling factor was used converged in slightly fewer iterations than options 2,

3 and 4, but it converged to a higher average objective function value (84.5). In OPT 5, the

diagonal of CM was used as the initial inverse Hessian approximation and we only scale the

initialD0. For initial scaling, all the three formula which are used to calculate τ (Eq. 2.63) are

identical. Thus, in the OPT 5 case, it does not matter which formula is used to calculate τ .

In OPT 6, 7, and 8, the diagonal of CM was used as the initial inverse Hessian approximation

and we scale the initial D0 at each iteration. The difference between them is that different

formulas were used to calculate τ . Comparing these results with those from OPT 5, we

can conclude that scaling H0 at each iteration is better than just scaling at only the initial

iteration. (We obtained the same conclusion for the case where the identity matrix was used

as D0 even though we did not show these results in Table 2.6.) Comparing the results of

OPT 6 through 8, we also can conclude that using (sTl D
−1
0 sl)/(s

T
l yl) (OPT 8) to calculate

τ provides the best results. Our current recommendation is to use τ = sTl D
−1
0 sl/s

T
l yl in

LBFGS.

From the above analysis, we can draw several conclusions.
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1. In LBFGS, scaling D0 at each iteration is much better than only scaling the initial D0.

2. In LBFGS, if the same scaling scheme is used, using the diagonal of CM as the initial

D0 is superior to using the identity matrix.

3. Using formulas which depend on the gradient and search direction at each iteration to

calculate the scaling factor γ is better than using a “fixed” formula to calculate γ.

4. If a diagonal matrix is used as the initial inverse Hessian D0, the best choice for

calculating τ is to choose (sTl D
−1
0 sl)/(s

T
l yl).

2.9.2 Improved Preconditioned Conjugate Gradient Method

In the results shown previously, we found that the conjugate gradient method with CM

as the preconditioner does not work well. Here, we denote this method by P-CG which

means the preconditioner is given by the full matrix CM . For the 10 realizations tested,

this conjugate gradient algorithm converged to higher objective function values than the

BFGS algorithm with CM as the initial inverse Hessian approximation (see Table 2.5) and

the LBFGS algorithm. As discussed previously, the inverse Hessian approximation generated

from the quasi-Newton method can be incorporated into the conjugate gradient algorithm

as a preconditioner. Here we tested two preconditioners. One is generated from BFGS with

the full matrix CM as the initial inverse Hessian approximation. For simplicity, we call this

algorithm BFGS-P-CG which means the preconditioner is generated from BFGS. The other

preconditioner is generated from LBFGS using OPT 8, i.e. the diagonal of CM was used as

H0 and the optimal scaling was used at each iteration. We refer to this algorithm as LBFGS-

P-CG which means the preconditioner is generated from LBFGS. The final objective function

value and the number of iterations required to converge for both algorithms are shown in

Table 2.7. For the purpose of comparison, we also include the results from BFGS, LBFGS

and P-CG in this table. The convergence behavior of LBFGS and LBFGS-P-CG are similar.

Compared to the BFGS algorithm, we can see that on average the BFGS-P-CG converged to

slightly lower objective function values in fewer iterations although BFGS-P-CG failed for one

realization. Both BFGS-P-CG and LBFGS-P-CG have much better convergence properties

than P-CG. However, to implement BFGS or BFGS-P-CG, we have to form explicitly the

Nm × NM matrix which approximates the inverse Hessian approximation. Recall that Nm

is the number of model parameters. For the large scale problems we wish to consider, the

number of model parameters might be on the order of tens of thousands. For these problems,

BFGS methods become impractical.
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Table 2.7: Results for BFGS-P-CG and LBFGS-P-CG
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

BFGS-P-CG
Obj. 90 F 28 40 54 41 39 46 53 47 48.7

No. Iter. 35 F 25 31 10 33 25 19 24 26 25.3

LBFGS-P-

CG

Obj. 44 51 29 38 57 33 36 47 54 36 42.5

No. Iter. 23 17 23 31 23 38 21 35 20 30 26.1

P-CG
Obj. 153 146 70 94 347 42 184 213 230 45 152

No. Iter. 12 20 11 23 19 64 5 17 19 23 21.3

BFGS
Obj. 59 52 35 41 70 41 39 53 54 87 53

No. Iter. 33 17 18 19 33 38 18 42 35 52 30.5

LBFGS
Obj. 43 41 31 38 55 33 35 54 54 36 42

No. Iter. 34 22 18 38 21 35 26 24 21 34 27.3

From the limited examples that we have considered, we found that LBFGS and LBFGS-

P-PCG are the most effective and efficient methods among all the algorithms. So these

two algorithms were used to generate 50 different realizations. For the LBFGS algorithm,

the average value of the objective function at the convergence and the average number

of iterations required to converge are 44.7 and 27.2 respectively. For the LBFGS-P-CG

algorithm, these two average values are 44.3 and 26.3, respectively. Note these results are

consistent with those shown in Table 2.7. Based on these results, we believe that these two

minimization algorithms will be effective for history matching problems.

To further confirm the effectiveness of the preconditioner generated from the LBFGS,

we used LBFGS-P-CG algorithm in the restricted-entry case where P-CG works very poorly

(see Kalita (2000)). The restricted-entry example is a slight modification of the previous

example. In the restricted entry case, only the top layer is open to flow. For this case we

also generated 10 realizations using the P-CG and the LBFGS-P-CG algorithm. The value

of the objective function at convergence and the number of iterations required to converge

for both methods are summarized in Table 2.8. When P-CG was used, all the 10 realizations

converged to a very high value of the objective function. On average, 35.3 iterations were

required to reduce the average objective function value to 447. For the same 10 realizations,

LBFGS-P-CG performs very well. The objective function converged to an average value of

43.1 in 29.3 iterations.
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Table 2.8: Results for restricted entry case

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average

P-CG
Obj. 237 578 159 372 252 119 776 1381 504 93 447

No. Iter. 46 63 30 12 17 52 33 39 19 42 35.3

LBFGS-P-

CG

Obj. 55 37 32 41 52 38 38 51 50 37 43.1

No. Iter. 35 34 23 32 21 30 34 23 31 30 29.3
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Chapter 3

SUBSPACE METHODOLOGY FOR

HISTORY MATCHING

History matching is usually cast in the form of a minimization problem: Compute the set

of reservoir model parameters, m, that minimize the mismatch between the observed data,

d (the historical pressure and rate observations), and the predictions of data computed

from the model parameters, g(m). If the measurement errors are Gaussian, modeling errors

are negligible, and the prior probability density function (pdf) for the model parameters is

multi-Gaussian, the set of parameters with the highest probability density can be found by

minimizing the following functional of the model;

O(m) =
1

2

(

m−mprior

)T
C−1

M

(

m−mprior

)

+
1

2

(

g(m)− d
)T
C−1

D

(

g(m)− d
)

, (3.1)

where m0 is the vector of prior estimates of model parameter values. CM is the prior co-

variance matrix of the model parameters; it describes the variability and correlation of the

model parameters. CD is the covariance matrix of the measurement errors. The use of the

covariance matrix in the objective function provides a dimensionless measure of data mis-

match and model roughness, so that a reasonable tradeoff between the two terms is achieved

in minimization.

When the number of model parameters is large, as it is in history matching, the natural

choice for minimization of the objective function is conjugate gradient. Conjugate gradient

methods typically converge too slowly to be practical, however. Methods that make use of

the curvature information in the objective function typically converge much more rapidly,

especially in the neighborhood of a minimum. If there are relatively few data (ND is small),

an expansion of this form can be an efficient form of solution. The problem is considerably

more difficult when both the number of data and the number of model parameters are
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large. In this case, the standard Gauss-Newton approach is generally too expensive to

use for minimization. Because of measurement errors and redundancy in the data, a good

approximation of the Newton direction can often be found in a subspace of much smaller

dimension than ND, however.

3.1 Reparameterization

The basic idea of any subspace procedure is that at the lth iteration of the Newton method,

one can approximate the search direction δml+1 as a linear combination of a relatively small

number of subspace vectors without significantly changing the value of δml+1 obtained.

In some approaches, the set of basis vectors or functions are changed at every iteration

of the minimization procedure. This has the advantage of potentially using basis vectors

that are optimal at every iteration. The disadvantage is that the computation of the op-

timal basis vectors can be expensive by itself. Shah et al. (1978) proposed the use of the

eigenvectors associated with the largest eigenvalues of GTG as basis vectors. Because the

dimension of GTG is large, computation of eigenvalues and eigenvectors can be expensive

for realistic models. For a nonlinear history-matching problem, however, one must compute

the gradients, or the action of the gradients on vectors, as well as the eigenvalue/eigenvector

decomposition of a large matrix at several minimization iterations in which case the repeated

computation of G will be expensive. Also, it is seldom clear how many of the singular vectors

should be retained from the decomposition of G or GTG.

3.1.1 Partitioning of the Objective Function

We found that when too small a set of subspace vectors is chosen, the result is a very low

convergence rate. Also, in some cases, a poor choice of subspace vectors can result in visible

artifacts. This is most noticeable with methods like pilot point and zonation. When a good

set of subspace vectors are chosen, the effect on the solution should be imperceptible.

If one were to use only one subspace vector in each Newton iteration, an appropriate

choice at iteration l+1 would be the gradient of the objective function. With this choice, the

subspace method would be equivalent to the steepest descent algorithm. A better subspace

method, which uses more subspace vectors but is still easy to implement and converges more

rapidly for large problems, is one in which the subspace vectors are obtained by partitioning

the data objective function (Reynolds et al., 1996). This method, which has been discussed

in the geophysical literature (Oldenburg et al., 1993), tends to group data with similar
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information content together, thus removing some of the redundancy, without the expense

of computing many sensitivity coefficients or of performing a singular value decomposition.

For the problem of conditioning rock property fields to transient pressure data, we parti-

tion the total objective function into a term that arises from model roughness and distance

from the prior model and terms that arise from pressure misfit, similar to the approach

suggested by Kennett and Williamson (1988), Oldenburg et al. (1993), and Oldenburg and

Li (1994).

The gradients of these objective functions are given by

∇OM = C−1
M (m−mprior), (3.2)

and

∇Ok
D(m) = GT

k [C
k
D]
−1
(

gk(m)− dk
)

. (3.3)

A partitioning of the objective function is done at each iteration of the Gauss-Newton al-

gorithm. The gradients of the partitioned data objective function clearly provide a useful

set of basis vectors for minimization. If all of the data are grouped together to generate a

single basis vector the method is equivalent to steepest descent. At the other extreme, we

know that the Gauss-Newton method can be written in such a way that the basis vectors are

the columns of CMG
T . This is exactly the basis that would be obtained if each set of data

were to include only one measurement. Hence the partitioning of the objective function as a

method of selecting basis vectors satisfies the recommendation of Parker (1994) that a good

depleted basis should at least be capable of approaching the true optimal solution if enough

basis functions are used. It also seems clear from the limiting cases that it is desirable to

premultiply the gradients of the partial objective functions by the prior covariance matrix

to generate subspace vectors for the expansion of δml.

Although it is clear that the number of basis vectors should be between 1 (steepest

descent) and ND (Gauss-Newton), it is not clear either how many basis vectors to use or

how to choose them.

3.1.2 The Ideal Reduced Basis

In the Bayesian framework for solving inverse problems, the solution is based on a tradeoff

between honoring the observations and closeness to the prior model estimate. It is possible to

show in this case that there is an optimal number of basis vectors such that the convergence

of the Gauss-Newton method is unaffected by the reparameterization. Let CM = LLT be a

square-root decomposition of the prior model covariance matrix and define a dimensionless

vector of model corrections α = L−1δm.
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We can say that a good approximation to δm can be constructed from the columns of

LUp where the columns of Up are the eigenvectors of LTGTC−1
D GL associated with the p

eigenvalues whose magnitudes are of order 1 or greater. Thus, a decomposition of this form

would provide an optimal number of subspace vectors to use, and an optimal set in the

sense that the vectors that are not used would not contribute to the solution. Unfortunately,

computation of this set of basis vectors is probably too expensive to be practical.

If too few basis vectors are used or if the basis vectors are poorly chosen, it seems intuitive

that the convergence rate will be affected. On the other hand, the total computational

effort is more important than the number of Gauss-Newton iterations so it is necessary to

investigate the tradeoff between the number and choice of subspace vectors and convergence

rate. We illustrate the effect of various choices of basis vectors with several two- and three-

dimensional single-phase reservoir models.

3.2 Synthetic Examples

A three-dimensional model with 25×25×10 gridblocks was created to evaluate the potential

strengths and weaknesses in the methodology. Each gridblock in the 3-D model is 10 ft thick

and 100 ft in the x and y directions. The log-permeability and porosity fields were modeled

as Gaussian random fields with anisotropic spherical variograms. The correlation coefficient

between log-permeability and porosity is 0.7. The range of the variogram is 1,200 ft in

the x-direction, 800 ft in the y-direction and 30 ft in the vertical direction. Prior to the

incorporation of pressure data, the porosity was expected to lie in the range 0.20 ± 0.09

with 95% confident. Similarly, the prior mean for log-permeability is 4.0 and the prior

uncertainty is ±1.4. The permeability was assumed to be isotropic, i.e., k = kx = ky = kz.

In this model, there are thus 12,500 model parameters (6,250 gridblocks and two model

parameters per gridblock).

The 3-D model also contains five wells. Well 1 produces at a constant rate 3,000 rb/day

for the first 1 day, followed by a 1 day buildup, then production at a constant rate of 3,500

rb/day for 1 day; Well 2 produces at a constant rate of 3,400 rb/day for 1 day, then a 2 day

buildup; Well 3 produces at a constant rate of 1,500 rb/day for 1 day, then 2,500 rb/day for

1 day and finally 3,500 rb/day for 1 day; Well 4 is an observation well; Well 5 produces at

a fixed rate of 3,200 rb/day, for all times. Synthetic pressure data (Fig. 3.2) are generated

using the true log-permeability and porosity fields shown in Fig. 3.1. In this case, we have 86

pressure data at each well so the total number of data is equal to 430. Pressure measurement

errors were assumed to be independent, with variance, σ2
d = 0.01 psi2. For simplicity, the
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Figure 3.1: The true log-permeability and porosity fields for the 2-D problem (upper row)

and 3-D problem (lower row). Pressure measurements are recorded at the five well locations.

skin factors at the wells were assumed to be known. Other reservoir and fluid properties are

the same as the two-dimensional example.

3.2.1 Results from Simple Partitioning with Constant Basis Di-

mension

Using the conventional Gauss-Newton history-matching approach without subspace vectors,

the maximum a posteriori model estimates of log-permeability and porosity (conditioned to

pressure data from the true 2-D model) were generated. These are shown in the left column

of Fig. 3.3. Generation of the maximum a posteriori model estimates using the conventional

approach (Eq. 2.16) requires computation of 145 sensitivity vectors for each iteration of the

Gauss-Newton procedure, and “inversion” of a 145 × 145 matrix. For single-phase flow in

a fluid with small compressibility, the computation of all 145 sensitivity vectors requires
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Figure 3.2: The pressure history used for conditioning the permeability and porosity in the

three-dimensional model.

work equivalent to approximately 5 flow simulations (Carter et al., 1974). For a multiphase

flow problem, the computational effort required to generate one sensitivity vector would be

equivalent to approximately one flow simulation.

A straightforward approach to selecting subspace vectors is to partition the data in the

objective function first by the well at which the data were measured, and then by time

period. By trial-and-error, we found that partitioning the data from each well into 9 subsets

resulted in convergence to a minimum value of the objective function that was just as rapid as

when all the data were used. The resulting estimates for log-permeability and porosity were

quite similar to the MAP estimates obtained using the conventional methods (Fig. 3.3). The

results from the subspace approach were obtained in far less time, however. In this example,

although the total number of model parameters is 882 and the number of pressure data is

145, it was possible to parameterize the changes in the model in a subspace whose dimension

was only 47, without significantly affecting the number of iterations required for convergence

or the quality of the match.
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Figure 3.3: MAP estimates of the porosity field using 145 basis vectors (upper left) and

47 basis vectors (upper right). MAP estimates of the log-permeability field using 145 basis

vectors (lower left) and 47 basis vectors (lower right).

3.2.2 Dimension of Basis from Eigenvalue Analysis of Hessian

The decision to use 47 subspace vectors in this example was somewhat ad hoc but an analysis

of the spectrum of the dimensionless Hessian, LTGTC−1
D GL, shows that the number of

subspace vectors required to span the data space in the first iteration is on the order of

50 (see Fig. 3.4) so the use of 47 is probably close to optimal. Because it is unlikely that

the eigenvalues of the Hessian will be computed for large problems, however, we explored
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the consequences of using a smaller than optimal number of subspace vectors. Incidentally,

the consequence of using more than the optimal number is simply an additional expense in

computer time. There is no detrimental effect on the resulting estimate when additional

subspace vectors are used.
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Figure 3.4: The first 145 eigenvalues of the matrix LTGTC−1
D GL showing that approximately

40–50 basis vectors are sufficient to accurately construct δm in a Newton iteration.

3.2.3 The Effect of Small and Large Basis Dimensions

The number of iterations required to obtain an acceptable level of data mismatch in a New-

ton method is a function of the number of subspace vectors used in the representation of

δm and, to a lesser extent, a function of the actual choice of subspace vectors. With 47

subspace vectors (i.e. 9 data sub-objective functions per well plus two model mismatch vec-

tors) convergence was achieved in four iterations, which was the same as in the conventional

Bayesian inverse approach. When 7 subspace vectors were used (i.e. one data sub-objective

function per well plus two model mismatch vectors), the initial rate of reduction in the data

mismatch was large but after two Newton iterations the rate of reduction slowed substan-

tially (Fig. 3.5). Even after 50 iterations, the total objective function was still very far from

the value obtained in 4 iterations with 47 subspace vectors.
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Results with 12 and 22 subspace vectors were intermediate between the previously de-

scribed cases. In these cases, the pressure data were subdivided first by well, and then by

flow period. Thus, for Well 1 which produced at 700 B/D for one day, then was shut-in for

one day, and was produced for a final day at 700 B/D, the data for day 1 were subdivided

into two periods, the data from day 2 were all grouped together, and the data from day 3

were also subdivided into two periods. This gave five subspace vectors per well. Data from

two flow periods (such as shut-in and drawdown) were never combined. The initial rate of

reduction in the data misfit was large, but after four iterations the rate of reduction again

slowed substantially (see curve marked with black squares in Fig. 3.5). After 15 iterations,

the value of the objective function obtained with 22 subspace vectors was 280 while the value

obtained with 47 subspace vectors in 4 iterations was 220.

In general, we observed that when the number of subspace vectors used was smaller

than some limiting value, the rate of reduction in the data misfit function would slow to an

unacceptably slow rate after a few iterations. The number of subspace vectors required to

achieve rapid convergence seems to be approximately equal to the number of eigenvalues of

LTGTC−1
D GL that are greater than 0.1. Although this matrix changes as the minimum is

approached, the number of eigenvalues that are greater than one was relatively constant in

these examples.

3.2.4 Importance of the Choice of Subspace Vectors

We initially believed that it would be important to group data with similar information

content together to generate basis vectors. If this had been true it would have had severe

consequences on the utility of the method. In fact, we found that the rate of reduction in the

objective function seems to be dictated largely by the number of subspace vectors, and not

by the exact choice of vectors. Thus, when we used the first 15 singular vectors from a SVD

of a large set of trial subspace vectors, the results were similar to those obtained by simple

partitioning the objective function. Similarly, Fig. 3.6 contains a comparison of the results

from two subspace vector selection schemes, both of which have 22 subspace vectors. In the

first case, (across flow periods), we simply partitioned the data from each well into sets of

approximately equal size. In the second case, (within flow periods), we did not allow data

from different flow periods to be combined. The results were again nearly identical. This

is encouraging as it suggests that the subspace spanned by the gradients of sub-objective

functions for any reasonable partitioning of the data are similar.

66



Oliver & Reynolds DE-PS26-00FT40759 December 10, 2001

0 5 10 15
102

104

106

108

Iteration

T
ot

al
 O

bj
ec

ti
ve

 F
un

ct
io

n

7

12

22 

47

145

Figure 3.5: The number of Newton iterations required to reduce the objective function to

the desired level depends on the number of subspace vectors used in the expansion of δm.
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Figure 3.6: The convergence behavior is similar for two different methods of partitioning the

data.
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3.3 Gradual increase in dimension of basis

In the discussion of Fig. 3.5, we observed that unless we chose enough subspace vectors,

the rate of convergence could become quite slow. It was unclear, however, how to estimate

the proper number in advance without computing eigenvalues or singular values of a large

matrix. Secondly, we observed that the initial rate of reduction in the data misfit was always

large, even for small numbers of subspace vectors. This suggests that an efficient strategy

for minimizing the computational effort is to begin with a small number of subspace vectors

in the early iterations, adding more when needed to maintain a high rate of convergence.

Unfortunately, when this method was first attempted, it was never very efficient, largely be-

cause the addition of new subspace vectors always resulted in an increase in model roughness

at the next iteration. This problem was eventually resolved by using Levenberg-Marquardt

with a fairly large damping factor.
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Figure 3.7: The convergence is only slightly slower, but the total work is reduced when the

dimension of the basis vectors is increased at each iteration.

Fig. 3.7 compares the reduction in the objective function for a 2-D problem in which

the number of subspace vectors is increased in each Newton iteration to a case in which the

number of subspace vectors was constant. In this case, the number of subspace vectors used

was 7, 17, 27, 37 and 47 in iterations 1 through 5, respectively. An equal number of subspace

vectors (i.e. 1 per well, 3 per well, 5 per well, 7 per well and 9 per well) were used for each

well at each Newton iteration. Fig. 3.7 shows that when the number of subspace vectors
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was gradually increased, the pressure mismatch part of the objective function was reduced

nearly as fast as when 47 subspace vectors were used in all iterations. The work done in the

variable subspace dimension case was about 70% of the work required for the case with 47

subspace vectors in all iterations. The savings from using an increasing number of subspace

vectors would probably be larger in practice as the number of subspace vectors to use in a

constant dimension method would likely be estimated suboptimally.

3.3.1 Traditional Levenberg-Marquardt

Gauss-Newton had worked quite well for most cases in which the number of subspace vectors

was constant, but when the number of subspace vectors was increased at every iteration it

became more difficult to achieve convergence to a small value of the objective function.

In these cases, we typically found that the model mismatch (or regularization) part of the

objective function had become large in the early iterations. It was difficult to remove the

model “roughness” in subsequent iterations and the final value of the objective function was

unsuitably large. To solve this problem, we implemented the Levenberg-Marquardt algorithm

in a slightly non-standard way. Instead of adding a diagonal matrix, λI to the Hessian, we

multiplied the inverse of the model covariance by a factor of 1 + λ in the Hessian. In the

subspace parameterization, the Levenberg-Marquardt equation is obtained from Eq. 2.16,
(

(1 + λ)BT
l CMBl +BT

l CMG
T
l C

−1
D GlCMBl

)

αl = −BT
l CM∇Ol. (3.4)

Otherwise, the implementation was similar to the algorithm described by Marquardt (1963)

with a growth factor of 4 for λ and a decay factor of 2.

In this fairly standard implementation of the Levenberg-Marquardt algorithm, the prob-

lems we experienced were similar to those we experienced with the Gauss-Newton method;

if the value of λ was too small at an early iteration, the model acquired “roughness” which

was difficult to remove at later iterations (see the curve for λ0 = 10−1 in Fig. 3.8). On the

other hand, when we started with a value of λ that was too large, the initial rate of reduction

in the objective function was small (see λ0 = 109 in Fig. 3.8), or the rate at later iterations

was small (see λ0 = 105 to 109 in Fig. 3.8). Although starting values for λ in the range 102

to 103 worked well for the 2-D example, it was necessary to start with λ between 106 and

107 to achieve a small value of the objective function for the 3-D reservoir example.

3.3.2 Levenberg-Marquardt with 1-D search

Because the parameters required for efficient convergence of the Levenberg-Marquardt al-

gorithm were problem dependent and difficult to determine without much experimentation,
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Figure 3.8: Reduction in the objective function for a wide range of starting values of the

Levenberg-Marquardt damping factor.

we sought a more robust implementation of the algorithm. One simple way to prevent the

incidence of model roughness is to multiply the model mismatch term in the objective func-

tion by a large factor before minimization. We chose to base the magnitude of the model

mismatch multiplication factor on the magnitude of the data mismatch so that the two terms

would be of comparable magnitude. In the ith Levenberg-Marquardt iteration, we define

γi = max[1, Oi
D/(8ND)],

then perform a one-dimensional search for the value of the Levenberg-Marquardt damping

factor λ that minimizes

OF = OD + γiOM. (3.5)

Note that γi goes to one as the data mismatch, OD, is reduced so that the correct objective

function is minimized. This procedure has some features in common with the recommenda-

tions of Levenberg (1944) who proposed using a Newton-like method to estimate an optimal

value of λ at each iteration. The primary difference is that we modify the objective function

for minimization depending on the magnitude of the data mismatch. At every iteration of

Levenberg-Marquardt minimization, we use Brent’s method (Brent, 1973) to search for the λ

that minimizes the total objective function of Eq. 3.5. We assume that the optimal value of

λ is bracketed by 10γi−3.5 and 10γi+3.5. For each trial value of λ, we must solve the system of
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equations in Eq. 3.4, update the model and evaluate the objective function of Eq. 3.5. Eval-

uation of the objective function requires one solution of the forward problem (one simulation

run). Because approximately 6 evaluations of the objective function are typically required

to estimate the optimal value of λ by Brent’s method, the method will only be efficient if

it results in relatively few Levenberg-Marquardt iterations compared to a method that does

not attempt to optimize λ.

The convergence behavior and schedule of optimal values of λ for the 2- and 3-D problems

were much different (Fig. 3.9). In both cases, however, the procedure of gradually increasing

the number of basis vectors and solving for the best λ at each iteration was more efficient

than traditional Gauss-Newton or Levenberg-Marquardt.
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Figure 3.9: The rates of reduction in the objective function (left) and in the optimal value

of lambda (right) are much different for the 2- and 3-D problems.

3.4 Computation Details

Consider the work involved in the computation of a MAP estimate using the Gauss-Newton

Method with subspace vectors. For each Gauss-Newton iteration, Eq. 2.29 must be solved

to determine the correction to the model parameter estimates. The main computational

components are the computation of the subspace vectors (if required), and the computation

of the product GA.

If the subspace vectors are chosen a priori, independently of the data, there would be no

significant effort involved in their computation (other than multiplication by CM perhaps).

If the subspace vectors are chosen based on the data, as we propose, then one solution of the
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adjoint system is required per subspace vector. Because the adjoint problem is linear, while

the forward equations are typically nonlinear, the time required for the solution of the adjoint

system should be less than the time required for the forward solution. The computation of

the product GA has been addressed by Chu et al. (2000) and is summarized in Abacioglu

et al. (2001). From the discussion of Killough et al. (1995) we see that the time required for

computation of the product of G with each column of A is again some fraction at the time

required for one simulation run. In their case, the fraction was on the order of 15%. Other

parts of the computation are relatively insignificant, or can be made so with some care.

One interesting feature of the convergence plots is that the rate of convergence at early

Newton iterations appears to be independent of the number of subspace vectors. Thus

whether we use 7 subspace vectors or 145, the objective function is reduced by a factor

of 104 in the first two iterations. The most efficient methods started with as few subspace

vectors as possible at early iterations, then gradually increased the number in order to achieve

the required reduction in the objective function.
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Chapter 4

TIME-LAPSE SEISMIC

The goal of this part of the project is to develop methods for integration of time-lapse seismic

data into the history matching code. Work on this aspect began in June 2001 with the arrival

of a PhD student, Yannong Dong. At this stage much of the work is of a preliminary nature.

The actual development of software and algorithms will begin in Spring 2002.

There have been many recent papers on the use of time-lapse seismic data for improved

reservoir characterization and reservoir management. In most of these papers, the time-

lapse seismic data has been used qualitatively to identify regions of the reservoir which are

undrained or to identify movement of fluid contacts (Koster et al., 2000). Other researchers

have assumed that the time-lapse seismic data provides saturation or an indicator for sat-

uration change (Landa and Horne, 1997; Gosselin et al., 2001). This may not be a bad

approximation in some reservoirs but it does ignore the effects of pressure on the seismic

impedance and oversimplifies the complexity of the relationship.

In inverse theory approaches to parameter estimation, a relationship between data and the

model parameters must be specified. For the problem of reservoir characterization from time-

lapse seismic data, the parameters are the permeability and the porosity of every gridblock

in a reservoir simulation model. At the most basic level, the data are the pre-stack seismic

amplitude traces recorded at several times during the life of the reservoir. This, however,

makes for a very difficult problem because the relationship is complex. The relationship can

be thought of as being given by the following sequence of relationships between intermediate

quantities.

1. Given permeability and porosity at every gridblock, the gridblock saturations and

pressures can be computed using the reservoir simulator.

2. Given saturations and pressures (and some additional elastic parameters for the rock),
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the poro-elastic modulii can be computed using Gassmann’s equations or something

equivalent.

3. Given the poro-elastic modulii, the seismic amplitudes can be computed using forward

seismic modeling.

The first and last steps in this sequence can be very time consuming. In our research we

will assume that the last step can be partially eliminated by “inverting” the seismic data one

time to obtain maps of seismic impedance corresponding to the times at which the surveys

were acquired. By taking this approach, the seismic impedance is treated as data even though

in a strict sense it is actually an interpretation of the data. One difficulty with this approach

is that it is somewhat more difficult to quantify the level of errors in seismic impedance data

than in the actual seismic data, largely because it is difficult to quantify the propagation

of errors through the processing and because the processing introduces additional errors of

unknown magnitude.

The main features of this approach are shown in Fig. 4.1. In addition, to the time-lapse

data, which are shown as change in impedance, ∆Zobs, it is likely that log data for porosity

and production data such as WOR, GOR, and pressures at wells will be available. If the

initial choice of porosities and permeabilities result in saturations and pressures that give an

adequate match to the data, the algorithm stops, otherwise the permeabilities and porosities

are adjusted to improve the match. We expect to be able to use many of the algorithms

that we have developed for automatic history matching. The performance of minimization

methods is quite specific to the particular function being minimized, however, and the spatial

distribution of data for time-lapse seismic is much different from the spatial distribution of

production data, so modifications are to be expected.

The inital work, specific to the problem of incorporating time-lapse seismic data, consists

of two parts. The first task involves computation of effective seismic velocity and bulk

modulus in saturated porous media as functions of pressure and saturation. The second task

will involve the development of numerical methods for computation of sensitivities of seismic

impedance to gridblock permeability, porosity, and relative permeability parameters. We

will focus on the progress on the first task in this report.

4.1 Computation of seismic impedance

Seismic impedance of the reservoir is important, because the amplitude of seismic reflections

is a direct function of the contrast in seismic impedance. Usually, the material that forms the
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Compute corrections

δK, δφ, δγ
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Bulk modulus (clay), Kc
Bulk modulus (sand), Ks

Permeability, k(x)
Porosity, φ(x)

Relative permeability 

Reservoir simulator

Pressure, p(x)
Saturations, Sw(x), Sg(x)

∆Zmodel
φmodel

p, GOR, WORmodel
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p, GOR, WORobs

Compute gradient
(Solve adjoint system)

Figure 4.1: Flow chart for history matching time-lapse seismic data.
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sealing cap for a reservoir has a much different seismic velocity or density than the porous

material that holds the reservoir fluids. Because of the contrast, a strong seismic reflection

may occur at the reservoir boundary. The time-lapse seismic method is based on the idea

that the accoustic impedance may change with time because of changes in saturation and

pressure due to production of the reservoir fluids.

Accoustic impedance is defined as the product of the density and the primary wave

velocity, Vp. It is convenient, however, to write the impedance in the following way as a

function of density, ρ, bulk modulus, K, and secondary (or shear) wave velocity, Vs.

Z = ρVp =

√

ρK +
4

3
ρ2V 2

s . (4.1)

To compute the bulk modulus of fluid saturated porous medium, we use the Gassmann

equation which is applicable to low frequency oscillations.

K = Kg

Kf +
Kw(Kg−Kf)
φ(Kg−Kw)

Kg +
Kw(Kg−Kf)
φ(Kg−Kw)

. (4.2)

In this equation, K is the bulk modulus of the saturated porous medium, Kf is the bulk

modulus of the unsaturated porous medium, Kg is the bulk modulus of the grains, Kw is the

bulk modulus of the pore fluids, and φ is the porosity.

The bulk modulus of the dry frame is assumed to be related to the bulk modulus of the

grains, but reduced because of the porosity, i.e.,.

logKf = logKg − 4.25φ. (4.3)

If the reservoir consisted of grains of a single lithology, the grain modulus would simply

depend depend on the composition of the grains. For most sandstone reservoirs, the effective

grain bulk modulus depends on both the sand and clay modulii and on the shaliness, γ. One

relation for computing the effective grain modulus is

Kg =
1

2

[

γKc + (1− γ)Ks +
KsKc

Ksγ +Kc(1− γ)

]

. (4.4)

The inverse of the bulk modulus of the pore fluid is a simple weighted average of the

inverse bulk modulii of the phases:

1

Kw

=
Sbrine

Kbrine

+
Sgas

Kgas

+
Soil

Koil

. (4.5)
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Finally, we use the Han equation (Han, 1986) to compute shear wave velocity as a function

of porosity and shaliness:

Vs = 3.52− 4.91φ− 1.89γ. (4.6)

One troubling feature of these equations is the dependence on parameters such as shaliness

that we may not wish to map. (Every additional variable adds to the complexity of the

problem.) The reservoir flow simulator will have fluid saturations, pressures, and porosity

available for every grid block in the reservoir. It is unclear whether or not it will be necessary

to also map shaliness, γ, and how important the uncertainty in Kc, Ks, and γ will be for

computing change in impedance.

4.2 The sensitivity of impedance to variability in sha-

liness

When the pressure decreases due to production, in a solution-gas drive reservoir, gas evolves

and oil is displaced from the reservoir, but the saturation of water is usually approximately

constant. In this case, the saturation of oil and gas will change with time. If we are to

attempt to infer saturations and pressures directly from seismic impedance data, we need

to compare the magnitude of the sensitivity of impedance to uncertainty or variability in

shaliness, and in the elastic modulii of the minerals that make up the reservoir rock. Table 4.1

shows a reasonable set of base values for seismic impedance.

We selected what we believed to be reasonable upper and lower bounds for many of the

parameters. For example, in reservoir rock, the shaliness might be expected to vary between

(0 ≤ γ ≤ 0.4), the bulk modulus of the clay mineral to vary between (1 × 1010 ≤ Kc ≤
3× 1010), the bulk modulus for the sand (2.8× 1010 ≤ Ks ≤ 4.8× 1010) and gas saturation

between (0 ≤ S ≤ 0.2). Figure 4.2 shows the variation of seismic impedance for those ranges

of parameter inputs. Note that the sensitivity of impedance to the bulk modulus of the

mineral is nearly as large as the sensitivity to a reasonable variation in gas saturation. The

sensitivity to shaliness is considerably larger. From this comparison, it seems reasonable to

assume that variability in shaliness would be important when attempting to invert seismic

impedance data for saturation.
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Parameter Base Value

Porosity 0.2

Modulus of Sand (Pa) 3.8× 1010

Modulus of clay (Pa) 21.2× 109

Density of Solid (kg/m3) 2650

Density of Gas (kg/m3) 214

Density of Water (kg/m3) 986

Density of Oil (kg/m3) 707

Modulus of Gas (Pa) 3.94× 107

Modulus of Water (Pa) 2.39× 109

Modulus of Oil (Pa) 6.71× 108

Water Saturation 0.2

Oil Saturation 0.8

Gas Saturation 0.0

Shaliness 0.2

Seismic Impedance 7.00× 106

Table 4.1: Base value of reservoir parameters(gas drive).

3 4 5 6 7 8

Shaliness

Bulk modulus -clay-

Bulk modulus -sand-

Gas saturation

Figure 4.2: The sensitivity of impedance to variability in rock properties.

4.3 Sensitivity of change in impedance to variability in

shaliness

If, instead of using the impedance, we use the change of impedance with time to estimate

saturation and pressure, the situation as likely to be much different. In this case, we should
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expect that some of the influence of uncertainty of reservoir properties may be reduced

because only the saturation and pressure will change with time.

Table 4.2 shows the bounds that were used in this part of the investigation. To compute

the influence of uncertainty in these parameters, we computed the seismic impedance at the

initial time (Sg = 0) with the low value of the parameter (e.g. γ = 0.0), then computed

the seismic impedance at the later time (Sg = 0.5) with the same value of the parameter

(γ = 0.0). The difference tells us the magnitude of the change in seismic impedance for a

clean reservoir. We then repeat the computation with γ = 0.4. This tells the magnitude of

the effect of uncertainty in shaliness (γ) on the time-lapse change in seismic impedance.

The results of all computations are shown in Table 4.3. Increasing the gas saturation from

0 to 0.5 reduces impedance by about 7.5%. If the reservoir is perfectly clean the reduction is

only 7.2%. If it is particularly shaly, the reduction is 8%. The variation due to uncertainty

in mineral properties is much less than this. Similar results (Table 4.4) were obtained for a

water flood example, in which case the change in impedance is due only to a replacement

of oil by water in the pore space (0.2 < Sw < 0.6). As a result, we can conclude that the

effect of variability in the shaliness, and bulk modulii of the rock minerals are relatively

unimportant when we are considering the change in seismic impedance.

Parameter Low Bound Value High Bound

Gas Saturation 0.0 0.5

Shaliness 0.0 0.4

Clay Modulus (Pa) 1.0× 1010 3.0× 1010

Sand Modulus (Pa) 2.8× 1010 4.8× 1010

Table 4.2: Low bound and high bound value of reservoir parameters(gas drive).

4.4 Forward simulation of time-lapse impedance changes

In order to check the likelihood of the reservoir model being correct, it is necessary to compare

the observed changes in seismic impedance with those predicted from the reservoir model.

This requires that the formulas from section 4.1 be written into the reservoir simulator. One

additional problem is that the thickness of grid blocks in the reservoir model is typically

much less than the thickness that can be resolved by the seismic data. In order to compare

the data (from seismic) with the predictions (from the model) we need to approximate the

upscaling inherent in the reflection of seismic waves. For this preliminary study, we used
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Parameter Change of Seismic Impedance Change Ratio

In Base Value −526631 −7.5%
Shaliness in Low Bound −502306 −7.2%
Shaliness in High Bound −562770 −8.0%
Clay Modulus in Low Bound −528152 −7.5%
Clay Modulus in High Bound −525463 −7.5%
Sand Modulus in Low Bound −528241 −7.5%
Sand Modulus in High Bound −523081 −7.5%

Table 4.3: Change of seismic impedance by change of gas saturation.

Parameter Change of Seismic Impedance Change Ratio

In Base Value 251978 3.6%

Shaliness in Low Bound 242795 3.5%

Shaliness in High Bound 265121 3.8%

Clay Modulus in Low Bound 249037 3.6%

Clay Modulus in High Bound 252823 3.6%

Sand Modulus in Low Bound 247481 3.5%

Sand Modulus in High Bound 253692 3.6%

Table 4.4: Change of seismic impedance by change of water saturation.

Backus upscaling of the reservoir blocks (Backus, 1962; Lindsay and van Koughnet, 2001)

to generate an effective impedance map. The actual procedure is arithmetic averaging of

bulk density in the vertical direction, and arithmetic averaging in slowness (or equivalently

harmonic averaging of p-wave velocity).

We used a three-dimensional reservoir model with 21 gridblocks in the x and y directions,

and 8 gridblocks in the z direction. We suppose that the reservoir initially contains oil and

water and that water is at the irreducible saturation equal to 0.2. There are five wells in

the reservoir model. Production at four well near the corners is balanced by injection at the

center well (see Figure 4.3).

The permeability of the reservoir model is heterogeneous. We assumed a log-normal

distribution with mean of ln k equal to 4.5 (for permeability k measured in md) and a

variable of ln k equal to 1.0. An exponential variogram model was assumed; the range in the

horizontal directions is 600 ft and in the vertical directions 160 ft.
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Figure 4.3: The base map for the reservoir simulation model showing the areal grid and well

locations.

The simulator runs about 560 days before reaching the limiting water cut. Saturations

and seismic impedance are examined at three times during the life of the reservoir. The

first plot of seismic impedance change and water saturation distribution is in 10th day

(Figure 4.4). The second one is in 212th day (Figure 4.5) and the last one is in the final day

(Figure 4.6).
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Figure 4.4: The vertically averaged water saturation (top) and the upscaled change in seismic

impedance (bottom) after 10 days of injection.
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Figure 4.5: The vertically averaged water saturation (top) and the upscaled change in seismic

impedance (bottom) after 212 days of injection.
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Figure 4.6: The vertically averaged water saturation (top) and the upscaled change in seismic

impedance (bottom) after 560 days of injection.
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Chapter 5

CONCLUSIONS

We have presented a general formulation for generating sensitivity coefficients that is compat-

ible with a fully-implicit, finite-difference solution of the three-phase flow black-oil equations.

The method can be applied to single-phase oil or gas flow or to multiphase flow problems

and is not restricted to cases where the physical assumptions necessary in order to employ

highly efficient streamline simulators in the history matching process apply. The formulation

given here allows one to construct the adjoint equations directly from information computed

in solving the finite-difference equations using the Newton-Raphson algorithm. The advan-

tage of the adjoint method is that the number of matrix solutions required to compute the

sensitivity coefficients is independent of the number of reservoir model parameters to be esti-

mated. Computation of these sensitivities allows one to perform history matching using the

Levenberg-Marquardt or Gauss-Newton method which are approximately quadratically con-

vergent as opposed to more slowly converging conjugate gradient or variable metric methods.

With these sensitivity coefficients, one can calculate the a posteriori covariance matrix, eval-

uate the reduction in uncertainty obtained by conditioning to production data and evaluate

the information content of different types of data.

Dimensionless sensitivity coefficients allow one to determine which model parameters

have the greatest influence on production data. Dimensionless sensitivity coefficients by

themselves, however, do not always clearly indicate the value of a particular data type,

i.e., do not always give a clear indication of the reduction in the uncertainty in model

parameters that will be achieved by conditioning to the particular data. This is mainly

due to the fact that dimensionless sensitivity coefficients do not consider the correlation

between model parameters in either the prior or a posteriori model. Examination of the a

posteriori variances gives one measure of the reduction in uncertainty achieved by history

matching production data using the prior model for regularization. Based on this measure of
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uncertainty, conditioning to all production data (pressure, GOR and WOR) gives a greater

reduction in uncertainty than is obtained by conditioning to only pressure, only pressure and

GOR or only pressure and WOR. One should bear in mind, however, that these a posteriori

variances only provide an approximation of the value of conditioning data, in that they

represent the variances of the marginal distributions of individual variables and ignore the

a posteriori correlation between model parameters.

Six minimization algorithms, GN, LM, PCG, BFGS, SBFGS and LBFGS were imple-

mented into our history matching code and compared based on the convergence rate and

memory. Our theoretical analysis and results indicate that LBFGS and LBFGS-P-CG are

the most promising algorithms for large problems in which the number of data and number of

model parameters are both large. An improved scaling procedure for the LBFGS algorithm

is proposed. Our results show that using the approximation to the inverse of the Hessian

matrix generated from LBFGS as a preconditioner can improve the convergence properties

of conjugate gradient method significantly.

For history-matching problems in which large amounts of data are acquired, we showed

that it is possible to construct a model correction vector δm from a reduced basis, whose

dimension is much less than the number of data or the number of model parameters, without

affecting the result or the number of iterations required to obtain a minimum. The main

problems for implementation were to determine how many basis vectors are required and

how to choose a good set of basis vectors. Our solution was to partition the data objective

function (the sum of the squared data mismatch) into a relatively small number of sub-

objective functions. The product of the prior model covariance matrix with gradients of the

data sub-objective functions provides a good set of subspace vectors for history matching.

Partitioning the data by well and then by time interval is an effective method of choosing

subspace vectors. We found that the efficiency of the method is not very sensitive to the

details of the partitioning. Any reasonable partitioning of the data gave similar results.

When we used a fixed number of subspace vectors for every Newton iteration, the di-

mension of the basis had a large impact on the efficiency of the method. If too few subspace

vectors were chosen, the number of Newton iterations required became very large. The

initial rate of reduction in the objective function is largely independent of the number of

subspace vectors, however. Because the computation of the gradient of sub-objective func-

tions is expensive, it is clear that the computational effort can be reduced by starting with

a small number of basis vectors for the first Newton iteration, and gradually increasing the

number of basis vectors at subsequent iterations. Unfortunately, the process of increasing

the number of basis vectors at each Newton iteration made the minimization process more
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unstable. We found that the efficiency could be improved by using a modified form of the

Levenberg-Marquardt algorithm in which an optimal damping parameter was computed at

each Newton iteration.

The work on time-lapse seismic is at a preliminary stage, but we have concluded that

it will be possible to incorporate change in impedance data into reservoir characterization

using methodologies that are quite similar to the methodologies we have used to incorporate

production data. Importantly, we found that it will not be necessary to add additional model

parameters for shaliness, because while the effect of variation in shaliness on impedance is

quite large, it has a much smaller effect on the change of impedance data that we will use

in our studies.
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